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This article explores a combination of deep and shallow approaches to the problem of resolving
the scope of speculation and negation within a sentence, specifically in the domain of biomedical
research literature. The first part of the article focuses on speculation. After first showing how
speculation cues can be accurately identified using a very simple classifier informed only by
local lexical context, we go on to explore two different syntactic approaches to resolving the
in-sentence scopes of these cues. Whereas one uses manually crafted rules operating over depen-
dency structures, the other automatically learns a discriminative ranking function over nodes
in constituent trees. We provide an in-depth error analysis and discussion of various linguistic
properties characterizing the problem, and show that although both approaches perform well
in isolation, even better results can be obtained by combining them, yielding the best published
results to date on the CoNLL-2010 Shared Task data. The last part of the article describes how our
speculation system is ported to also resolve the scope of negation. With only modest modifications
to the initial design, the system obtains state-of-the-art results on this task also.

1. Introduction

The task of providing a principled treatment of speculation and negation is a problem
that has received increased interest within the NLP community during recent years.
This is witnessed not only by this Special Issue, but also by the themes of several recent
shared tasks and dedicated workshops. The Shared Task at the 2010 Conference on Nat-
ural Language Learning (CoNLL) has been of central importance in this respect, where
the topic was speculation detection for the domain of biomedical research literature
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(Farkas et al. 2010). This particular area has been the focus of much current research,
triggered by the release of the BioScope corpus (Vincze et al. 2008)—a collection of
scientific abstracts, full papers, and clinical reports with manual annotations of words
that signal speculation or negation (so-called cues), as well as of the scopes of these cues
within the sentences. The following examples from BioScope illustrate how sentences
are annotated with respect to speculation. Cues are here shown using angle brackets,
with braces corresponding to their annotated scopes:

(1) {The specific role of the chromodomain is 〈unknown〉} but chromodomain
swapping experiments in Drosophila {〈suggest〉 that they {〈might〉 be
protein interaction modules}} [18].

(2) These data {〈indicate that〉 IL-10 and IL-4 inhibit cytokine production by
different mechanisms}.

Negation is annotated in the same way, as shown in the following examples:

(3) Thus, positive autoregulation is {〈neither〉 a consequence 〈nor〉 the sole
cause of growth arrest}.

(4) Samples of the protein pair space were taken {〈instead of〉 considering the
whole space} as this was more computationally tractable.

In this article we develop several linguistically informed approaches to automati-
cally identify cues and resolve their scope within sentences, as in the example annota-
tions. Our starting point is the system developed by Velldal, Øvrelid, and Oepen (2010)
for the CoNLL-2010 Shared Task challenge. This system implements a two-stage hybrid
approach for resolving speculation: First, a binary classifier is applied for identifying
cues, and then their in-sentence scope is resolved using a small set of manually defined
rules operating on dependency structures.

In the current article we present several important extensions to the initial system
design of Velldal, Øvrelid, and Oepen (2010): First, in Section 5, we present a simpli-
fied approach to cue classification, greatly reducing the model size and complexity
of our Support Vector Machine (SVM) classifier while at the same time giving better
accuracy. Then, after reviewing the manually defined dependency-based scope rules
(Section 6.1), we show how the scope resolution task can be handled using an alternative
approach based on learning a discriminative ranking function over subtrees of HPSG-
derived constituent trees (Section 6.2). Moreover, by combining this empirical ranking
approach with the manually defined rules (Section 6.3), we are able to obtain the best
published results so far (to the best of our knowledge) on the CoNLL-2010 Shared
Task evaluation data. Finally, in Section 7, we show how our speculation system can be
ported to also resolve the scope of negation. Only requiring modest modifications, the
system also obtains state-of-the-art results on this task. Rather than merely presenting
the implementation details of the new approaches we develop, we also provide in-depth
error analyses and discussion on the linguistic properties of the phenomena of both
speculation and negation.

Before turning to the details of our approach, however, we start by presenting the
relevant data sets and the resources used for pre-processing in Section 2, followed by
a presentation of the various evaluation measures we will use in Section 3. We also
provide a brief review of relevant previous work in Section 4.
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2. Data Sets and Preprocessing

Our experiments center on the biomedical abstracts, full papers, and clinical reports of
the BioScope corpus (Vincze et al. 2008). This comprises 20,924 sentences (or other root-
level utterances), annotated with respect to both negation and speculation. Some basic
descriptive statistics for the data sets are provided in Table 1. We see that roughly 18% of
the sentences are annotated as uncertain, and 13% contain negations. Note that, for our
speculation experiments, we will be using only the abstracts and the papers for training,
corresponding to the official CoNLL-2010 Shared Task training data. Moreover, we will
be using the Shared Task version of this data, in which certain annotation errors had
been corrected. The Shared Task task organizers also provided a set of newly annotated
biomedical articles for evaluation purposes, constituting an additional 5,003 utterances.
This latter data set (also detailed in Table 1) will be used for held-out testing of our
speculation models. We will be using the following abbreviations when referring to the
various parts of the data: BSA (BioScope abstracts), BSP (full papers), BSE (the held-
out evaluation data), and BSR (clinical reports). Note that, when we get to the negation
task we will be using the original version of the BioScope data. Furthermore, as BSE
does not annotate negation, we instead follow the experimental set-up of Morante and
Daelemans (2009b) for the negation task, reporting 10-fold cross validation on BSA and
held-out testing on BSP and BSR.

2.1 Tokenization

The BioScope data (and other data sets in the CoNLL-2010 Shared Task), are provided
sentence-segmented only, and otherwise non-tokenized. Unsurprisingly, the GENIA
tagger (Tsuruoka et al. 2005) has a central role in our pre-processing set-up. We found
that its tokenization rules are not always optimally adapted for the type of text in Bio-
Scope, however. For example, GENIA unconditionally introduces token boundaries for
some punctuation marks that can also occur token-internally, thus incorrectly splitting
tokens like 390,926, methlycobamide:CoM, or Ca(2+). Conversely, GENIA fails to isolate
some kinds of opening single quotes, because the quoting conventions assumed in
BioScope differ from those used in the GENIA Corpus, and it mis-tokenizes LATEX-
style n- and m-dashes. On average, one in five sentences in the CoNLL training data

Table 1
The top three rows summarize the components of the BioScope corpus—abstracts (BSA), full
papers (BSP), and clinical reports (BSR)—annotated for speculation and negation. The bottom
row details the held-out evaluation data (BSE) provided for the CoNLL-2010 Shared Task.
Columns indicate the total number of sentences and their average length, the number of
hedged/negated sentences, the number of cues, and the number of multiword cues. (Note that
BSE is not annotated for negation, and we do not provide speculation statistics for BSR as this
data set will only be used for the negation experiments.

Speculation Negation

Sentences Length Sentences Cues MWCs Sentences Cues MWCs

BSA 11,871 26.1 2,101 2,659 364 1,597 1,719 86
BSP 2,670 25.7 519 668 84 339 376 23
BSR 6,383 7.7 – – – 865 870 8
BSE 5,003 27.6 790 1,033 87 – – –
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exhibited GENIA tokenization problems. Our pre-processing approach thus deploys a
cascaded finite-state tokenizer (borrowed and adapted from the open-source English
Resource Grammar: Flickinger [2002]), which aims to implement the tokenization deci-
sions made in the Penn Treebank (Marcus, Santorini, and Marcinkiewicz 1993)—much
like GENIA, in principle—but more appropriately treating corner cases like the ones
noted here.

2.2 PoS Tagging and Lemmatization

For part-of-speech (PoS) tagging and lemmatization, we combine GENIA (with its
built-in, occasionally deviant tokenizer) and TnT (Brants 2000), which operates on
pre-tokenized inputs but in its default model is trained on financial news from the
Penn Treebank. Our general goal here is to take advantage of the higher PoS accuracy
provided by GENIA in the biomedical domain, while using our improved tokenization
and producing inputs to the parsers that as much as possible resemble the conventions
used in the original training data for the (dependency) parser (the Penn Treebank, once
again).

To this effect, for the vast majority of tokens we can align the GENIA tokeniza-
tion with our own, and in these cases we typically use GENIA PoS tags and lemmas
(i.e., base-forms). For better normalization, we downcase all lemmas except for proper
nouns. GENIA does not make a PoS distinction between proper vs. common nouns
(as assumed in the Penn Treebank), however, and hence we give precedence to TnT
outputs for tokens tagged as nominal by both taggers. Finally, for the small number of
cases where we cannot establish a one-to-one correspondence between GENIA tokens
and our own tokenization, we rely on TnT annotation only.

2.3 A Methodological Caveat

Unsurprisingly, the majority of previous work on BioScope seems to incorporate infor-
mation from the GENIA tagger in one way or another, whether it regards tokenization,
lemmatization, PoS information, or named entity chunking. Using the GENIA tagger for
pre-processing introduces certain dependencies to be aware of, however, as the abstracts
in BioScope are in fact also part of the GENIA corpus (Collier et al. 1999) on which the
GENIA tagger is trained. This means that the accuracy of the information provided by
the tagger on this subset of BioScope cannot be expected to be representative of the
accuracy on other texts. Moreover, this effect might of course also carry over to any
downstream components using this information.

For the experiments described in this article, GENIA supplies lemmas for the
n-gram features used by the cue classifiers, as well as PoS tags used in the input to
both the dependency parser and the Head-driven Phrase Structure Grammar (HPSG)
parser (which in turn provide the inputs to our various scope resolution components).
For the HPSG parser, a subset of the GENIA corpus was also used as part of the
training data for estimating an underlying statistical parse selection model, producing
n-best lists of ranked candidate parses (MacKinlay et al. 2011). When reporting final
test results on the full papers (BSP or BSE) or the clinical reports (BSR), no such
dependencies between information sources exists. It does mean, however, that we can
reasonably expect to see some extra drop in performancewhen going fromdevelopment
results on data that includes the BioScope abstracts to the test results on these other
data sets.
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3. Evaluation Measures

In this section we seek to clarify the type of measures we will be using for evaluating
both the cue detection components (Section 3.1) and the scope resolution components
(Section 3.2). Essentially, we here follow the evaluation scheme established by the
CoNLL-2010 Shared Task on speculation detection, also applying this when evaluating
results for the negation task.

3.1 Evaluation Measures for Cue Identification

For the approaches presented for cue detection in this article (for both speculation and
negation), we will be reporting precision, recall, and F1 for three different levels of
evaluation; the sentence-level, the token-level, and the cue-level. The sentence-level scores
correspond to Task 1 in the CoNLL-2010 Shared Task, that is, correctly identifying
whether a sentence contains uncertainty or not. The scores at the token-level measure
the number of individual tokens within the span of a cue annotation that the classifier
has correctly labeled as a cue. Finally, the stricter cue-level scores measure how well a
classifier succeeds in identifying entire cues (which will in turn provide the input for
the downstream components that later try to resolve the scope of the speculation or
negation within the sentence). A true positive at the cue-level requires that the predicted
cue exactly matches the annotation in its entirety (full multiword cues included).

For assessing the statistical significance of any observed differences in performance,
we will be using a two-tailed sign-test applied to the token-level predictions. This
is a standard non-parametric test for paired samples, which in our setting considers
how often the predictions of two given classifiers differ. Note that we will only be
performing significance testing for the token-level evaluation (unless otherwise stated),
as this is the level that most directly corresponds to the classifier decisions. We will be
assuming a significance level of α = 0.05, but also reporting actual p-values in cases
where differences are not found to be significant.

3.2 Evaluation Measures for Scope Resolution

When evaluating scope resolution we will be following the methodology of the CoNLL-
2010 Shared Task, also using the scoring software made available by the task organiz-
ers.1 We have modified the software trivially so that it can also be used to evaluate
negation labeling. As pointed out by Farkas et al. (2010), this way of evaluating scope is
rather strict: A true positive (TP) requires an exact match for both the entire cue and the
entire scope. On the other hand, a false positive (FP) can be incurred by three different
events; (1) incorrect cue labeling with correct scope boundaries, (2) correct cue labeling
with incorrect scope boundaries, or (3) incorrectly labeled cue and scope. Moreover,
conditions (1) and (2) will give a double penalty, in the sense that they also count as false
negatives (FN) given that the gold-standard cue or scope is missed (Farkas et al. 2010).
Finally, false negatives are of course also incurred by cases where the gold-standard
annotations specify a scope but the system makes no such prediction.

Of course, the evaluation scheme outlined here corresponds to an end-to-end eval-
uation of the overall system, where the cue detection performance carries over to the

1 The Java code for computing the scores can be downloaded from the CoNLL-2010 Shared Task Web site:
http://www.inf.u-szeged.hu/rgai/conll2010st/.
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scope-level performance. In order to better assess the performance of a scope resolution
component in isolation, we will also report scope results against gold-standard cues. Note
that, when using gold-standard cues, the number of false negatives and false positives
will always be identical, meaning that the scope-level figures for recall, precision, and F1
will all be identical as well, and we will therefore only be reporting the latter in this set-
up. (The reason for this is that, when assuming gold-standard cues, only error condition
(2) can occur, which will in turn always count both a false positive and a false negative,
making the two figures identical.)

Exactly how to define the paired samples that form the basis of the statistical
significance testing is less straightforward for the end-to-end scope-level predictions
than for the cue identification. It is also worth noting that the CoNLL-2010 Shared Task
organizers themselves refrained from including any significance testing when report-
ing the official results. In this article we follow a recall-centered approach: For each
cue/scope pair in the gold standard, we simply note whether it is correctly identified
or not by a given system. The sequence of boolean values that results (FP = 0, TP = 1)
can be directly paired with the corresponding sequence for a different system so that
the sign-test can be applied as above.

Note that our modified scorer for negation is available from our Web page of sup-
plemental materials,2 together with the system output (in XML following the BioScope
DTD) for all end-to-end runs with our final model configurations.

4. Related Work on Speculation Labeling

Although there exists a body of earlier work on identifying uncertainty on the sentence
level, (Light, Qiu, and Srinivasan 2004; Medlock and Briscoe 2007; Szarvas 2008), the
task of resolving the in-sentence scope of speculation cues was first pioneered byMorante
and Daelemans (2009a). In this sense, the CoNLL-2010 Shared Task (Farkas et al. 2010)
entered largely uncharted territory and contributed to an increased interest for this task.

Virtually all systems for resolving speculation scope implement a two-stage archi-
tecture: First there is a component that identifies the speculation cues and then there is a
component for resolving the in-sentence scopes of these cues. In this section we provide a
brief review of previous work on this problem, putting emphasis of the best performers
from the two corresponding subtasks of the CoNLL-2010 Shared Task, cue detection
(Task 1) and scope resolution (Task 2).

4.1 Related Work on Identifying Speculation Cues

The top-ranked system for Task 1 in the official CoNLL-2010 Shared Task evaluation
approached cue identification as a sequence labeling problem (Tang et al. 2010). Similarly to
the decision-tree approach of Morante and Daelemans (2009a), Tang et al. (2010) set out
to label tokens according to a BIO-scheme; indicating whether they are at the Beginning,
Inside, or Outside of a speculation cue. In the “cascaded” system architecture of Tang et
al. (2010), the predictions of both a Conditional Random Field (CRF) sequence classifier
and an SVM-based Hidden Markov Model (HMM) are both combined in a second CRF.

In terms of the overall approach, namely, viewing the problem as a sequence la-
beling task, Tang et al. (2010) are actually representative of the majority of the Shared
Task participants for Task 1 (Farkas et al. 2010), including the top three performers on

2 Supplemental materials; http://www.velldal.net/erik/modneg/.
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the official held-out data. Many participants instead approached the task as a word-by-
word token classification problem, however. Examples of this approach are the systems of
Velldal, Øvrelid, and Oepen (2010) and Vlachos and Craven (2010), sharing the fourth
rank position (out of 24 submitted systems) for Task 1.

In both the sequence- and token-classification approaches, sentences are labeled
as uncertain if they are found to contain a cue. In contrast to this, a third group of
systems instead label sentences directly, typically using bag-of-words features. Such
sentence classifiers tended to achieve a somewhat lower relative rank in the official Task 1
evaluation (Farkas et al. 2010).

4.2 Related Work on Resolving Speculation Scope

As mentioned earlier, the task of resolving the scope of speculation was first introduced
inMorante andDaelemans (2009a), where a system initially designed for negation scope
resolution (Morante, Liekens, and Daelemans 2008) was ported to speculation. Their
general approach treats the scope resolution task in much the same way as the cue
identification task: as a sequence labeling task and using only token-level, lexical infor-
mation. Morante, van Asch, and Daelemans (2010) then extended on this system by also
adding syntactic features, resulting in the top performing system of the CoNLL-2010
Shared Task at the scope-level (corresponding to the second subtask). It is interesting
to note that all the top performers use various types of syntactic information in their
scope resolution systems: The output from a dependency parser (MaltParser) (Morante,
van Asch, and Daelemans 2010; Velldal, Øvrelid, and Oepen 2010), a tag sequence
grammar (RASP) (Rei and Briscoe 2010), as well as constituent analysis in combination
with dependency triplets (Stanford lexicalized parser) (Kilicoglu and Bergler 2010).
The majority of systems perform classification at the token level, using some variant
of machine learning with a BIO classification scheme and a post-processing step to
assemble the full scope (Farkas et al. 2010), although several of the top performers
employ manually constructed rules (Kilicoglu and Bergler 2010; Velldal, Øvrelid, and
Oepen 2010) or even combinations of machine learning and rules (Rei and Briscoe 2010).

5. Identifying Speculation Cues

We now turn to look at the details of our own system, starting in this section with
describing a simple yet effective approach to identifying speculation cues. A cue is here
taken to mean the words or phrases that signal the attitude of uncertainty or specula-
tion. As noted by Farkas et al. (2010), most hedge cues typically fall in the following cate-
gories; adjectives or adverbs (probable, likely, possible, unsure, etc.), auxiliaries (may,might,
could, etc.), conjunctions (either. . . or, etc.), or verbs of speculation (suggest, suspect, sup-
pose, seem, etc.). Judging by the examples in the Introduction, it might at first seem that
the speculation cues can be identified merely by consulting a pre-compiled list. Most, if
not all, words that can function as cues can also occur as non-cues, however. More than
85% of the cue lemmas observed in the BioScope corpus also have non-cue occurrences.
To give just one example, a hedge detection system needs to correctly discriminate
between the use of appear as a cue in Example (5), and as a non-cue in Example (6):

(5) In 5 patients the granulocytes {〈appeared〉 polyclonal} [. . . ]

(6) The effect appeared within 30 min and returned to basal levels after 2 h.
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In the approach of Velldal, Øvrelid, and Oepen (2010), a binary token classifier was
applied in a way that labeled each and every word as cue or non-cue. We will refer to this
mode of classification as word-by-word classification (WbW). The follow-up experi-
ments described by Velldal (2011) showed that comparable results could be achieved
using a filtering approach that ignores words not occurring as cues in the training data.
This greatly reduces both the number of relevant training examples and the number
of features in the model, and in the current article we simplify this “disambiguation
approach” even further. In terms of modeling framework, we implement our models
as linear SVM classifiers, estimated using the SVMlight toolkit (Joachims 1999). We also
include results for a very simple baseline model, however—to wit, a WbW approach
classifying each word simply based on its observed majority usage as a cue or non-cue
in the training data. Then, as for all our models, if a given sentence is found to contain
a cue, the entire sentence is subsequently labeled uncertain. Before turning to the indi-
vidual models, however, we first describe how we deal with the issue ofmultiword cues.

5.1 Multiword Cues

In the BioScope annotations, it is possible for a speculation cue to span multiple tokens
(e.g., raise an intriguing hypothesis). As seen from Table 1, about 13.5% of the cues in the
training data are such multiword cues (MWCs). The distribution of these cues is very
skewed, however. For instance, although the majority of MWCs are very infrequent
(most of them occurring only once), the pattern indicate that accounts for more than 70%
of the cases alone. Exactly which cases are treated as MWCs often seems somewhat
arbitrary and we have come across several inconsistencies in the annotations. We there-
fore choose to not let the classifiers we develop in this article be sensitive to the notion
of multiword cues. A given word token is considered a cue as long as it falls within
the span of a cue annotation. Multiword cues are instead treated in a separate post-
processing step, applying a small set of heuristic rules that aim to capture only the most
frequently occurring patterns observed in the training data. For example, if we find that
indicate is classified as a cue and it is followed by that, a rule will fire that ensures we
treat these tokens as a single cue. (Note that the rules are only applied to sentences that
have already been labeled uncertain by the classifier.) Table 2 lists the lemma patterns
currently covered by our rules.

5.2 Reformulating the Classification Problem: A Filtered Model

Before detailing our approach, we start with some general observations about the data
and the task. An error analysis of the initial WbW classifier developed by Velldal,

Table 2
Patterns covered by our rules for multiword speculation cues.

cannot {be}? exclude
either .+ or
indicate that
may,? or may not
no {evidence | proof | guarantee}
not {known | clear | evident | understood | exclude}
raise the .* {possibility | question | issue | hypothesis}
whether or not
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Øvrelid, and Oepen (2010) revealed it was not able to generalize to new speculation
cues beyond those observed during training. On the other hand, only a rather small
fragment of the test cues are actually unseen: Using a 10-fold split for the development
data, the average ratio of test cues that also occur as cues in training is more than 90%.

Another important observation we can take into account is that although it seems
reasonable to assume that anyword occurring as a cue can also occur as a non-cue (recall
that more than 85% of the observed cues also have non-cue occurrences in the training
data), the converse is less likely. Whereas the training data contains a total of approxi-
mately 17,600 unique base forms, only 143 of these ever occur as speculation cues.

As a consequence of these observations, Velldal (2011) proposed that one might
reasonably treat the set of cue words as a near-closed class, at least for the biomedical
data considered in this study. This means reformulating the problem as follows. Instead
of approaching the task as a classification problem defined for all words, we only
consider words that have a base form observed as a speculation cue in the training
material. By restricting the classifier to only this subset of words, we can simplify the
classification problem tremendously. As we shall see, it also has the effect of leveling
out the initial imbalance between negative and positive examples in the data, acting as
a (selective rather than random) downsampling technique.

One reasonable fear here, perhaps, might be that this simplification comes at the
expense of recall, as we are giving up on generalizing our predictions to any previously
unseen cues. As noted earlier, however, the initial WbW model of Velldal, Øvrelid, and
Oepen (2010) already failed to make any such generalizations, and, as we shall see, this
reformulation comes without any loss in performance and actually leads to an increase
in recall compared to a full WbWmodel using the same feature set.

Note that although we will approach the task as a “disambiguation problem,” it is
not feasible to train separate classifiers for each individual base form. The frequency
distribution of the cue words in the training material is rather skewed with most cues
being very rare—many occurring as a cue only once (≈ 40%, constituting less than
1.5% of the total number of cue word instances). (Most of these words also have many
additional occurrences in the training data as non-cues, however.) For the majority of
the cue words, then, it seems we cannot hope to gather enough reliable information to
train individual classifiers. Instead, we want to be able to draw on information from
the more frequently occurring cues also when classifying or disambiguating the less
frequent ones. Consequently, we will still train a single global classifier.

Extending on the approach of Velldal (2011), we include a final simple step to reduce
the set of relevant training examples even further. As pointed out in Section 5.1, any
token occurring within a cue annotation is initially regarded as a cue word. Many
multiword cues also include function words, punctuation, and so forth, however. In
order to filter out such spurious but high-frequency “cues,” we compiled a small stop-
list on the basis of the MWCs in training data (containing just a dozen tokens, namely,
a, an, as, be, for, of, that, the, to, with, ‘,’, and ‘-’).

5.2.1 Features. After experimenting with a wide range of different features, Øvrelid,
Velldal, and Oepen (2010) concluded that syntactic features appeared unnecessary for
the cue classification task, and that simple sequence-oriented n-gram features recording
immediate lexical context based on lemmas and surface forms is what gave the best
performance.

Initially, the n-gram feature templates we use in the current article record neighbors
for up to three positions left/right of the focus word. For increased generality, we also
include non-lexicalized variants, that is, recording only the neighbors while excluding
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the focus word itself. After a grid search across the various configurations of these
features, the best performance was found for a model recording n-grams of lemmas up
to three positions left and right of the focus word, and n-grams of surface forms up to
two positions to the right.

Table 3 shows the performance of the filteringmodel when using this feature config-
uration and testing by 10-fold cross-validation on the training data (BSA and BSP), also
contrasting performance with the majority usage baseline. Achieving a sentence-level
F1 of 92.04 (compared to 89.07 for the baseline), a token-level score of 89.57 (baseline =
86.42), and a cue-level score of 89.11 (baseline = 85.57), it performs significantly better
than the baseline. Applying the sign-test as described in Section 3.1, the token-level
differences were found to be significant for p < 0.05. It is also clear, however, that the
simple baseline appears to be fairly strong.

As discussed previously, part of the motivation for introducing the filtering scheme
is to create a model that is as simple as possible without sacrificing performance. In
addition to the evaluation scores, therefore, it is also worth noting some statistics related
to the classifier and the training data itself. Before looking into the properties of the fil-
tering set-up though, let us start, for the sake of comparison, by considering some prop-
erties of a learning set-up based on full WbW classification like the model of Velldal,
Øvrelid, and Oepen (2010), assuming an identical feature configuration as used for the
given filtering model. The row titled WbW in Table 3 lists the development results for
this model, and we see that they are slightly lower than for the filtering model (with the
differences being significant for α = 0.05). Although precision is slightly higher, recall is
substantially lower. Assuming a 10-fold cross-validation scheme like this, the number of
training examples presented to the WbW learner in each fold averages roughly 340,000,
corresponding to the total number of word tokens. Among these training examples,
the ratio of positive to negative examples (cues vs. non-cues) is roughly 1:100. In other
words, the data is initially very skewed when it comes to class balance. In terms of the
size of the feature set, the average number of distinct feature types per fold, assuming
the given feature configuration, would be roughly 2,600,000 under a WbW set-up.

Turning now to the filtering model, the average number of training examples
presented to the learner in each fold is reduced from roughly 340,000 to just 10,000.
Correspondingly, the average number of distinct feature types is reduced from well
above 2,600,000 to roughly 100,000. The class balance among the tokens given to the
learner is alsomuch less skewed, with positive examples now averaging 30%, compared
to 1% for the WbW set-up. Finally, we observe that the complexity of the model in
terms of how many training examples end up as support vectors (SVs) defining the
separating hyperplane is also considerably reduced: Although the average number of
SVs in each fold corresponds to roughly 14,000 examples for the WbW model, this is
down to roughly 5,000 for the final filtered model. Note that for the SVM regularization

Table 3
Development results for detecting speculationCUES:Averaged 10-fold cross-validation results for
the cue classifiers on both the abstracts and full papers in the BioScope training data (BSA andBSP).

Sentence Level Token Level Cue Level

Model Prec Rec F1 Prec Rec F1 Prec Rec F1

Baseline 91.07 87.21 89.07 91.61 81.85 86.42 90.49 81.16 85.57
WbW 95.01 88.03 91.37 95.29 82.78 88.58 94.65 82.26 88.02
Filtering 94.52 89.72 92.04 94.88 84.86 89.57 94.13 84.60 89.11
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parameter C, governing the trade-off between training error and margin size, we will
always be using the default value set by SVMlight. This value is analytically determined
from the training data, and further empirical tuning has in general not led to improve-
ments on our data sets.

5.2.2 The Effect of Data Size. Given how the filtered classifier treats the set of cues as a
closed class, a reasonable concern is its sensitivity to the size of the training set. In order
to further assess this effect, we computed learning curves showing how classifier per-
formance on the development data changes as we incrementally include more training
examples (see Figure 1). For reference we also include learning curves for the word-by-
word classifier using the identical feature configuration, as well as the majority usage
baseline.

As expected, we see that classifier performance steadily improves as more training
data is included. Although additional data would no doubt be beneficial, we reassur-
ingly observe that the curve seems to start gradually flattening out somewhat. If we
instead look at the performance curve for the WbW classifier we find that, while having
roughly the same shape as that of the filtered classifier, although consistently lower, it
nonetheless appears to be more sensitive to the size of the training set. Interestingly,
we see that the baseline model seems to be the one that is least affected by data size. It
actually outperforms the standard WbWmodel for the first three increments, but at the
same time it seems unable to benefit much at all from additional data.

5.2.3 Error Analysis.When looking at the distribution of errors at the cue-level (totaling
just below 700 across the 10-fold run), we find that roughly 74% are false negatives.
Rather than being caused by legitimate cue words being filtered out during training,
however, the FNs mostly pertain to a handful of high-frequency words that are also
highly ambiguous. When sorted according to error frequency, the top four candidates
alone constitute almost half the total number of FNs: or (24% of the FNs), can (10%),
could (7%), and either (6%). Looking more closely at the distribution of these words in

Figure 1
Learning curves showing the effect on token-level F1 for speculation cues when withdrawing
some portion of the training partitions across the 10-fold cycles. The size of the training set is
shown on a logarithmic scale to better see whether improvements are constant for n-fold
increases of data.
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the training data, it is easy to see how they pose a challenge for the learner. For example,
whereas or has a total of 1,215 occurrences, only 153 of these are annotated as a cue.
Distinguishing the different usages from each other can sometimes be difficult even for
a human eye, as testified also by the many inconsistencies we observed in the gold-
standard annotation of these cases.

Turning our attention to the other end of the tail, we find that just over 40 (8%) of the
FNs involve tokens for which there is only a single occurrence as a cue in the training
data. In other words, these would first appear to be exactly the tokens that we could
never get right, given our filtering scheme. We find, however, that most of these cases
regard tokens whose one and only appearance as a cue is as part of a multiword cue,
although they typically have a high number of other non-cue occurrences as well. For
example, although number occurs a total of 320 times, its one and only occurrence as
a cue is in the multiword cue address a number of questions. Given that this and several
other equally rare patterns are not currently covered by our MWC rules in the first
place, we would not have been able to get them right even if all the individual tokens
had been classified as cues (recall that a true positive at the cue-level requires an exact
match of the entire span). In total we find that 16% of the cue-level FNs corresponds to
multiword cues.

When looking at the frequency of multiword cues among the false positives, we
find that they only make up roughly 5% of the errors. Furthermore, a manual inspection
reveals that they can all be argued to be instances of annotation errors, in that we believe
these should actually be counted as true positives. Most of them involve indicate that and
not known, as in the following examples (where the cues assigned by our system are not
annotated as cues in BioScope):

(7) In contrast, levels of the transcriptional factor AP-1, which is 〈not known〉
to be important in B cell Ig production, were reduced by TGF-beta.

(8) Analysis of the nuclear extracts [. . . ] 〈indicated that〉 the composition of
NF-kappa B was similar in neonatal and adult cells.

All in all, the errors in the FP category make up 26% of the total number of errors.
Just as for the FNs, the frequency distribution of the cues involved is quite skewed,
with a handful of highly frequent and highly ambiguous cue words accounting for the
bulk of the errors: The modal could (20%), and the adjectives putative (11%), possible
(6%), potential (6%), and unknown (5%). After manually inspecting the full set of FPs,
however, we find that at least 60% of them should really be counted as true positives.
The following are just a few examples where cues predicted by our classifier are not
annotated as such in BioScope and therefore counted as FPs.

(9) IEF-1, a pancreatic beta-cell type-specific complex 〈believed〉 to regulate
insulin expression, is demonstrated to consist of at least two distinct
species, [. . . ]

(10) We 〈hypothesize〉 that a mutation of the hGR glucocorticoid-binding
domain is the cause [. . . ]

(11) Antioxidants have been 〈proposed〉 to be anti-atherosclerotic agents; [. . . ]

(12) Finally, matDCC might be further stabilized by the addition of roX1 RNA,
which could interact with several of the MSLs and 〈perhaps〉 roX2 RNA
as well.
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One interesting source of real FPs concerns “anti-hedges,” which in the training data
appear with a negation and as part of a multiword cue, for example no proof. During
testing, the classifier will sometimes wrongly predict a word like proof to be a specu-
lation cue, even when it is not negated. Because we already have MWC rules for cases
like this (see Section 5.1) it would be easy to also include a check for “negative context,”
making sure that such tokens are not classified as cues if the requiredmultiword context
is missing.

Before rounding off this section, a brief look at the BioScope inter-annotator agree-
ment rates may offer some further perspective on the results discussed here. Note that
when creating the BioScope data, the decisions of two independent annotators were
merged by a third expert linguist who resolved any differences. The F1 of each set of
annotations toward the final gold-standard cues are reported by Vincze et al. (2008) to
be 83.92 / 92.05 for the abstracts and 81.49 / 90.81 for the full papers. (Recall from Table 3
that our cue-level F1 for the cross-validation runs on the abstracts and papers is 89.11.)
When instead comparing the decisions of the two annotators directly, the F1 is reported
to be 79.12 for the abstracts and 77.60 for the papers.

5.3 Held-Out Results for Identifying Speculation Cues

Table 4 presents the final evaluation of the various cue classifiers developed in this
section, as applied to the held-out BSE test data. In addition to the evaluation results for
our own classifiers, Table 4 also includes the official test results for the system described
by Tang et al. (2010). The sequence classifier developed by Tang et al. (2010)—combining
a CRF classifier and a large-margin HMM model—obtained the best results for the
official Shared Task evaluation for Task 1 (i.e., sentence-level uncertainty detection), as
well as the highest cue-level scores.

As seen from Table 4, although themodel of Tang et al. (2010) still achieves a slightly
higher F1 (81.34) than our filtered disambiguation model for the cue-level, our model
achieves a slightly higher F1 (86.58) for the sentence-level (yielding the best-published
result for this task so far, to the best of our knowledge). The differences are not deemed
statistically significant by a two-tailed sign-test, however (p = 0.37). It is interesting to
note, however, that the two approaches appear to have somewhat different strengths
and weaknesses: Whereas our filtering classifier consistently shows stronger precision
(and theWbWmodel even more so), the model of Tang et al. (2010) is stronger on recall.
The sentence-level recall of our filtered classifier is still better than any of the remaining
23 systems submitted for the Shared Task evaluation, however, and, more interestingly,
it improves substantially on the recall of the full WbW classifier.

Table 4
Held-out results for identifying speculation cues: Applying the cue classifiers to the 5,003
sentences in BSE— the biomedical papers provided for the CoNLL-2010 Shared Task evaluation.

Sentence Level Token Level Cue Level

Model Prec Rec F1 Prec Rec F1 Prec Rec F1

Baseline 77.59 81.52 79.51 77.16 72.39 74.70 75.15 72.49 73.80
WbW 89.28 83.29 86.18 87.62 73.95 80.21 86.33 74.21 79.82
Filtering 87.87 85.32 86.58 86.46 76.74 81.31 84.79 77.17 80.80
Tang et al. 2010 85.03 87.72 86.36 n/a n/a n/a 81.70 80.99 81.34
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We find that, just as for the development data, the reformulation of the cue clas-
sification task as a simple disambiguation problem improves F1 across all evaluation
levels, consistently outperforming the WbW classifiers. When computing a two-tailed
signed-test for the token-level decisions (where the WbW and filtering model achieves
an F1 of 80.21 and 81.31, respectively) the differences are not found to be significant (p =
0.12). As discussed in Section 5.2, however, it is important to bear in mind that the size
and complexity of the filtered “disambiguation” model is greatly reduced compared
to the WbW model, using a much smaller number of features and relevant training
examples.

While on the topic of model complexity, it is also worth noting that many of the
systems participating in the CoNLL-2010 Shared Task challenge used fairly complex
and resource-heavy feature types, being sensitive to properties of document structure,
grammatical relations, deep syntactic structure, and so forth (Farkas et al. 2010). The fact
that comparable or better results can be obtained using a relatively simplistic approach
as developed in this section, with surface-oriented features that are only sensitive to the
immediate lexical context, is an interesting result in its own right. In fact, even the simple
majority usage baseline classifier proves to be surprisingly competitive: Comparing its
sentence-level F1 to those of the official Shared Task evaluation, it actually outranks 7 of
the 24 submitted systems.

A final point that deserves some discussion is the drop in F1 that we observe when
going from the development results to the held-out results. There are several reasons for
this drop. Section 2.3 discussed how certain overfitting effects might be expected from
the GENIA-based pre-processing. In addition to this, it is likely that there are MWC
patterns in the held-out data that were not observed in the training data, and that are
therefore not covered by our MWC rules. Another factor that may have slightly inflated
the development results is the fact that we used a sentence-level rather than a document-
level partitioning of the data for cross-validation.

6. Resolving the Scope of Speculation Cues

Once the speculation cue has been determined using the cue detection system described
here, we go on to determine the scope of the speculation within the sentence. This task
corresponds to Task 2 of the CoNLL-2010 Shared Task. Example (13), which will be
used as a running example throughout this section, shows a scope-resolved BioScope
sentence where speculation is signaled by the modal verb may.

(13) {The unknown amino acid 〈may〉 be used by these species}.

The exact scope will vary quite a lot depending on linguistic properties of the cue
in question, and in our approaches to scope resolution we rely heavily on syntactic
information. We experiment with two different approaches to syntactic analysis; data-
driven dependency parsing and grammar-driven phrase structure parsing. Because
scope determination in BioScope makes reference to subtle and fine-grained linguistic
distinctions (e.g., passivization or subject raising), in both cases we choose parsing
systems that make available comparatively “deep” syntactic analyses. In the following
we present three different systems; a rule-based approach using dependency structures
(Section 6.1), a data-driven approach using an SVM ranker for selecting appropriate
subtrees in constituent structures (Section 6.2), and finally a hybrid approach combining
the rules and the ranker (Section 6.3).
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6.1 A Rule-Based Approach Using Dependency Structures

Øvrelid, Velldal, and Oepen (2010) applied a small set of heuristic rules oper-
ating over syntactic dependency structures to define the scope for each cue. In the
following we will provide a detailed description of these rules and the syntactic gen-
eralizations they provide for the scope of speculation (Section 6.1.2). We will evalu-
ate their performance using both gold-standard cues and cues predicted by our cue
classifier (Section 6.1.3), in addition to providing an in-depth manual error analysis
(Section 6.1.5). We start out, however, by presenting some specifics about the processing
of the data; introducing the stacked dependency parser that produces the input to our
rules (Section 6.1.1) and quantifying the effect of using a domain-adapted PoS tagger
(Section 6.1.4).

6.1.1 Stacked Dependency Parsing. For syntactic analysis we use the open-source Malt-
Parser (Nivre, Hall, and Nilsson 2006), a platform for data-driven dependency parsing.
For improved accuracy and portability across domains and genres, we make our parser
incorporate the predictions of a large-scale, general-purpose Lexical-Functional Gram-
mar parser. A technique dubbed parser stacking enables the data-driven parser to learn
from the output of another parser, in addition to gold-standard treebank annotations
(Martins et al. 2008; Nivre and McDonald 2008). This technique has been shown to
provide significant improvements in accuracy for both English and German (Øvrelid,
Kuhn, and Spreyer 2009), and a similar set-up using an HPSG grammar has been shown
to increase domain independence in data-driven dependency parsing (Zhang andWang
2009). The stacked parser used here is identical to the parser described in Øvrelid,
Kuhn, and Spreyer (2009), except for the preprocessing in terms of tokenization and
PoS tagging, which is performed as detailed in Sections 2.1–2.2. The parser combines
two quite different approaches—data-driven dependency parsing and “deep” parsing
with a hand-crafted grammar—and thus provides us with a broad range of different
types of linguistic information to draw upon for the speculation resolution task.

MaltParser is based on a deterministic parsing strategy in combination with
treebank-induced classifiers for predicting parse transitions. It supports a rich feature
representation of the parse history in order to guide parsing andmay easily be extended
to take into account additional features. The procedure to enable the data-driven parser
to learn from the grammar-driven parser is quite simple. We parse a treebank with
the XLE platform (Crouch et al. 2008) and the English grammar developed within the
ParGram project (Butt et al. 2002). We then convert the LFG output to dependency
structures, so that we have two parallel versions of the treebank—one gold-standard
and one with LFG annotation. We extend the gold-standard treebank with additional
information from the corresponding LFG analysis and train MaltParser on the
enhanced data set. For a description of the parse model features and the dependency
substructures proposed by XLE for each word token, see Nivre and McDonald (2008).
For further background on the conversion and training procedures, see Øvrelid, Kuhn,
and Spreyer (2009).

Table 5 shows the enhanced dependency representation for the sentence in Ex-
ample (13). For each token, the parsed data contains information on the word form,
lemma, and PoS, as well as the head and dependency relation (last two columns). The
added XLE information resides in the Features column and in the XLE-specific head and
dependency columns (XHead and XDep). Parser outputs, which in turn form the basis
for our scope resolution rules, also take this same form. The parser used in this work is
trained on the Wall Street Journal Sections 2–24 of the Penn Treebank (PTB), converted
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Table 5
Stacked dependency representation of the sentence in Example (13), lemmatized and annotated
with GENIA PoS tags, Malt parses (Head,DepRel), and XLE parses (XHead, XDep), as well as
other morphological and lexical semantic features extracted from the XLE analysis (Features).

Id Form PoS Features XHead XDep Head DepRel

1 The DT _ 4 SPECDET 4 NMOD
2 unknown JJ degree:attributive 4 ADJUNCT 4 NMOD
3 amino JJ degree:attributive 4 ADJUNCT 4 NMOD
4 acid NN pers:3|case:nom|num:sg|ntype:common 3 SUBJ 5 SBJ
5 may MD mood:ind|subcat:MODAL|tense:pres|clauseType:decl 0 ROOT 0 ROOT
6 be VB _ 7 PHI 5 VC
7 used VBN subcat:V-SUBJ-OBJ|vtype:main|passive:+ 5 XCOMP 6 VC
8 by IN _ 9 PHI 7 LGS
9 these DT deixis:proximal 10 SPECDET 10 NMOD

10 species NNS num:pl|pers:3|case:obl|common:count|ntype:common 7 OBL-AG 8 PMOD
11 . . _ 0 PUNC 5 P

to dependency format (Johansson andNugues 2007) and extendedwith XLE features, as
described previously. Parsing uses the arc-eager mode of MaltParser and an SVMwith a
polynomial kernel. When tested using 10-fold cross validation on the enhanced PTB, the
parser achieves a labeled accuracy score of 89.8, which is lower than the current state-
of-the-art for transition-based dependency parsers (to wit, the 91.8 score of Zhang and
Nivre 2011, although not directly comparable given that they test exclusively on WSJ
Section 23), but with the advantage of providing us with the deep linguistic information
from the XLE.

6.1.2 Rule Overview. Our scope resolution rules take as input a parsed sentence that has
been further tagged with speculation cues. We assume the default scope to start at the
cue word and span to the end of the sentence (modulo punctuation), and this scope also
provides the baseline when evaluating our rules.

In developing the rules, we made use of the information provided by the guidelines
for scope annotation in the BioScope corpus (Vincze et al. 2008), combined with manual
inspection of the training data in order to further generalize over the phenomena
discussed by Vincze et al. (2008) and work out interactions of constructions for various
types of cues. In the following, we discuss broad classes of rules, organized by categories
of speculation cues. An overview is also provided in Table 6, detailing the source of the
syntactic information used by the rule; MaltParser (M) or XLE (X). Note that, as there is
no explicit representation of phrase or clause boundaries in our dependency universe,
we assume a set of functions over dependency graphs, for example, finding the left- or
rightmost (direct) dependent of a given node, or recursively selecting left- or rightmost
descendants.

Coordination. The dependency analysis of coordination provided by our parser makes
the first conjunct the head of the coordination. For cues that are coordinating conjunc-
tions (PoS tag CC), such as or, we define the scope as spanning the whole coordinate
structure, that is, start scope is set to the leftmost dependent of the head of the coordina-
tion, and end scope is set to its rightmost dependent (conjunct). This analysis provides
us with coordinations at various syntactic levels, such as NP and N, AP and AdvP, or
VP as in Example (14):

(14) [...] the binding interfaces are more often {kept 〈or〉 even reused} rather
than lost in the course of evolution.
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Table 6
Overview of dependency-based scope rules with information source (MaltParser or XLE),
organized by the triggering PoS of the cue.

PoS Description Source

cc Coordinations scope over their conjuncts M
in Prepositions scope over their argument with its descendants M
jjattr Attributive adjectives scope over their nominal head and its descendants M
jjpred Predicative adjectives scope over referential subjects and clausal arguments, M, X

if present
md Modals inherit subject-scope from their lexical verb and scope over their M, X

descendants
rb Adverbs scope over their heads with its descendants M
vbpass Passive verbs scope over referential subjects and the verbal descendants M, X
vbrais Raising verbs scope over referential subjects and the verbal descendants M, X
* For multiword cues, the head determines scope for all elements
* Back off from final punctuation and parentheses

Adjectives.We distinguish between adjectives (JJ) in attributive (nmod) function and adjec-
tives in predicative (prd) function. Attributive adjectives take scope over their (nominal)
head, with all its dependents, as in Example (15):

(15) The {〈possible〉 selenocysteine residues} are shown in red, [...]

For adjectives in a predicative function the scope includes the subject argument of the
head verb (the copula), as well as a (possible) clausal argument, as in Example (16). The
scope does not, however, include expletive subjects, as in Example (17).

(16) Therefore, {the unknown amino acid, if it is encoded by a stop codon, is
〈unlikely〉 to exist in the current databases of microbial genomes}.

(17) [...] it is quite {〈likely〉 that there exists an extremely long sequence that is
entirely unique to U}.

Verbs. The scope of verbal cues is a bit more complex and depends on several factors.
In our rules, we distinguish passive usages from active usages, raising verbs from non-
raising verbs, and the presence or absence of a subject-control embedding context. The
scopes of both passive and raising verbs include the subject argument of their head
verb, as in Example (18), unless it is an expletive pronoun, as in Example (19).

(18) {Genomes of plants and vertebrates 〈seem〉 to be free of any recognizable
Transib transposons} (Figure 1).

(19) It has been {〈suggested〉 that unstructured regions of proteins are often
involved in binding interactions, particularly in the case of transient
interactions} 77.

In the case of subject control involving a speculation cue, specifically modals, sub-
ject arguments are included in scopes where the controller heads a passive construction
or a raising verb, as in our running Example (13).

385



Computational Linguistics Volume 38, Number 2

In general, the end scope of verbs should extend over the minimal clause that
contains the verb in question. In terms of dependency structures, we define the clause
boundary as comprising the chain of descendants of a verb which is not intervened by
a token with a higher attachment in the graph than the verb in question.

Prepositions and Adverbs. Cues that are tagged as prepositions (including some com-
plementizers) take scope over their argument, with all its descendants, Example (20).
Adverbs take scope over their head with all its (non-subject) syntactic descendants
Example (21).

(20) {〈Whether〉 the codon aligned to the inframe stop codon is a nonsense
codon or not} was neglected [...]

(21) These effects are {〈probably〉mediated through the 1,25(OH)2D3
receptor}.

Multiword Cues. In the case of multiword cues, such as indicate that or either. . . or, we set
the scope of the unit as a whole to the maximal scope encompassing the scopes of both
units.

As an illustration of processing by the rules, consider our running Example (13),
with its syntactic analysis as shown in Table 5 and the dependency graph depicted
in Figure 2. This example invokes a variety of syntactic properties, including parts of
speech, argumenthood, voice, and so on. Initially, the scope of the speculation cue is
set to default scope. Then the subject control rule is applied, it checks the properties of
the verbal argument used, going through a chain of verbal dependents (VC) from the
modal verb may (indicated in red in Figure 2). Because it is marked as passive in
the LFG analysis (+pass), the start scope is set to include the subject of the cue word
(the leftmost descendant [NMOD] of its SBJ dependent, indicated in green in Figure 2).

6.1.3 Evaluating the Rules. Table 7 summarizes scope resolution performance (viewed as
a subtask in isolation) against both the CoNLL-2010 shared task training data (BSA and
BSP) and held-out evaluation data (BSE), using gold-standard cues. First of all, we note
that the default scope baseline, that is, unconditionally extending the scope of a cue to
the end of the sentence, yields much better results for the abstracts than the full papers.
The main reason is simply that the abstracts contain almost no cases of sentence final
bracketed expressions (e.g., citations and in-text references). Our scope rules improve
on the baseline by only 3.8 percentage points on the BSA data (F1 up from 69.84 to

Figure 2
Dependency representation for Example (13), indicating rule processing of the cue word may.
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Table 7
Resolving the scope of gold-standard speculation cues in the development and held-out data
using the dependency rules. For Default, the scope for each cue is always taken to span
rightwards to the end of the sentence.

Data Configuration F1

B
S
A Default 69.84

Dependency Rules 73.67

B
S
P Default 45.21

Dependency Rules 72.31

B
S
E Default 46.95

Dependency Rules 66.60

73.67). For BSP, however, we find that the rules improve on the baseline by as much as
27 points (up from 45.21 to 72.31). Similarly for the papers in the held-out BSE data, the
rules improve the F1 by 19.7 points (F1 up from 46.95 to 66.60).

Comparing to the result on the training data, we observe a substantial drop in
performance on the held-out data. There are several possible explanations for this effect.
First of all, there may well be some degree of overfitting of our rules to the training
data. The held-out data may contain speculation constructions that are not covered
by our current set of scope rules, or annotation of parallel constructions may in some
cases differ in subtle ways (see Section 6.1.5). The overfitting effects caused by the data
dependencies introduced by the various GENIA-based domain adaptation steps, as
described in Section 2.3, must also be taken into account.

6.1.4 PoS Tagging and Domain Variation. As mentioned in Section 6.1.1, an advantage of
stacking with a general-purpose LFG parser is that it can be expected to aid domain
portability. Nonetheless, substantial differences in domain and genre are bound to
negatively affect syntactic analysis (Gildea 2001), and our parser is trained on financial
news. MaltParser presupposes that inputs have been PoS tagged, however, leaving
room for variation in preprocessing. In this article we have aimed, on the one hand,
to make parser inputs conform as much as possible to the conventions established in its
PTB training data, while on the other hand taking advantage of specialized resources
for the biomedical domain.

To assess the impact of improved, domain-adapted inputs on our scope resolution
rules, we contrast two configurations: Running the parser in the exact same manner
as Øvrelid, Kuhn, and Spreyer (2009)—the first configuration uses TreeTagger (Schmid
1994) and its standard model for English (trained on the PTB) for preprocessing. In
the second configuration the parser input is provided by the refined GENIA-based
preprocessing described in Section 2.2. Evaluating the two modes of preprocessing on
the BSP subset of BioScope using gold-standard speculation cues, our scope resolution
rules achieve an F1 of 66.31 when using TreeTagger parser inputs, and 72.31 (see Table 7)
using our GENIA-based tagging and tokenization combination. These results underline
the importance of domain adaptation for accurate syntactic analysis.

6.1.5 Error Analysis. In Section 5.2.3 we discussed BioScope inter-annotator agreement
rates for the cue-level. Focusing only on the cases where the annotators agree with the
final gold-standard cues (as resolved by the chief annotator), Vincze et al. (2008) report
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the scope-level F1 of the two annotators toward the gold standard to be 66.72 / 89.67 for
BSP. Comparing the decisions of the two annotators directly (i.e., treating one of the
annotations as gold-standard) yields an F1 of 62.50.

Using gold-standard cues, our scope resolution rules fail to exactly replicate the
target annotation in 185 (of 668) cases in the papers portion of the training material
(BSP), corresponding to an F1 of 72.31 as seen in Table 7. Two of the authors, who
are both trained linguists, performed a manual error analysis of these 185 cases. They
classify 156 (84%) as genuine system errors, 22 (12%) as likely3 annotation errors,
and the remaining 7 cases as involving controversial or seemingly arbitrary decisions
(Øvrelid, Velldal, and Oepen 2010). Out of the 156 system errors, 85 (55%) were deemed
as resulting from missing or defective rules, and 71 system errors (45%) resulted from
parse errors. The latter were annotated as parse errors even in cases where there was
also a rule error.

The two most frequent classes of system errors pertain to (a) the recognition of
phrase and clause boundaries and (b) not dealing successfully with relatively superficial
properties of the text. Examples (22) and (23) illustrate the first class of errors, where
in addition to the gold-standard annotation we use vertical bars (‘|’) to indicate scope
predictions of our system.

(22) [. . . ] {the reverse complement |mR of m will be 〈considered〉 to . . . ]|}

(23) This |{〈might〉 affect the results} if there is a systematic bias on the
composition of a protein interaction set|.

In our syntax-driven approach to scope resolution, system errors will almost always
correspond to a failure in determining constituent boundaries, in a very general sense.
In Example (22), for instance, the parser has failed to correctly locate the head of the
subject. Example (23), however, is specifically indicative of a key challenge in this task,
where adverbials of condition, reason, or contrast frequently attach within the depen-
dency domain of a speculation cue, yet are rarely included in the scope annotation.
For these system errors, the syntactic analysis may well be correct, although additional
information is required to resolve the scope.

Example (24) demonstrates our second frequent class of system errors. One in six
items in the BSP training data contains a sentence-final parenthesized element or trailing
number (e.g., Examples [18] or [19]); most of these are bibliographic or other in-text
references, which are never included in scope annotation. Hence, our system includes a
rule to ‘back out’ from trailing parentheticals; in cases such as Example (24), however,
syntax does not make explicit the contrast between an in-text reference versus another
type of parenthetical.

(24) More specifically, {|the bristle and leg phenotypes are 〈likely〉 to result
from reduced signaling by Dl| (and not by Ser)}.

3 In some cases, there is no doubt that annotation is erroneous, that is, in violation of the available
annotation guidelines (Vincze et al. 2008) or in conflict with otherwise unambiguous patterns. In other
cases, however, judgments are necessarily based on our own generalizations (e.g., assumptions about
syntactic analyses implicit in the BioScope annotations). Furthermore, selecting items for manual analysis
that do not align with the predictions made by our scope resolution rules is likely to bias our sample, such
that our estimated proportion of 12% annotation errors cannot be used to project an overall error rate.
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Moving on to apparent annotation errors, the rules for inclusion (or not) of the
subject in the scope of verbal speculation cues and decisions on boundaries (or internal
structure) of nominals seem problematic—as illustrated in Examples (25) and (26).4

(25) [. . . ] and |this is also {〈thought〉 to be true for the full protein interaction
networks we are modeling}|.

(26) [. . . ] |redefinition of {one of them is 〈feasible〉}|.

Finally, the difficult corner cases invoke non-constituent coordination, ellipsis,
or NP-initial focus adverbs—and of course interactions of the phenomena discussed
herein. Without making the syntactic structures assumed explicit, it is often very diffi-
cult to judge such items.

6.2 A Data-Driven Approach Using an SVM Constituent Ranker

The error analysis indicated that it is often difficult to use dependency paths to define
phenomena that actually correspond to syntactic constituents. Furthermore, we felt that
the factors governing scope resolution would be better expressed in terms of soft con-
straints instead of absolute rules, thus enabling the scope resolver to consider a range
of relevant (potentially competing) contextual properties. In this section we describe
experiments with a novel approach to determining the in-sentence scope of speculation
that, rather than usingmanually defined heuristics operating on dependency structures,
instead uses a data-driven approach, ranking candidate scopes on the basis of constituent
trees. More precisely, our parse trees are licensed by the LinGO English Resource Gram-
mar (ERG; Flickinger [2002]), a general-purpose, wide-coverage grammar couched in
the framework of an HPSG (Pollard and Sag 1987, 1994). The approach rests on two
main assumptions: Firstly, that the annotated scope of a speculation cue corresponds to
a syntactic constituent and secondly, that we can automatically learn a ranking function
that selects the correct constituent.

Our ranking approach to scope resolution is abstractly related to statistical parse
selection, and in particular work on discriminative parse selection for unification based
grammars, such as those by Johnson et al. (1999), Riezler et al. (2002), Malouf and
van Noord (2004), and Toutanova et al. (2005). The overall goal is to learn a function
for ranking syntactic structures, based on training data that annotates which tree(s) are
correct and incorrect for each sentence. In our case, however, rather than discriminating
between complete analyses for a given sentence, we want to learn a ranking function
over candidate subtrees (i.e., constituents) within a parse (or possibly evenwithin several
parses). Figure 3 presents an example derivation tree that represents a complete HPSG
analysis. Starting from the cue and working through the tree bottom–up, there are three
candidate constituents to determine scope (marked in bold), each projecting onto a
substring of the full utterance, and each including at least the cue. Note that in the case
of multiword cues the intersection of each word’s candidates is selected, ensuring that
all cues appear within the scope projected by the candidate constituents.

The training data is then defined as follows. Given a parsed BioScope sentence,
the subtree that corresponds to the annotated scope for a given speculation cue will

4 As in the presentation of system errors, we include scope predictions of our own rules here too, which
we believe to be correct in these cases. Also in this class of errors, we find the occasional “uninteresting”
mismatch, for example related to punctuation marks and inconsistencies around parentheses.
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Figure 3
An example derivation tree. Internal nodes are labeled with ERG rule identifiers; common HPSG
constructions near the top (e.g., subject-head, head-complement, adjunct-head), and lexical rules
(e.g., passivization of verbs or plural formation of nouns) closer to the leaves. The preterminals
are so-called LE types, corresponding to fine-grained parts of speech and reflecting close to a
thousand lexical distinctions.

be labeled as correct. Any other remaining constituents that also span the cue are
labeled as incorrect. We then attempt to learn a linear SVM-based scoring function that
reflects these preferences, using the implementation of ordinal ranking in the SVMlight

toolkit (Joachims 2002). Our definition of the training data, however, glosses over two
important details.

Firstly, the grammar will usually license not just one, but thousands or even hun-
dreds of thousands of different parses for a given sentence which are ranked by an
underlying parse selection model. Some parses may not necessarily contain a subtree
that aligns with the annotated scope.We therefore experiment with defining the training
data relative to n-best lists of available parses. Secondly, the rate of alignment between
annotated scopes and constituents of parsing results indicates the upper-bound per-
formance: For inputs where no constituents align with the correct scope substring,
a correct prediction will not be possible. Searching the n-best parses for alignments
enables additional instances of scope to be presented to the learner, however.

In the following, Section 6.2.1 summarizes the general parsing setup for the ERG, as
well as our rationale for the use of HPSG. Section 6.2.2 provides an empirical assessment
of the degree to which ERG analyses can be aligned with speculation scopes in BioScope
and reviews some frequent sources of alignment failures. After describing our feature
types for representing candidate constituents in Section 6.2.3, Section 6.2.4 details the
tuning of feature configurations and other ranker parameters. Finally, Section 6.2.5
provides an empirical assessment of stand-alone ranker performance, before we discuss
the integration of the dependency rules with the ranking approach in Section 6.3.

6.2.1 Basic Set-up: Parsing Biomedical Text Using the ERG. At some level of abstraction,
the approach to grammatical analysis embodied in the ERG is quite similar to the LFG
parser that was “stacked” with our data-driven dependency parser in Section 6.1.1—
both are commonly considered comparatively “deep” (and thus costly) approaches to
syntactic analysis. Judging from the BioScope annotation guidelines, subtle grammat-
ical distinctions are at play when determining scopes, for example, different types of
control verbs, expletives, or passivization (Vincze et al. 2008). In contrast to the LFG
framework (with its distinction between so-called constituent and functional struc-
tures), the analyses provided by the ERG offer the convenience of a single syntactic
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representation—HPSG derivation trees, as depicted in Figure 3—where all contextual
information that we expect to be relevant for scope resolution is readily accessible.

For parsing biomedical text using the ERG, we build on the same preprocessing
pipeline as described in Section 2. A lattice of tokens annotated with parts of speech
and named entity hypotheses contributed by the GENIA tagger is input to the PET
HPSG parser (Callmeier 2002), a unification-based chart parser that first constructs a
packed forest of candidate analyses and then applies a discriminative parse ranking
model to selectively enumerate an n-best list of top-ranked candidates (Zhang, Oepen,
and Carroll 2007). To improve parse selection for this kind of data, we re-trained the
discriminative model following the approach of MacKinlay et al. (2011), combining
gold-standard out-of-domain data from existing ERG treebanks with a fully automated
procedure seeking to take advantage of syntactic annotations in the GENIA Treebank.
Although we have yet to pursue domain adaptation in earnest and have not systemat-
ically optimized the parse selection component for biomedical text, model re-training
contributed about a one-point F1 improvement in stand-alone ranker performance over
the parsed subset of BSP (compare to Table 8).

As the ERG has not previously been adapted to the biomedical domain, unknown
word handling in the parser plays an important role. Here we build on a set of
somewhat underspecified “generic” lexical entries for common open-class categories
provided by the ERG (thus complementing the 35,000-entry lexicon that comes with the
grammar), which are activated on the basis of PoS and NE annotation from preprocess-
ing. Other than these, there are no robustness measures in the parser, such that syntactic
analysis will fail in a number of cases, to wit, when the ERG is unable to derive a
complete, well-formed syntactic structure for the full input string. In this configuration,
the parser returns at least one derivation for 91.2% of all utterances in BSA, and 85.6%
and 81.4% for BSP and BSE, respectively.

6.2.2 Alignment of Constituents and Scopes. The constituent ranking approach makes ex-
plicit an assumption that is also present at the core of our dependency-based heuristics
(viz., the expectation that scope boundaries align with the boundaries of syntactically
meaningful units). This assumption is motivated by general BioScope annotation prin-
ciples, as Vincze et al. (2008) suggest that the “scope of a keyword can be determined
on the basis of syntax.” To determine the degree to which ERG analyses conform to this
expectation, we computed the ratio of alignment between scopes and constituents (over
parsed sentences) in BioScope, considering various sizes of n-best lists of parses. To
improve alignment we also apply a small number of slackening heuristics. These
rules allow (a) minor adjustments of scope boundaries around punctuation marks

Table 8
Ranker optimization on BSP: Showing ranker performance for various feature type
combinations compared with a random-choice baseline, only considering instances
where the gold-standard scope aligns to a constituent within the 1-best parse.

Features F1

Baseline 26.76

Path 78.10
Path+Surface 79.93
Path+Linguistic 83.72
Path+Surface+Linguistic 85.30
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(specifically, utterance-final punctuation is never included in BioScope annotations, yet
the ERG analyzes most punctuation marks as pseudo-affixes on lexical tokens; see Fig-
ure 3). Furthermore, the slackening rules (b) reduce the scope of a constituent to the right
when it includes a citation (see the discussion of parentheticals in Section 6.1.5); (c) re-
duce the scope to the left when the left-most terminal is an adverb and is not the cue; and
(d) ensure that the scope starts with the cue when the cue is a noun. Collectively, these
rules improve alignment (over parsed sentences) in BSP from 74.10% to 80.54%, when
only considering the syntactic analysis ranked most probable by the parse selection
model. Figure 4 further depicts the degree of alignment between speculation scopes and
constituents in the n-best derivations produced by the parser, again after application of
the slackening rules. Alignment when inspecting only the top-ranked parse is 84.37%
for BSA and 80.54% for BSP. Including the top 50-best derivations improves alignment
to 92.21% and 88.93%, respectively. Taken together with an observed parser coverage of
85.6% for BSP, these results mean that for only about 76% of all utterances in BSP can
the ranker potentially identify a constituent matching the gold-standard scope.

To shed some light on the cases where we fail to find an alignment, we manually
inspected all utterances in the BSP segment for which there were (a) syntactic analyses
available from the ERG and (b) no candidate constituents in any of the top-fifty parses
that mapped onto the gold-standard scope (after the application of the slackening rules).
The most interesting cases from this non-alignment analysis are ones judged as “non-
syntactic” (25% of the total mismatches), which we interpret as violating the assumption
of the annotation guidelines under any possible interpretation of syntactic structure.
Following are select examples in this category:

(27) This allows us to {〈address a number of questions〉: what proportion of
each organism’s protein interaction network [. . . ] can be attributed to a
known domain-domain interaction}?

(28) As {〈suggested〉 in 18, by making more such data sets available, it will be
possible to [. . . ] determine the most likely human interactions}.

Figure 4
The effect of incrementally including additional derivations from the n-best list when searching
for an alignment between a speculation scope and a constituent. Plots are shown for the BSA and
BSP subsets of the training data.
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(29) The {lack of specificity 〈might〉 be attributed to a number of reasons, such
as the absence of other MSL components, the presence of other RNAs
interacting with MOF}, or worse [. . . ].

(30) [. . . ] thereby making {the use of this objective function — and exploration
of other complex objective functions — 〈possible〉}.

Example (27) is representative of a handful of similar cases, where complete sen-
tences are (implicitly or overtly) conjoined, yet the scope annotation encompasses only
part of one of the sentences. Example (28) is in a similar spirit, only in this case a
topicalized prepositional phrase (and hence an integral constituent) is only partially
included in the gold-standard scope. Although our slackening heuristics address a
number of cases of partial noun phrases (with a left scope boundary right before the
head noun or a pre-head attributive adjective), another handful of non-syntactic scopes
are of the type exemplified by Example (29), a class observed earlier already in the error
analysis of our dependency-based scope resolution rules (see Section 6.1.5). Finally,
Example (30) demonstrates one of many linguistically subtle corner cases: The causative
make in standard analyses of the resultative construction takes two arguments, namely,
an NP (the use of this objective function. . . ) and a predicative phrase (possible).

Alongside cases like these, our analysis considered 16% of mismatches owed to
divergent syntactic theories (i.e., structures that in principle can be analyzed in amanner
compatible with the BioScope gold-standard annotations, yet do not form matching
constituents in the ERG analyses). The by far largest class of mismatches was attributed
to parse ranking deficiencies: In close to 40% of cases, the ERG is capable of deriving
a constituent structure compatible with the scope annotations, but no such analysis
was available within the top 50 parses. Somewhat reassuringly, less than 6% of all
mismatches were classified as BioScope annotation errors, whereas a majority of re-
maining mismatches are owed to the recurring issue of parentheticals and bibliographic
references (see examples in Section 6.1.5).

6.2.3 Features of Candidate Scopes. We use three families of features to describe candi-
date constituents. Given our working hypothesis that scopes are aligned with syn-
tactic constituents, the most natural features to use are the location of constituents
within trees. We define these in terms of the paths from speculation cues to can-
didate constituents. For example, the correct candidate in Figure 3 has the feature
v_vp_mdl-p_le\hd-cmp_u_c\sb-hd_mc_c. We include both lexicalized and unlexical-
ized versions of this feature. As traversal from the cue to the candidate can involve
many nodes, we also include a more general version recording only the cue and the
root of the candidate constituent (rather than the full path including all intermediate
nodes). In a similar spirit we also generate bigram features for each path node and its
parent.

In addition to the given path features, we also exploit features describing the
surface properties of scope candidates. These include the enumeration of bigrams of
the preterminal lexical types, the cue position within the candidate (in tertile bins
relative to the candidate length), and the candidate size (in quartile bins relative to the
sentence length). Because punctuation may also be informative for scope resolution, we
also record whether punctuation was present at the end of the terminal preceding the
candidate or at the end of its right-most terminal.

The third family of features is concerned with specific linguistic phenomena de-
scribed in the BioScope annotation guidelines (Vincze et al. 2008) or observed when
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developing the rules in Section 6.1. These include detection of passivization, subject
control verbs occurring with passivized verbs, subject raising verbs, and predicative
adjectives. Furthermore, these features are only activated when the subject of the con-
struction is not an expletive pronoun, and they are represented by appending the type
of phenomenon observed to the path features described here.

6.2.4 Ranker Optimization. We conducted several experiments designed to find an
optimal configuration of features. Table 8 lists the results of combinations of the fea-
ture families on the BSP data set when using gold-standard cues, reporting 10-fold
cross-validated F1 scores with respect to only the instances where the gold-standard
speculation scope aligns with constituents (i.e., the “ideal circumstances” for the
ranker). The table also lists results for a random-choice baseline, calculated as the
mean ambiguity of each instance (i.e., the averaged reciprocal of the number of can-
didates). The feature optimization results indicate that each feature family is infor-
mative, and that the best result can be obtained by using all three in conjunction.
The comparatively largest improvement in ranker performance is obtained from the
“rule-like” linguistic feature family, which is noteworthy in two respects: First, our
current system includes only four such features, and second, these features parallel
some of the dependency-based rules of Section 6.1.2—suggesting that subtle syntactic
configurations are an important component also in our data-driven approach to scope
resolution.

As discussed in Section 6.2.2 and depicted in Figure 4, searching the best-ranked
parses can greatly increase the number of aligned constituents and thus improve the
upper-bound potential of the ranker. We therefore experimented with training using
the first aligned constituent in n-best derivations. At the same time we varied the
m-best derivations used during testing, using features from all m derivations. We found
that performance did not vary greatly, but that the best result was achieved when
n = 1 and m = 3 (note, however, that such optimization over n-best lists of ERG parses
will play a much greater role in the hybrid approach to scope resolution developed
in Section 6.3). As explained in Section 5.2.1, all experiments use the SVMlight de-
fault value for the regularization parameter, determined analytically from the training
data.

A cursory error analysis conducted over aligned items in BSP indicated similar
errors to those discussed in connection with the dependency rules (see Section 6.1.5).
There are a number of instances where the predicted scope is correct according to the
BioScope annotation guidelines, but the annotated scope is incorrect. We also note some
instances where the rule-like linguistic features are activated on the correct constituent,
but the ranker nevertheless selects a different candidate. In a strictly rule-based system,
these features would act as hard constraints and yield superior results in these cases.
Therefore, these instances seem a prime source of inspiration for further improvements
to the ranker in future work.

6.2.5 Evaluating the Ranker. Table 9 summarizes the performance of the constituent
ranker (coupledwith the default scope baseline in the case of unparsed items) compared
with the dependency rules, resolving the scope of both gold-standard and predicted
speculation cues. We note that the constituent ranker performs slightly superior to the
dependency rules on BSA but inferior (though well above the default scope baseline)
on BSP and BSE. Applying the sign-test (in the manner described in Section 3.2) to the
scope-level performance of the ranker and the rules on the held-out BSE data (using
gold-standard cues), the differences are found to be statistically significant.
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Table 9
Resolving the scope of speculation cues using the dependency rules, the constituent ranker,
and their combination. Whereas table (a) shows results for gold-standard cues, table (b) shows
end-to-end results for the cues predicted by the classifier of Section 5.2. Results are shown both
for the BioScope development data (for which both the scope ranker and the cue classifier is
applied using 10-fold cross-validation) and the CoNLL-2010 Shared Task evaluation data.

Data System F1

B
S
A

Rules 73.67
Ranker 75.48
Combined 79.56

B
S
P

Rules 72.31
Ranker 66.17
Combined 75.15

B
S
A
P Rules 73.40

Ranker 73.61
Combined 78.69

B
S
E

Rules 66.60
Ranker 58.37
Combined 69.60

(a) Resolving Gold-Standard Cues

Data System Prec Rec F1

B
S
A

Rules 72.47 66.42 69.31
Ranker 74.27 68.07 71.04
Combined 77.80 71.31 74.41

B
S
P

Rules 69.87 62.13 65.77
Ranker 62.63 55.69 58.95
Combined 72.05 64.07 67.83

B
S
A
P Rules 71.97 65.56 68.61

Ranker 71.99 65.59 68.64
Combined 76.67 69.85 73.11

B
S
E

Rules 58.95 54.21 56.48
Ranker 51.68 47.53 49.52
Combined 62.00 57.02 59.41

(b) Resolving Predicted Cues

Again we also observe a drop in performance for the results on the held-out data
comparedwith the development data.We attribute this drop partly to overfitting caused
by using GENIA abstracts to adapt the parse ranker to the biomedical domain (see
Section 2.3), but primarily to reduced parser coverage and constituent alignment in the
latter data sets. Improving these aspects should result in substantive gains in ranker
performance. Finally, note that the performance of the default baseline (which is much
better for the abstracts than the full papers of BSP and BSE) also carries over to ranker
performance for the cases where we do not have a parse.

6.3 Combining the Constituent Ranker and the Dependency Rules

Although both the constituent ranker and dependency rules perform well in isolation,
they do not necessarily perform well on the same test items. Consequently, we inves-
tigated the effects of combining their predictions. When ERG parses are available for
a given sentence, the dependency rules may be combined with the information used
by the constituent ranker. We implement this coupling by adding features that record
whether the (slackened) span of a candidate constituent matches the span of the scope
predicted by the rules (either exactly or just at one of its boundaries). When an ERG
parse is not available we simply revert to the prediction of the dependency rules.

Adding the rule prediction features may influence the effectiveness of considering
multiple parses, by compensating for the extra ambiguity. We therefore repeated our
examination of the effects of using the best-ranked parses for training and testing the
ranker. Figure 5 plots the effect on F1 for parsed sentences in BSP when including
constituents from the n-best derivations in training, and from the m-best derivations in
testing.We see that, when activating the dependency prediction features, the constituent
ranker performs best for n = 5 and m = 20.

Looking at the performance summaries of Table 9, we see that the combined ap-
proach consistently outperforms both the dependency rules and the constituent ranker
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Figure 5
Cross-validated F1 scores of the ranker combined with the dependency rules over gold cues
for parsed sentences from BSP, varying the maximum number of parse results employed for
training and testing.

in isolation, and the improvements are deemed significant with respect to both of them
(comparing results for BSE using gold-standard cues).

Comparing the combined approach to the plain ranker runs, there are two sources
for the improvements: the addition of the rule prediction features and the fact that we
fall back on using the rule predictions directly (rather than the default scope) when we
do not have an available constituent tree. To isolate the contribution of these factors,
we applied the ranker without the rule-prediction features (as in the initial ranker
set-up), but still using the rules as our fall-back strategy (as in the combined set-up).
Testing on BSP using gold-standard cues this gives an F1 of 69.61, meaning that the
8.98-percentage-point improvement of the combined model over the plain ranker owes
3.44 points to the rule-based fall-back strategy and 5.54 to the new rule-based features.

As discussed in Section 6.2.2, an important premise of the success of our ranking
approach is that scopes align with constituents. Indeed, we find that the performance
of both the ranker in isolation and the combined approach is superior on BSA, which is
the data set that exhibits the greatest proportion of aligned instances. We can therefore
expect that any improvements in our alignment procedure, as well as in the domain-
adapted ERG parse selection model, will also carry through to improve the overall
performance of our subtree ranking.

As a final evaluation of speculation resolution, Table 10 compares the end-to-end
performance of our combined approach with the best end-to-end performer in the
CoNLL-2010 Shared Task. In terms of both precision and recall, our cue classifier using
the combination of constituent ranking and dependency rules for scope resolution
achieves superior performance on BSE comparedwith the system ofMorante, van Asch,
and Daelemans (2010), improving on the overall F1 by more than 2 percentage points.
Whereas the token-level differences for cue classification are found to be significant, the
end-to-end scope-level differences are not (p = 0.39).

7. Porting the Speculation System to Negation

Dealing with negation in natural language has been a long-standing topic and there has
been work attempting to resolve the scope of negation in particular within the area of
sentiment analysis (Moilanen and Pulman 2007), where treatment of negation clearly
constitutes an important subtask and has been shown to provide improved sentiment
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Table 10
Final end-to-end results for scope resolution: Held-out testing on BSE, using the cue classifier
described in Section 5.2 while combining the dependency rules and the constituent ranker for
scope resolution. The results are compared to the system with the best end-to-end performance
in the CoNLL-2010 Shared Task (Morante, van Asch, and Daelemans 2010).

Cue Level Scope Level

System Configuration Prec Rec F1 Prec Rec F1

Cue classifier + Scope Rules & Ranking 84.79 77.17 80.80 62.00 57.02 59.41
Morante et al. 2010 78.75 74.69 76.67 59.62 55.18 57.32

analysis (Councill, McDonald, and Velikovich 2010). The BioScope corpus (Vincze et al.
2008), being annotated with negation as well as speculation, has triggered work on
negation detection in the biomedical domain as well. In this setting, there are a few
previous studies where the same system architecture has been successfully applied for
both speculation and negation. For example, whereas Morante and Daelemans (2009a)
try to resolve the scope of speculation using a system initially developed for negation
(Morante, Liekens, and Daelemans 2008), Zhu et al. (2010) develop a system targeting
both tasks. In this section we investigate to what degree our speculation system can be
ported to also deal with negation, hoping that the good results obtained for speculation
will carry over to the negation task at a minimal cost in terms of adaption and modifica-
tion. We start by describing our experiments with porting the cue classifier to negation
in Section 7.1, and then present our modified set of dependency rules for resolving the
scope of the negation cues in Section 7.2. Section 7.3 presents the adaptation of the
constituent ranker, as well as the final end-to-end results when combining the ranker
and the rules, paralleling what we did for speculation. The relation to other relevant
work is discussed as we go along.

Some summarizing statistics for the negation annotations in BioScope were given
in Table 1. Note, however, that the additional evaluation data that we used for held-out
testing of the speculation system, does not contain negation annotations. For this reason,
and in order to be able to compare our results to those obtained in previous studies, we
here follow the partitioning established by Morante and Daelemans (2009b), reporting
10-fold cross-validation (for the cue classifier and the subtree ranker) on the abstracts
(BSA) and using the full papers (BSP) for held-out and cross text-type testing. Note
that for the development results using cross-validation, we partition the data on the
sentence-level, just as in Morante and Daelemans (2009b).

7.1 Identifying Negation Cues

Several previous approaches to detecting negation cues have been based on pre-
compiled lexicons, either alone (Councill, McDonald, and Velikovich 2010) or in combi-
nation with a learner (Morante and Daelemans 2009b). For the purpose of the current
article we wanted to investigate whether the “filtered classification” approach that we
applied for detecting speculation cues would directly carry over to negation. Drawing
heavily on much of the discussion previously given for the speculation cue classifiers
in Section 5, the small modifications made to implement a classifier for negation cues
are described in Section 7.1.1. We then provide some discussion of the results in Sec-
tion 7.1.2, including comparison to previous work on negation cue detection byMorante
and Daelemans (2009b) and Zhu et al. (2010) in Section 7.1.3.
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7.1.1 Classifier Description. Apart from re-tuning the feature configuration, the only
modifications that wemade with respect to the speculation classifier regard the rules for
multiword cues (as described for speculation in Section 5.1) and the corresponding stop-
list (Section 5.2). The overall approach, however, is the same:We train and apply a linear
SVM classifier that only considers words whose lemma has been observed as a negation
cue in the training data. Note that roughly 82% of the negation tokens are ambiguous in
the training data, in the sense that they have both cue and non-cue occurrences. Based
on the most frequently occurring MWC patterns observed in the abstracts we defined
post-processing rules to cover the cases shown in Table 11. Furthermore, and again
based on the MWCs, we compiled a small stop-list so that the classifier ignores certain
“spurious” tokens (namely, can, could, notable, of, than, the, with, and ‘(’). Although this
of course means that the classifier will never label any such word as a cue, they will
typically be captured by the MWC rules instead.

When re-tuning the feature configuration based on the n-gram templates previously
described in Section 5.2.1, we find that the best performer for negation is the combina-
tion that records lemmas two positions to the left and the right of the target word, and
surface forms one position to the right.

7.1.2 Development Results. The performance of this model, evaluated by 10-fold cross-
validation on the BioScope abstracts, is shown in Table 12. Just as for speculation, we
also contrast the performance with a simple WbW majority usage baseline, classifying
each and every word according to its most frequent usage (cue vs. non-cue) in the
training data. Although this baseline proved to be surprisingly strong for speculation, it
is even stronger for negation: Evaluated at the token-level (though after the application
of the MWC rules) the baseline achieves an F1 of 93.60. Applying the filtering model
further improves this score to 96.00. The differences are found to be statistically signifi-
cant (according to the testing scheme described in Section 3.1), and the filtering classifier
also improves greatly with respect to the sentence-, and cue-level evaluations as well,
in particular with respect to the precision.

Recall that, when looking at the distribution of error types for the token-level
mistakes made by the speculation classifier (see Section 5.2.3), we found that almost 75%
were false negatives. The distribution of error types for the negation cue classifier is very
different: Almost 85% of the errors are false positives. After inspecting the actual cues
involved, we find the same situation as reported by Morante and Daelemans (2009b),
namely, that a very high number of the errors concern cases where not is labeled as a cue
by the classifier but not in the annotations. The same is true for the cue word absence,
and many of these cases appear to be annotation errors.

The class balance among tokens in the BioScope data is extremely skewed, with the
positive examples of negation constituting only 0.5% of the total number of examples.

Table 11
Patterns covered by our post-processing rules for multiword negation cues.

rather than
{can|could} not
no longer
instead of
with the * exception of
neither * nor
{no(t?)|neither} * nor
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Table 12
Results for negation cue detection, including the systems of Morante et al. (2009b) and Zhu et al.
(2010). Whereas the scores for BSA are obtained by 10-fold cross validation, the scores on BSP
and BSR represent held-out testing using a model trained on all the abstracts. The latter scores
thereby serves as a test of generalization performance across different text types within the
same domain.

Sentence Level Token Level Cue Level

Data Model Prec Rec F1 Prec Rec F1 Prec Rec F1

B
S
A

(1
0-
F
o
ld
) Baseline 90.34 98.81 94.37 89.28 98.40 93.60 88.92 97.78 93.14

Filtering 94.19 98.87 96.45 93.46 98.73 96.00 93.19 98.12 95.59
Morante n/a n/a n/a 84.72 98.75 91.20 94.15 90.67 92.38
Zhu n/a n/a n/a 94.35 94.99 94.67 n/a n/a n/a

B
S
P

(H
el
d
-o
u
t) Baseline 79.48 99.41 88.34 75.96 99.00 85.96 74.55 98.41 84.84

Filtering 86.75 98.53 92.27 85.22 98.25 91.27 84.06 97.62 90.33
Morante n/a n/a n/a 87.18 95.72 91.25 85.55 78.31 81.77
Zhu n/a n/a n/a 87.47 90.48 88.95 n/a n/a n/a

B
S
R

(H
el
d
-o
u
t) Baseline 96.64 96.42 96.53 96.12 96.01 96.06 95.87 95.98 95.93

Filtering 96.97 96.30 96.64 96.44 95.90 96.17 96.20 95.87 96.03
Morante n/a n/a n/a 97.33 98.09 97.71 96.38 91.62 93.94
Zhu n/a n/a n/a 88.54 86.81 87.67 n/a n/a n/a

In terms of the tokens actually considered by our filtering model, however, the numbers
look much healthier, with the negative examples actually being slightly outweighed
by the positives (just above 50%). Moreover, the average number of distinct n-gram
features instantiated across the 10-folds is approximately 17,500. The small size of the
feature set is of course due to the small number of training examples considered by the
learner: Whereas a WbW approach (like the majority usage baseline) would consider
every token in training data (just below 300,000 in each fold), this number is reduced
by almost 99% for the filtered disambiguation model. In effect, we can conclude that the
proposed approachmanages to combine very good results with very low computational
cost.

Figure 6 shows learning curves for both the word-by-word baseline and the fil-
tering model, plotting token-level F1 against percentages of data included in training.
Compared to the learning curves previously shown for speculation detection (Figure 1),
the curve for the filtering model seems to be somewhat flatter for negation. Looking at
the curve for the WbW unigram baseline, it again seems unable to benefit much from
any additional data after the first few increments.

7.1.3 Comparison to Related Work. To the best of our knowledge, the systems currently
achieving state-of-the-art results for detecting negation cues are those described by
Morante and Daelemans (2009b), Zhu et al. (2010), and Councill, McDonald, and
Velikovich (2010). Although the latter work does not offer separate evaluation of the
cue detection scheme in isolation, Morante and Daelemans (2009b) and Zhu et al. (2010)
provide cue evaluation for the data splits listed in Table 12; 10-fold cross-validation
experiments (with sentence-level partitioning) on the BioScope abstracts, and held-out
testing on the full papers and the clinical reports (with a model trained on the abstracts).
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Figure 6
Learning curves for both baseline and the filtered “disambiguation” model showing the effect on
token-level negation cue F1 when including larger percentages (shown on a logarithmic scale)
of the training data across the 10-fold cycles on BSA.

The results5 reported by Morante and Daelemans (2009b) and Zhu et al. (2010) are
token-level precision, recall, and F1. Having obtained the system output of Morante
and Daelemans (2009b), however, we also computed cue-level scores for their system.

Morante and Daelemans (2009b) identify cues using a small list of unambiguous
cue words compiled from the abstracts in combination with applying a decision tree
classifier to the remaining words. Their features record information about neighboring
word forms, PoS, and chunk information from GENIA. Zhu et al. (2010) train an SVM
to classify tokens according to a BIO-scheme using surface-oriented n-gram features in
addition to various syntactic features extracted using the Berkley parser (Petrov and
Klein 2007) trained on the GENIA treebank. Looking at the results in Table 12, we see
that the performance of our cue classifier compares favorably with the systems of both
Morante and Daelemans (2009b) and Zhu et al. (2010), achieving a higher cue-level F1
across all data sets (with differences in classifier decisions with respect to Morante and
Daelemans [2009b] being statistically significant for all of them).

For the 10-fold run, the biggest difference concerns token-level precision, where
both the system of Zhu et al. (2010) and our own achieves a substantially higher score
than that of Morante and Daelemans (2009b). Turning to the cross-text experiment,
however, the precision of our system and that of Zhu et al. (2010) suffers a large
drop, whereas the system of Morante and Daelemans (2009b) actually obtains a higher
precision than for the 10-fold run. These effects are reversed for recall, however, where
our system still maintains the higher score, also resulting in a higher F1. Looking at
the cue-level scores, we find that the precision of our system and that of Morante and
Daelemans (2009b) drops by an equal amount for the BSP cross-text testing. In terms of
recall, however, the cue-level scores of Morante and Daelemans (2009b) suffers a much
larger drop than that of our filtered classifier.

5 As the results reported by Morante and Daelemans (2009b) were inaccurate, we instead refer to values
obtained from personal communication with the authors.
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The drop in performance when going from cross-validation to held-out testing
can largely be attributed to the same factors discussed in relation to speculation
cues in Section 5.3 (e.g., GENIA-based pre-processing, sentence-level partitioning in
cross-validation, and unobserved MWCs). In addition, looking at the BioScope inter-
annotator agreement rates for negation cues it is not surprising that we should ob-
serve a drop in results going from BSA to BSP: Measured as the F1 of one of the
annotators with respect to the other, it is reported as 91.46 for BSA, compared with
79.42 for BSP (Vincze et al. 2008). Turning to the F1-scores of each annotator with
respect to the final gold standard, the numbers are 91.71/98.05 for BSA and 86.77/91.71
for BSP.

The agreement rates for the clinical reports, on the other hand, are much closer to
those of the abstracts (Vincze et al. 2008), and the held-out scores we observe on this data
set are generally also much better, not the least for the simple majority usage baseline.
In general the baseline again proves to be surprisingly competitive, most notably with
respect to recall where it actually outperforms all the other systems for both the cross-
text experiments. (Recall that the baseline scores also reflect the application of the MWC
rules, though.)

7.2 Adapting the Dependency Rules for Resolving Negation Scope

There have been several previous studies on resolving the scope of negation based on
the BioScope corpus. For example, Morante and Daelemans (2009b) present a meta-
learning approach that combines the output from three learners—a memory-based
model, an SVM classifier, and a CRF classifier—using lexical features, such as PoS and
chunk tags. Councill, McDonald, and Velikovich (2010) use a CRF learner with features
based on dependency parsing (e.g., detailing the PoS of the head and the dependency
path to the negation cue).

The annotation of speculation and negation in BioScope was performed using a
common set of principles. It therefore seems reasonable to assume our dependency-
based scope resolution rules for speculation should be general enough to allow porting
to negation with fairly limited efforts. On the other hand, negation is expressed linguis-
tically using quite different syntactic structures from speculation, so it is clear that some
modifications will be necessary as well.

As we recall, the dependency rules for speculation scope are triggered by the PoS
of the cue. Several of the same parts-of-speech (verbs, adverbs) also express negation.
As an initial experiment, therefore, we simply applied the speculation rules to negation
unmodified. As before, taking default scope to start at the cue word and spanning to
the end of the sentence provides us with a baseline system. We find that applying
our speculation scope rules directly to the task of negation scope resolution offers a
fair improvement over the baseline. For BSA and BSP, the default scope achieves F1
scores of 52.24 and 31.12, respectively, and the speculation rules applied directly without
modifications achieve 48.67 and 56.25.

In order to further improve on these results, we introduce a few new rules to
account specifically for negation. The general rule machinery is identical to the specu-
lation scope rules described in Section 6.1: The rules are triggered by the part of speech
of the cue and operate over the dependency representations output by the stacked
dependency parser described in Section 6.1.1. In developing the rules we consulted the
BioScope guidelines (Vincze et al. 2008), as well as a descriptive study of negation in the
BioScope corpus (Morante 2010).
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Table 13
Additional dependency-based scope rules for negation, with information source (MaltParser or
XLE), organized by PoS of the cue.

PoS Description Source

DT Determiners scope over their head node and its descendants M
NN Nouns scope over their descendants M
NNnone none take scope over entire sentence if subject and otherwise over its descendants M
VB Verbs scope over their descendants M
RBvb Adverbs with verbal head scope over the descendants of the lexical verb M, X
RBother Adverbs scope over the descendants of the head M, X

7.2.1 Rule Overview. The added rules are presented in Table 13 and are described in more
detail subsequently, organized by the triggering PoS of the negation cue.

Determiners. Determiner cue words in BioScope are largely realized by the negative
determiner no. These take scope over their nominal head and its descendants, as seen in
Example (31):

(31) The finding that dexamethasone has {〈no〉 effect on TPA-induced
activation of PKC} suggests [. . . ]

Nouns. Nominal cues take scope over their descendants (i.e., the members of the noun
phrase), as shown in Example (32).

(32) This unresponsiveness occurs because of a {〈lack〉 of expression of the
beta-chain (accessory factor) of the IFN-gamma receptor}, while at the
same time [. . . ]

The negative pronoun none is tagged as a noun by our system, but deviates from regular
nouns in their negation scope: If the pronoun is a subject, it scopes over the remaining
sentence, as in Example (33), whereas in object function it simply scopes over the noun
phrase (Morante 2010). These are therefore treated specifically by our system.

(33) Similarly, {〈none〉 of SCOPE’s component algorithms outperformed the
other ten programs on this data set by a statistically significant margin}.

Adverbs. Adverbs constitute the majority of negation cues and are largely realized by
the lexical item not. Syntactically, however, adverbs are a heterogeneous category. They
may modify a number of different head words and their scope will thus depend largely
on properties of the head. For instance, when an adverb is a nominal modifier, as in
Example (34), it has a narrow scope which includes only the head noun (34) and its
possible conjuncts.

(34) This report directly demonstrates that OTF-2 but {〈not〉 OTF-1} regulates
the DRA gene

Verbal adverbs scope over the clause headed by the verbal head. As shown by Figure 2,
the parser’s analysis of verbal chains has the consequence that preverbal arguments and
modifiers, such as subjects and adverbs, are attached to the finite verb and postverbal
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arguments and modifiers are attached to the lexical verb, in cases where there is an
auxiliary. This rule thus locates the lexical verb (e.g., affect in Example [35]), in the
dependency path from the auxiliary head verb and defines scope over the descendants
of this verb. In cases where the lexical verb is passive, the subject is included in the scope
of the adverb, as in Example (36).

(35) IL-1 did {〈not〉 affect the stability of the c-fos and c-jun transcripts}.

(36) {Levels of RNA coding for the receptor were 〈not〉modulated by exposure
to high levels of ligand}.

7.2.2 Evaluating the Negation Rules. The result of resolving the scope of gold-standard
negation cues using the new set of dependency rules (i.e., the speculation rules extended
with the negation specific rules of Table 13), are presented in Table 14, along with the
performance of the default scope baseline. First of all, we note that the baseline scores
provided by assigning default scope to all cues differ dramatically between the data sets,
ranging from an F1 of 52.24 for BSA, 31.12 for BSP, and 91.43 for BSR. In comparison,
the performance of the rules is fairly stable across BSA and BSP, and for both data sets
they improve substantially on the baseline (up by roughly 18.5 and 34.5 percentage
points on BSA and BSP, respectively). On BSR, however, the default scope baseline is
substantially stronger than for the other data sets, and even performs slightly better
than the rules. Recall from Table 1 that the average sentence length in the clinical reports
is substantially lower (7.7) than for the other data sets (average of 26), a property which
will make the default scope much more likely to succeed.

In order to shed more light on the performance of the rules on BSR, a manual
error analysis was performed, once again by two trained linguists working together. We
found that out of the total of 74 errors, 30 (40.5%) were parse errors, 29 (39.2%) were rule
errors, 8 (10.8%) were annotation errors, and 4 (5.4%) were undecided. Although it is
usually the case that short sentences are easier to parse, the reports contain a substantial
proportion of ungrammatical structures, such as missing subjects, dropped auxiliaries,
and bare noun phrases, as in Example (37), which clearly lead to lower parse quality,
resulting in 40% parse errors. There are also constructions, such as so-called run-on
constructions, as in Example (38), for which there is simply no correct analysis available

Table 14
Scope resolution for gold-standard negation cues across the BioScope sub-corpora.

Data Configuration F1

B
S
A

Default 52.24
Dependency Rules 70.91
Constituent Ranker 68.35
Combined 74.35

B
S
P

Default 31.12
Dependency Rules 65.69
Constituent Ranker 60.90
Combined 70.21

B
S
R

Default 91.43
Dependency Rules 90.86
Constituent Ranker 89.59
Combined 90.74
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within the dependency framework (which, for instance, requires that graphs should be
connected). In addition, the annotations of the reports data contain some idiosyncrasies
which the rules fail to reproduce. Twenty-four percent of the errors are found with the
same cue, namely, the adjective negative. The rules make attributive adjectives scope
over their nominal heads, whereas the BSR annotations define the scope to only cover
the cue word itself; see Example (37). The annotation errors were very similar to the
ones observed in the earlier error analysis of Section 6.1.5.

(37) |{〈Negative〉} chest radiograph|.

(38) |{〈No〉 focal pneumonia}, normal chest radiograph|.

7.3 Adapting the Constituent Ranker for Negation

Adapting the SVM-based discriminative constituent ranker of Section 6.2 to also predict
the scope of negation is a straightforward procedure, requiring only minor modifi-
cations: Firstly, we developed a further slackening heuristic to ensure that predicted
scope does not begin with an auxiliary. Secondly, we augmented the family of linguistic
features to also record the presence of adverb cues with verbal heads (as specified by the
dependency-based scope rules in Table 13). Finally, we repeated the parameter tuning
for training with n-best and testing with m-best parses (as described in Section 6.2.4).
Performing 10-fold cross-validation on BSA using gold-standard negation cues, we
found that the optimal values for the ranker in isolation were n = 10 and m = 1.
When paralleling the combined approach developed in Section 6.3 (adding the rule-
predictions as a feature in the ranker while falling back on rule-predicted scope for
cases where we do not have an ERG parse) the optimal values were found to be n = 15
andm = 5. Examining the coverage of the parser and the alignment of constituents with
negation scope (considering the 50-best parses), we found that the upper-bound of the
constituent ranker (disregarding any fall-back strategy) on the BSA development set is
79.4% (compared to 83.6% for speculation).

Table 14 lists the performance of both the constituent ranker in isolation and the
combined approachwhen resolving the scope of gold-standard negation cues (reporting
10-fold cross-validation results for BSA, while using BSP and BSR for held-out testing).
We see that the dependency rules perform consistently better than the constituent
ranker, although the differences are not found to be statistically significant (the p-values
for BSA, BSP, and BSR are 0.06, 0.11, and 0.25, respectively). The combined approach
again outperforms the dependency rules on both BSA and BSP (and by a much larger
margin than we observed for speculation), however, with the improvements on both
data sets being significant. Just as we observed for the dependency rules in Section 7.2.2,
neither the constituent ranker nor the combined approach are effective in BSR.

7.4 End-to-End Evaluation with Comparison to Related Work

We now turn to evaluating our end-to-end negation system with SVM-based cue
classification and scope resolution using the combination of constituent ranking and
dependency-based rules. To put the evaluation in perspective we also compare our
results against the results of other state-of-the-art approaches to negation detection.

Comparison to previous work is complicated slightly by the fact that different data
splits and evaluation measures have been used across various studies. A commonly
reported measure in the literature on resolving negation scope is the percentage of
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correct scopes (PCS) as used by Morante and Daelemans (2009b), and Councill,
McDonald, and Velikovich (2010), among others. Councill, McDonald, and Velikovich
(2010) define PCS as the number of correct spans divided by the number of true spans. It
therefore corresponds roughly to the scope-level recall as reported in the current article.
The PCS notion of a correct scope, however, is less strict than in our set-up (Section 3.2):
Whereas we require an exact match of both the cue and the scope, Councill, McDonald,
and Velikovich (2010) do not include the cue identification in their evaluation.

Moreover, whereas the work of both Morante and Daelemans (2009b) and Councill,
McDonald, and Velikovich (2010) is based on the BioScope corpus, only Morante and
Daelemans (2009b) follow the same set-up assumed in the current article. Councill,
McDonald, and Velikovich (2010), on the other hand, evaluate by 5-fold cross-validation
on the papers alone, reporting a PCS score of 53.7%. When running our negation cue
classifier and constituent ranker (in the hybrid mode using the dependency features)
by 5-fold cross-validation on the papers we achieve a scope-level recall of 68.62 (and an
F1 of 64.50).

Table 15 shows a comparison of our negation scope resolution system with that
of Morante and Daelemans (2009b). Rather than using the PCS measure reported by
Morante and Daelemans (2009b), we have re-scored the output of their system accord-
ing to the CoNLL-2010 shared task scoring scheme, and it should therefore be kept in
mind that the system of Morante and Daelemans (2009b) originally was optimized with
respect to a slightly different metric.

For the cross-validated BSA experiments we find the results of the two systems
to be fairly similar, although the F1 achieved by our system is higher by more than
5 percentage points, mostly due to higher recall. For the cross-text experiments, the
differences are much more pronounced, with the F1 of our system being more than
22 points higher on BSP and more than 17 points higher on BSR. Again, the largest
differences are to be found for recall—even though this is the score that most closely
corresponds to the PCS metric used by Morante and Daelemans (2009b)—but as seen in
Table 15 there are substantial differences in precision as well. The scope-level differences
between the two systems are found to be statistically significant across all the three
BioScope sub-corpora.

Table 15
End-to-end results for our negation system, using the SVM cue classifier and the combination
of subtree ranking and dependency-based rules for scope resolution, comparing with Morante
et al. (2009b).

Scope Level

Data Configuration Prec Rec F1

B
S
A

10
-F
o
ld Morante et al. (2009b) 66.31 65.27 65.79

Cue classifier & Scope Rules + Ranking 69.30 72.89 71.05

B
S
P

H
el
d
-o
u
t

Morante et al. (2009b) 42.49 39.10 40.72
Cue classifier & Scope Rules + Ranking 58.58 68.09 62.98

B
S
R

H
el
d
-o
u
t

Morante et al. (2009b) 74.03 70.54 72.25
Cue classifier & Scope Rules + Ranking 89.62 89.41 89.52
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To some degree, some of the differences are to be expected, perhaps, at least with
respect to BSP. For example, the BSP evaluation represents a held-out setting for both
the cue and scope component in themachine learned system ofMorante andDaelemans
(2009b). While also true for our cue classifier and subtree ranker, it is not strictly
speaking the case for the dependency rules, and so the potential effect of any overfitting
during learningmight be less visible. The small set of manually defined rules are general
in nature, targeting the general syntactic constructions expressing negation, as shown
in Table 13. In addition to being based on the BioScope annotation guidelines, however,
both the abstracts and the full papers were consulted for patterns, and the fact that rule
development has included intermediate testing on BSP (although mostly during the
development of the initial set of speculation rules from which the negation rules are
derived) has likely made our system more tailored to the peculiarities of this data set.
When comparing the errors made by our system to those of Morante and Daelemans
(2009b), the most striking example of this is the inclusion of post-processing rules in our
system for “backing off” from bracketed expressions (as discussed in Section 6.1). Al-
thoughmaking little difference on the abstracts, this has a huge impact when evaluating
the full papers, where bracketed expressions (citations, references to figures and tables,
etc.) are muchmore common, and the system output ofMorante and Daelemans (2009b)
seems to suffer from the lack of such robustness measures. In relation to the clinical
reports, one should bear in mind that, although our combined system outperforms that
of Morante and Daelemans (2009b) by a large margin, this result would still be rivaled
by simply using our default scope baseline, as is clear from Table 14.

The scope results of Zhu et al. (2010) are unfortunately not currently directly com-
parable to ours, due to differences in evaluation methodologies. Whereas we perform
an exact match evaluation at the scope-level, as described in Section 3, Zhu et al. (2010)
use a much less strict token-level evaluation even for their scopes in their end-to-end
evaluation. Nevertheless, our results appear to be highly competitive, because even
with the strict exact match criterion underlying our scope-level evaluation, our scores
are actually still higher for both the papers and the reports. (Zhu et al. [2010] report an
F1 of 78.50 for the 10-fold runs on the abstracts, and 57.22 and 81.41 for held-out testing
on the papers and reports, respectively.)

8. Conclusion

This article has explored several linguistically informed approaches to the problem
of resolving the scope of speculation and negation within sentences. Our point of
departure was the system developed by Velldal, Øvrelid, and Oepen (2010) for the
CoNLL-2010 Shared Task challenge on resolving speculation in biomedical texts, where
a binary maximum entropy cue classifier was used in combination with a small set of
manually crafted scope resolution rules operating over dependency structures. In the
current article we have introduced several major extensions and improvements to this
initial system design.

First we presented a greatly simplified approach to cue identification using a linear
SVM classifier. The classifier only considers features of the immediate lexical context
of a target word, and it only aims to “disambiguate” words that have already been
observed as speculation cues in the training data. The filtering imposed by this latter
“closed class” assumption greatly reduces the size and complexity of the model while
increasing classifier accuracy, yielding state-of-the-art performance on the CoNLL-2010
Shared Task evaluation data.
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We then presented a novel approach to the problem of resolving the scopes of
cues within a sentence. As an alternative to using the manually defined dependency
rules of our initial system, we showed how an SVM-based discriminative ranking
function can be learned for choosing subtrees from HPSG-based constituent structures.
An underlying assumption of the ranking approach is that annotated scopes actually
align with constituents, and we provided in-depth discussion and analysis of this issue.

Furthermore, while both the dependency rules and the constituent ranker achieve
good performance on their own, we showed how even better results can be achieved by
combining the two, as the errors they make are not always overlapping. The combined
approach uses the dependency rules for all cases where we do not have an available
HPSG parse, and for the cases where we do, the scope predicted by the rules is included
as a feature in the constituent ranker model. Together with the reformulation of our cue
classifier, this combined model for scope resolution obtains the best published results
so far on the CoNLL-2010 Shared Task evaluation data (to the best of our knowledge).

Finally, we have showed how all components of our speculation system are easily
ported to also handle the problem of resolving the scope of negation. With only modest
modifications, the system obtains state-of-the-art results also on the negation task. The
system outputs corresponding to the end-to-end experiments with our final model con-
figurations, for both speculation and negation, aremade available online (see footnote 2)
together with the relevant evaluation software.
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