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Large-scale annotated corpora are a prerequisite to developing high-performance semantic role
labeling systems. Unfortunately, such corpora are expensive to produce, limited in size, and
may not be representative. Our work aims to reduce the annotation effort involved in creating
resources for semantic role labeling via semi-supervised learning. The key idea of our approach
is to find novel instances for classifier training based on their similarity to manually labeled seed
instances. The underlying assumption is that sentences that are similar in their lexical material
and syntactic structure are likely to share a frame semantic analysis. We formalize the detection of
similar sentences and the projection of role annotations as a graph alignment problem, which we
solve exactly using integer linear programming. Experimental results on semantic role labeling
show that the automatic annotations produced by our method improve performance over using
hand-labeled instances alone.

1. Introduction

Recent years have seen growing interest in the shallow semantic analysis of natural
language text. The term is most commonly used to refer to the automatic identification
and labeling of the semantic roles conveyed by sentential constituents (Gildea and
Jurafsky 2002). Semantic roles themselves have a long-standing tradition in linguistic
theory, dating back to the seminal work of Fillmore (1968). They describe the relations
that hold between a predicate and its arguments, abstracting over surface syntactic
configurations. Consider the following example sentences:

(1) a. The burglar broke the window with a hammer.

b. A hammer broke the window.

c. The window broke.
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Here, the phrase the window occupies different syntactic positions—it is the object of
break in sentences (1a) and (1b), and the subject in (1c)—and yet bears the same semantic
role denoting the affected physical object of the breaking event. Analogously, hammer is
the instrument of break both when attested with a prepositional phrase in (1a) and as
a subject in (1b). The examples represent diathesis alternations1 (Levin 1993), namely,
regular variations in the syntactic expressions of semantic roles, and their computational
treatment is one of the main challenges faced by automatic semantic role labelers.

Several theories of semantic roles have been proposed in the literature, differing
primarily in the number and type of roles they postulate. These range from Fillmore’s
(1968) small set of universal roles (e.g., Agentive, Instrumental, Dative) to individual
roles for each predicate (Palmer, Gildea, and Kingsbury 2005). Frame semantic theory
(Fillmore, Johnson, and Petruck 2003) occupies the middle ground by postulating
situations (or frames) that can be evoked by different predicates. In this case, roles
are not specific to predicates but to frames, and therefore ought to generalize among
semantically related predicates. As an example, consider the sentences in Example (2):

(2) a. [Lee]Agent [punched]CAUSE HARM [John]Victim [in the eye]Body part.

b. [A falling rock]Cause [crushed]CAUSE HARM [my ankle]Body part.

c. [She]Agent [slapped]CAUSE HARM [him]Victim [hard]Degree [for his
change of mood]Reason.

d. [Rachel]Agent [injured]CAUSE HARM [her friend]Victim [by closing
the car door on his left hand]Means.

Here, the verbs punch, crush, slap, and injure are all frame evoking elements (FEEs),
that is, they evoke the CAUSE HARM frame, which in turn exhibits the frame-specific
(or “core”) roles Agent, Victim, Body part, and Cause, and the more general (“non-core”)
roles Degree, Reason, and Means. A frame may be evoked by different lexical items,
which may in turn inhabit several frames. For instance, the verb crush may also evoke
the GRINDING frame, and slap the IMPACT frame.

The creation of resources that document the realization of semantic roles in
example sentences such as FrameNet (Fillmore, Johnson, and Petruck 2003) and
PropBank (Palmer, Gildea, and Kingsbury 2005) has greatly facilitated the develop-
ment of learning algorithms capable of automatically analyzing the role semantic struc-
ture of input sentences. Moreover, the shallow semantic analysis produced by existing
systems has been shown to benefit a wide spectrum of applications ranging from
information extraction (Surdeanu et al. 2003) and question answering (Shen and Lapata
2007), to machine translation (Wu and Fung 2009) and summarization (Melli et al. 2005).

Most semantic role labeling (SRL) systems to date conceptualize the task as
a supervised learning problem and rely on role-annotated data for model training.
Supervised methods deliver reasonably good performance2 (F1 measures in the low
80s on standard test collections for English); however, the reliance on labeled training
data, which is both difficult and highly expensive to produce, presents a major obstacle
to the widespread application of semantic role labeling across different languages and
text genres. And although nowadays corpora with semantic role annotations exist in

1 Sentences (1a) and (1b) illustrate the instrument subject alternation and sentences (1a) and (1c) illustrate
the causative/inchoative alternation.

2 We refer the interested reader to the reports on the SemEval-2007 shared task (Baker, Ellsworth, and Erk
2007) for an overview of the state of the art.
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other languages (e.g., German, Spanish, Catalan, Chinese, Korean), they tend to be
smaller than their English equivalents and of limited value for modeling purposes.

It is also important to note that the performance of supervised systems degrades
considerably (by 10%) on out-of-domain data even within English, a language for which
two major annotated corpora are available (Pradhan, Ward, and Martin 2008). And this
is without taking unseen events into account, which unavoidably affect coverage. The
latter is especially an issue for FrameNet (version 1.3) which is still under development,
despite being a relatively large resource—it contains almost 140,000 annotated sentences
for a total of 502 frames, which are evoked by over 5,000 different lexical units. Coverage
issues involve not only lexical units but also missing frames and incompletely exempli-
fied semantic roles.

In this article, we attempt to alleviate some of these problems by using semi-
supervised methods that make use of a small number of manually labeled training
instances and a large number of unlabeled instances. Whereas manually labeled data are
expensive to create, unlabeled data are often readily available in large quantities. Our
approach aims to improve the performance of a supervised SRL system by enlarging
its training set with automatically inferred annotations of unlabeled sentences. The key
idea of our approach is to find novel instances for classifier training based on their simi-
larity to manually labeled seed instances. The underlying assumption is that sentences
that are similar in their lexical material and syntactic structure are likely to share a frame
semantic analysis. The annotation of an unlabeled sentence can therefore be inferred from
a sufficiently similar labeled sentence. For example, given the labeled sentence (3) and
the unlabeled sentence (4), we wish to recognize that they are lexically and structurally
similar; and infer that thumped also evokes the IMPACT frame, whereas the rest of his body
and against the front of the cage represent the Impactor and Impactee roles, respectively.

(3) [His back]Impactor [thudded]IMPACT [against the wall]Impactee.

(4) The rest of his body thumped against the front of the cage.

We formalize the detection of similar sentences and the projection of role annota-
tions in graph-theoretic terms by conceptualizing the similarity between labeled and
unlabeled sentences as a graph alignment problem. Specifically, we represent sentences
as dependency graphs and seek an optimal (structural) alignment between them. Given
this alignment, we then project annotations from the labeled onto the unlabeled sen-
tence. Graphs are scored using a function based on lexical and syntactic similarity which
allows us to identify alternations like those presented in Example (1) and more generally
to obtain training instances with novel structure and lexical material. We obtain the best
scoring graph alignment using integer linear programming, a general-purpose exact
optimization framework. Importantly, our approach is not tied to a particular SRL
system. We obtain additional annotations irrespective of the architecture or implemen-
tation details of the supervised role labeler that uses them. This renders our approach
portable across learning paradigms, languages, and domains.

After discussing related work (Section 2), we describe the details of our semi-
supervised method (Section 3) and then move on to evaluate its performance (Section 4).
We conduct two sets of experiments using data from the FrameNet corpus: In Section 5,
we apply our method to increase the training data for known predicates, that is, words
for which some seed annotations already exist. In Section 6, we focus on the comple-
mentary task of creating training instances for unknown predicates, that is, words that
do not occur in the FrameNet corpus at all. Section 7 concludes the article.
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2. Related Work

The lack of annotated data presents an obstacle to developing many natural language
applications, especially for resource-poor languages. It is therefore not surprising that
previous efforts to reduce the need for semantic role annotation have focused primarily
on languages other than English.

Annotation projection is a popular framework for transferring semantic role anno-
tations from one language to another while exploiting the translational and structural
equivalences present in parallel corpora. The idea here is to leverage the existing En-
glish FrameNet and rely on word or constituent alignments to automatically create an
annotated corpus in a new language. Padó and Lapata (2009) transfer semantic role
annotations from English onto German and Johansson and Nugues (2006) from English
onto Swedish. A different strategy is presented in Fung and Chen (2004), where English
FrameNet entries are mapped to concepts listed in HowNet, an on-line ontology for
Chinese, without consulting a parallel corpus. Then, Chinese sentences with predicates
instantiating these concepts are found in a monolingual corpus and their arguments are
labeled with FrameNet roles.

Other work attempts to alleviate the data requirements for semantic role labeling
within the same language either by increasing the coverage of existing resources or by
inducing role annotations from unlabeled data. Swier and Stevenson (2004) propose
a method for bootstrapping a semantic role labeler. Given a verb instance, they first
select a frame from VerbNet, a semantic role resource akin to FrameNet and PropBank,
and label each argument slot with sets of possible roles. Their algorithm then proceeds
iteratively by first making initial unambiguous role assignments, and then successively
updating a probability model on which future assignments are based. Gordon and
Swanson (2007) attempt to increase the coverage of PropBank. Their approach leverages
existing annotations to handle novel verbs. Rather than annotating new sentences that
contain novel verbs, they find syntactically similar verbs and use their annotations as
surrogate training data.

Much recent work has focused on increasing the coverage of FrameNet, either
by generalizing semantic roles across different frames or by determining the frame
membership of unknown predicates. Matsubayashi, Okazaki, and Tsujii (2009) propose
to exploit the relations between semantic roles in an attempt to overcome the scarcity
of frame-specific role annotations. They propose several ways of grouping roles into
classes based on the FrameNet role hierarchy, human-understandable descriptors of
roles, selectional restrictions, and a FrameNet to VerbNet role mapping. They show that
transforming this information into feature functions and incorporating it into super-
vised learning improves role classification considerably.

The task of relating known frames to unknown predicates is addressed primarily by
resorting to WordNet (Fellbaum 1998). For example, Burchardt, Erk, and Frank (2005)
apply a word sense disambiguation system to annotate predicates with a WordNet sense
and hyponyms of these predicates are then assumed to evoke the same frame. Johansson
and Nugues (2007b) treat this problem as an instance of supervised classification. Using
a feature representation based also on WordNet, they learn a classifier for each frame,
which decides whether an unseen word belongs to the frame or not. Pennacchiotti
et al. (2008) create “distributional profiles” for frames. The meaning of each frame is
represented by a vector, which is the (weighted) centroid of the vectors representing
the predicates that can evoke it. Unknown predicates are then assigned to the most
similar frame. They also propose a WordNet-based model that computes the similarity
between the synsets representing an unknown predicate and those activated by the
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predicates of a frame (see Section 6 for details). Das et al. (2010) represent a departure
from the WordNet-based approaches in their use of a latent variable model to allow for
the disambiguation of unknown predicates.

Unsupervised approaches to SRL have been few and far between. Abend, Reichart,
and Rappoport (2009) propose an algorithm that identifies the arguments of predicates
by relying only on part-of-speech annotations, without, however, assigning their se-
mantic roles. In contrast, Grenager and Manning (2006) focus on role induction which
they formalize as probabilistic inference in a Bayesian network. Their model defines
a joint probability distribution over a verb, its semantic roles, and possible syntactic
realizations. More recently, Lang and Lapata (2010) formulate the role induction prob-
lem as one of detecting alternations and finding a canonical syntactic form for them.
Their model extends the logistic classifier with hidden variables and is trained on parsed
output which is used as a noisy target for learning.

Our own work aims to reduce but not entirely eliminate the annotation effort
involved in semantic role labeling. We thus assume that a small number of manual an-
notations is initially available. Our algorithm augments these with unlabeled examples
whose roles are inferred automatically. We apply our method in a monolingual setting,
and thus do not project annotations between languages but within the same language.
Importantly, we acquire new training instances for both known and unknown pred-
icates. Previous proposals extend FrameNet with novel predicates without inducing
annotations that exemplify their usage. We represent labeled and unlabeled instances
as graphs, and seek to find a globally optimal alignment between their nodes, subject to
semantic and structural constraints. Finding similar labeled and unlabeled sentences is
reminiscent of paraphrase identification (Qiu, Kan, and Chua 2006; Wan et al. 2006; Das
and Smith 2009; Chang et al. 2010), the task of determining whether one sentence is a
paraphrase of another. The sentences we identify are not strictly speaking paraphrases
(even if the two predicates are similar their arguments often are not); however, the
idea of modeling the correspondence structure (or alignment) between parts of the
two sentences is also present in the paraphrase identification work (Das and Smith
2009; Chang et al. 2010). Besides machine translation (Matusov, Zens, and Ney 2004;
Taskar, Lacoste-Julien, and Klein 2005), methods based on graph alignments have been
previously employed for the recognition of semantic entailments (Haghighi, Ng, and
Manning 2005; de Marneffe et al. 2007), where an optimization problem similar to
ours is solved using approximate techniques (our method is exact) and an alignment
scoring function is learned from annotated data (our scoring function does not require
extensive supervision). On a related note, de Salvo Braz et al. (2005) model entail-
ments via a subsumption algorithm that operates over concept graphs representing
a source S and target T sentence and uses integer linear programming to prove that
S � T.

3. Method

In this section we describe the general idea behind our semi-supervised algorithm and
then move on to present our specific implementation. Given a set L of sentences labeled
with FrameNet frames and roles (the seed corpus) and a (much larger) set U of unla-
beled sentences (the expansion corpus), we wish to automatically create a set X ⊂ U
of novel annotated instances. Algorithm 1 describes our approach, which consists of
two parts. In the labeling stage, annotations are proposed for every unlabeled sentence
(lines 1–20), and in the selection stage, instances with high quality annotations are
chosen to make up the final new corpus (lines 21–26).
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In the labeling stage, (almost) every unlabeled sentence u ∈ U receives an annota-
tion via projection from the seed l∗ ∈ L most similar to it. In theory, this means that each
unlabeled sentence u is compared with each labeled seed l. In practice, however, we
reduce the number of comparisons by requiring that u and l have identical or at least
similar FEEs. This process will yield many sentences for every seed with annotations
of varying quality. In default of a better way of distilling high-quality annotations, we
use similarity as our criterion in the selection stage. From the annotations originating
from a particular seed, we therefore collect the k instances with the highest similarity
values. Our selection procedure is guided by the seeds available rather than the corpus
from which unlabeled sentences are extracted. This is intended, as the seeds can be
used to create a balanced training set or one that exemplifies difficult or rare training
instances.

In the remainder of this section, we present the labeling stage of our algorithm in
more detail. Section 3.1 formally introduces the notion of semantically labeled depen-
dency graphs and defines the subgraphs M and N representing relevant predicate–
argument structures. Section 3.2 formalizes alignments as mappings between graph
nodes and defines our similarity score as a function on alignments between labeled
and unlabeled dependency graphs. Section 3.3 formulates an integer linear program
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(ILP) for finding optimal alignments, and Section 3.4 presents an efficient algorithm
for solving this ILP. Finally, Section 3.5 describes how annotations are projected from
labeled onto unlabeled graphs.

3.1 Semantically Labeled Dependency Graphs

Seed sentences labeled with role-semantic annotations are represented by dependency
graphs. The latter capture grammatical relations between words via directed edges
from syntactic heads to their dependents (e.g., from a verb to its subject or from a
noun to a modifying adjective). Edges can be labeled to indicate the type of head–
dependent relationship (e.g., subject, object, modifier). In our case, dependency graphs
are further augmented with FrameNet annotations corresponding to the FEE and its
semantic roles.

A dependency graph of the sentence Old Herkimer blinked his eye and nodded wisely
is shown in Figure 1. Nodes are indicated by rectangles and dependencies by edges
(arrows). Solid arrows represent syntactic dependencies (e.g., subject, object), and
dashed arrows correspond to FrameNet annotations. Here, blink evokes the frame
Body movement, Herkimer bears the role Agent, and eye the role Body part.

Unfortunately, FrameNet annotations have not been created with dependency
graphs in mind. FEEs and roles are marked as substrings and contain limited syntac-
tic information, distinguishing only the grammatical functions “external argument,”
“object,” and “dependent” for the arguments of verbal FEEs. To obtain dependency
graphs with semantic annotations like the one shown in Figure 1, we parse the sentences
in the seed corpus with a dependency parser and compare the FrameNet annotations
(substrings) to the nodes of the dependency graph. For the FEE, we simply look for a
graph node that coincides with the word marked by FrameNet. Analogously, we map

Figure 1
Dependency graph with semantic annotations for the sentence Old Herkimer blinked his eye and
nodded wisely (taken from the FrameNet corpus). Nodes in the alignment domain are indicated
by double frames. Labels in italics denote frame roles, and grammatical roles are rendered in
small capitals. Annotations are only shown for the predicate blink, which evokes the frame
Body Movement.
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role annotations onto the graph by finding a node with a yield equal to the marked
substring, that is, a node that (together with its dominated nodes) represents the words
of the role. Our experiments make use of the dependency graphs produced by RASP
(Briscoe, Carroll, and Watson 2006), although there is nothing inherent in our approach
that assumes this specific parser. Any other dependency parser with broadly similar
output could be used instead.

Searching for nodes representing the FEE and its semantic roles may in some cases
yield no match. There are two reasons for this—parser errors and role annotations vio-
lating syntactic structure. We address this problem heuristically: If no perfect match is
found, the closest match is determined based on the number of mismatching characters
in the string. We thus compute a mismatch score for the FEE and each role. To make
allowances for parser errors, we compute these scores for the n-best parses produced
by the dependency parser and retain the dependency graph with the lowest mismatch.
This mapping procedure is more thoroughly discussed in Fürstenau (2008).

Each sentence in the seed corpus contains annotations for a predicate and its se-
mantic roles. A complex sentence (with many subordinate clauses) will be represented
by a large dependency graph, with only a small subgraph corresponding to these
annotations. Our method for computing alignments between graphs only considers
subgraphs with nodes belonging to the predicate-argument structure in question. This
allows us to compare graphs in a computationally efficient manner as many irrelevant
alignments are discarded, although admittedly the entire graph may provide useful
contextual clues to the labeling problem.

We are now ready to define the alignment domain M of a labeled dependency
graph. Let p be a node (i.e., word) in the graph corresponding to the FEE. If there are
no mismatches between semantic and syntactic arguments, we expect all roles in the
graph to be instantiated by syntactic dependents of p. Although this is often the case, it
does not always hold—for example, because of the way the dependency parser analyzes
raising, control, or coordination structures. We therefore cannot simply define M as
the set of direct dependents of the predicate, but also have to consider complex paths
between p and role-bearing nodes. An example is given in Figure 1, where the role Agent
is filled by a node that is not dominated by the FEE blink; instead, it is connected to blink
by the complex path (CONJ−1, SUBJ). For a given sentence, we build the set of all such
complex paths to any role-bearing node and also include all nodes connected to p by
one of these paths. We thus define the subgraph M to contain:

i. the predicate node p

ii. all direct dependents of p, except auxiliaries

iii. all nodes on complex paths from p to any role-bearing node

iv. single direct dependents of any preposition or conjunction node which is
in (ii) or end-point of a complex path covered in (iii)

In Figure 1 the nodes in the alignment domain are indicated by double frames.
In an unlabeled dependency graph we similarly identify the alignment range as the

subgraph corresponding to the predicate–argument structure of a target predicate. As
we do not have any frame semantic analysis for the unlabeled sentence, however, we
cannot determine a set of complex paths. We could ignore complex paths altogether and
thus introduce a substantial asymmetry into the comparison between a labeled and an
unlabeled sentence, as unlabeled sentences would be assumed to be structurally simpler
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than labeled ones. This assumption will often be wrong and moreover introduce a bias
towards simpler structures for the new annotations. To avoid this, we reuse the set of
complex paths from the labeled sentence. Although this is not ideal either (it makes
the comparison asymmetrically dependent on the annotation of the labeled sentence)
it allows us to compare labeled and unlabeled sentences on a more equal footing. We
therefore define the alignment range N in exact analogy to the alignment domain M, the
only exception being that complex paths to role-bearing nodes are determined by the
labeled partner in the comparison.

3.2 Scoring Graph Alignments

We conceptualize the similarity between subgraphs representing predicate–argument
structures as an alignment problem. Specifically, we seek to find an optimal alignment
between the alignment domain M of a labeled graph and the alignment range N of
an unlabeled sentence. Alignments are scored using a similarity measure that takes
syntactic and lexical information into account.

We formalize the alignment between M and N as a partial injective function from
M to N, that is, a function σ : M → N ∪ {ε} where σ(x) = σ(x′) �= ε implies x = x′.
Here, ε denotes a special empty value. We say that x ∈ M is aligned to x′ ∈ N by σ, iff
σ(x) = x′. Correspondingly, a node x ∈ M with σ(x) = ε or a node x′ ∈ N that is not the
image of any x ∈ M is called unaligned. Figure 2 shows an example of an alignment

Figure 2
The dotted arrows show aligned nodes in the graphs for the two sentences His back thudded
against the wall and The rest of his body thumped against the front of the cage (graph edges are also
aligned to each other). The nodes in the alignment domain and alignment range are indicated by
double frames.
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between a labeled and an unlabeled dependency graph for the predicates thud and
thump.

Each alignment σ between M and N receives a score, the weighted sum of the lexical
similarity between nodes (lex) and syntactic similarity between edges (syn):

score(σ) := 1
C

⎛
⎜⎜⎝

∑
x∈M

σ(x)�=ε

lex (x,σ(x)) + α ·
∑

(x1,x2 )∈E(M)
(σ(x1),σ(x2 ))∈E(N)

syn
(

rx1
x2 , rσ(x1)

σ(x2)

)
⎞
⎟⎟⎠ (1)

Here, E(M) and E(N) denote the sets of graph edges between the nodes of M and N,
respectively, while rx1

x2 is the label of the edge (x1, x2), that is, the grammatical relation
between these two nodes.

Equation (1) introduces a normalizing factor C whose purpose is to render similarity
scores of different pairs of sentences comparable. Without normalization, it would be
easier to achieve high similarity to a complex predicate–argument structure than a
simpler one, which is counter-intuitive. This can be seen from the fact that the self-
similarity of a sentence (i.e., the similarity of a sentence to itself) depends on the number
of nodes in M. Assuming that the maximal value for lex and syn is 1 for identical
words and grammatical relations, self-similarity is then |M|+ α|E(M)| and constitutes
an upper bound for the similarity between any two sentences. We could use this term
to normalize the similarity score. However, this would only account for unaligned or
badly aligned nodes and edges in the labeled sentence while ignoring the unlabeled
partner. To obtain a symmetric normalization factor we therefore define:

C :=
√
|M| · |N|+ α

√
|E(M)| · |E(N)| (2)

C is now symmetric in the two sentences and when introduced in equation (1) leads to
self-similarities of 1:

score(σself) =
1√

|M|2 + α
√

E(M)2
(|M| · 1 + α · |E(M)| · 1) = 1 (3)

Notice that our formulation uses the same score for finding whether there exists
an alignment and for evaluating its quality. Consequently, our algorithm will attempt
to construct an alignment even if there is none, that is, in cases where the similarity
between labeled and unlabeled sentences is low. Our approach is to filter out erroneous
alignments by considering only the k nearest neighbors of each seed. Alternatively, we
could first establish valid alignments and then score them; we leave this to future work.
The employed score is the weighted combination of lexical and syntactic similarity. In
our experiments we use cosine similarity in a vector space model of co-occurrence statis-
tics for lex and define syn as a binary function reflecting the identity of grammatical
relations (see Section 4 for details). Other measures based on WordNet (e.g., Budanitsky
and Hirst 2001) or finer grammatical distinctions are also possible.

3.3 ILP Formulation

We define the similarity of two predicate–argument structures as the maximum score
of any alignment σ between them. Intuitively, the alignment score corresponds to the
amount of changes required to transform one graph into the other. High scores indicate
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high similarity and thus minimal changes. We do not need to formalize such changes,
although it would be possible to describe them in terms of substitutions, deletions,
and insertions. For our purposes, the alignment scores themselves can be used to
indicate whether two graphs are substantially similar to warrant projection of the frame
semantic annotations. We do this by finding an optimal alignment, that is, an alignment
with the highest score as defined in Equation (1).

To solve this optimization problem efficiently, we recast it as an integer linear pro-
gram (ILP). The ILP modeling framework has been recently applied to a wide range of
natural language processing tasks, demonstrating improvements over more traditional
optimization methods. Examples include reluctant paraphrasing (Dras 1999), relation
extraction (Roth and tau Yih 2004), semantic role labeling (Punyakanok et al. 2004),
concept-to-text generation (Marciniak and Strube 2005; Barzilay and Lapata 2006), de-
pendency parsing (Riedel and Clarke 2006), sentence compression (Clarke and Lapata
2008), and coreference resolution (Denis and Baldridge 2007). Importantly, the ILP
approach3 delivers a globally optimal solution by searching over the entire alignment
space without employing heuristics or approximations (see de Marneffe et al. [2007]
and Haghighi, Ng, and Manning [2005]). Furthermore, an ILP-based formulation seems
well-suited to our problem because the domain of the optimization, namely, the set of
partial injective functions from M to N, is discrete. We define arbitrary linear orders on
the sets M and N, writing M = {n1, . . . , nm} and N = {n′

1, . . . , n′
n} and then introduce

binary indicator variables xij to represent an alignment σ:

xij :=
{

1 if σ(ni) = n′
j

0 else
(4)

Each alignment σ thus corresponds to a distinct configuration of xij values. In order
to ensure that the latter describe a partial injective function, we enforce the following
constraints:

1. ∀j :
∑

1≤i≤m xij ≤ 1 (Each node in N is aligned to at most one node in M.)

2. ∀i :
∑

1≤j≤n xij ≤ 1 (Each node in M is aligned to at most one node in N.)

We can now write Equation (1) in terms of the variables xij (which capture exactly the
same information as the function σ):

score(x) = 1
C

⎛
⎜⎜⎝

∑
1≤i≤m
1≤j≤n

lex
(

ni, n′
j

)
xij + α ·

∑
1≤i,k≤m
1≤j,l≤n

syn
(

rni
nk , r

n′
j

n′
l

)
xijxkl

⎞
⎟⎟⎠ (5)

Note that Equations (1) and (5) are summations of the same terms.4 However,
Equation (5) is not linear in the variables xij as it contains products of the form xijxkl.

3 It is outside the scope of this article to provide an introduction to ILP. We refer the interested reader to
Winston and Venkataramanan (2003) and Vanderbei (2001) for comprehensive overviews.

4 For convenience, we define rn1
n2 = ε if there is no relation between n1 and n2, and assume that syn is 0 if

either of its arguments is ε.
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This can be remedied through the introduction of another set of binary variables yijkl
subject to additional constraints ensuring that yijkl = xijxkl:

3. ∀i,j,k,l : yijkl ≤ xij

4. ∀i,j,k,l : yijkl ≤ xkl

5. ∀i,j,k,l : yijkl ≥ xij + xkl − 1

We also want to make sure that the FEE of the labeled sentence is aligned to the
target predicate of the unlabeled sentence. We express this with the following con-
straint, assuming that the FEE and the target predicate are represented by n1 and n′

1,
respectively:

6. x11 = 1

We therefore have to solve an ILP in the mn + m2n2 variables xij and yijkl, subject to
m + n + 3m2n2 + 1 constraints (see constraints (1)–(6)), with the objective function:

score(x, y) = 1
C

⎛
⎜⎜⎝

∑
1≤i≤m
1≤j≤n

lex
(

ni, n′
j

)
xij + α ·

∑
1≤i,k≤m
1≤j,l≤n

syn
(

rni
nk , r

n′
j

n′
l

)
yijkl

⎞
⎟⎟⎠ (6)

Exact optimization for the general ILP problem is NP-hard (Cormen, Leiserson, and
Rivest 1992). ILPs with a totally unimodular constraint matrix5 are solvable efficiently,
using polynomial time algorithms. In this special case, it can be shown that the optimal
solution to the linear program is integral. Unfortunately, our ILP falls outside this class
due to the relatively complex structure of our constraints. This can be easily seen when
considering the three constraints x11 + x12 + · · ·+ x1m ≤ 1, −x11 + y1112 ≤ 0 and −x12 +
y1112 ≤ 0. The coefficients of the three variables x11, x12, and y1112 in these constraints
make up the matrix

⎛
⎝ 1 1 0

−1 0 1
0 −1 1

⎞
⎠

The determinant of this matrix is 2 and therefore the complete coefficient matrix of the
ILP has a quadratic submatrix with a determinant that is not 0 or ±1, which means
that it is not totally unimodular. Indeed, it has been shown that the structural matching
problem is NP-hard (Klau 2009).

3.4 Solving the ILP

There are various techniques for finding the optimal solution of an ILP, such as ap-
proximation with error bounds (Klau 2009) or application of the branch-and-bound

5 A matrix A is totally unimodular if every square sub-matrix of A has its determinant equal to 0, +1, or −1.
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algorithm (Land and Doig 1960). The latter allows for solving an ILP exactly and signif-
icantly faster than by naive enumeration. It does this by relaxing the integer constraints
and solving the resulting LP problem, known as the LP relaxation. If the solution of
the LP relaxation is integral, then it is the optimal solution. Otherwise, the resulting
solution provides an upper bound on the solution for the ILP. The algorithm proceeds
by creating two new sub-problems based on the non-integer solution for one variable
at a time. These are solved and the process repeats until the optimal integer solution
is found. Our alignment problem has only binary variables and is thus an instance of
a “pure” 0–1 ILP. For such problems, implicit enumeration can be used to simplify
both the braching and bounding components of the branch-and-bound process and
to determine efficiently when a node is infeasible. This is achieved by systematically
evaluating all possible solutions, without, however, explicitly solving a potentially large
number of LPs derived from the relaxation.

To obtain a solution for the ILP in Section 3.3, we could have used any solver that
implements the standard branch-and-bound algorithm. To speed up computation time,
we have instead modified the branch-and-bound algorithm so as to take into account
the special structure of our graph alignment problem. Our own algorithm follows the
principles of branch-and-bound but avoids explicit representation of the variables yijkl,
performs early checks of the constraints on the variables xij on branching, and takes
into account some of the constraints on the variables yijkl for the estimation of lower
and therefore more efficient bounds. In the following, we first describe our modified
algorithm and then assess its runtime in comparison to a publicly available solver.

Algorithm 2 shows how to find an optimal alignment σ∗ with score s∗ in pseu-
docode. σ0 and σ1 denote partial solutions, while completions are built in σ. syn∗ is the
maximum possible value of syn, that is, syn∗ = 1 for a binary measure. We initialize σ∗

with the trivial solution which aligns n1 to n′
1 and leaves all other nodes unaligned.6

This gives a score of lex(n1, n′
1). To find better solutions we start with an initial partial

alignment σ0, which contains only the mapping n1 �→ n′
1 and leaves the alignments of

all other n ∈ M unspecified. (Note that this is different from the complete alignment
σ∗ which specifies those nodes as unaligned: n �→ ε.) As in the general branch-and-
bound algorithm, the space of all alignments is searched recursively by branching on the
alignment decision for each remaining node. A branch is left as soon as an upper bound
on the achievable score indicates that the current best solution cannot be improved
within this branch.

Given a partial alignment σ0 (the initial or any subsequent one) defined on some
subset of M, we estimate a suitable bound by extending σ0 to a complete function σ on
all nodes in M: Each of the remaining nodes is aligned to its partner in N maximizing lex.
If no positive value can be found for lex, the node is defined as unaligned. We then
define the bound s as the score of σ0 together with the lexical scores of the newly created
alignments and a hypothetical syntactic score which assumes that each of the newly
considered edges is aligned perfectly, that is, with the maximum value syn∗ attainable
by syn. (This is a lower bound than the one a naive application of the branch-and-bound
algorithm would compute.)

Of course, σ need not fulfill the constraints of the ILP and s need not be an attainable
score. It is, however, an upper bound for the score of any valid alignment. If it is not

6 In the description of the algorithm, we use the more intuitive notation ni �→ n′j to indicate that ni is
aligned to n′j . Note, however, that this could be equivalently formulated in terms of the ILP variables
(i.e., xij = 1), and our algorithm still broadly follows the branch-and-bound procedure for ILPs.

147



Computational Linguistics Volume 38, Number 1

greater than the current best score s∗, we leave the current branch. Otherwise, we check
if σ is a valid alignment with score s, that is, if it satisfies the constraints of the ILP
and s is its score (which means that the assumptions of perfect syntactic scores were
justified). If this is the case, we have a new current optimum and do not need to follow
the current branch any more either. If, however, the bound s is greater than the current
optimum s∗, but σ violates some constraints or does not achieve a score of s because it
contains imperfect syntactic alignments, we have to branch on the decision of how to
extend σ0 by an additional alignment link. We consider the next node with unspecified
alignment and recursively apply the algorithm to extensions of σ0. Each extension σ1
aligns this node to a partner in N that has thus far been left unaligned. (This simple
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check of constraint (1), which extends the general branch-and-bound algorithm, avoids
recursion into branches that cannot contain any valid solutions.) The partial score s1
corresponding to σ1 is computed by taking into account the consequences of the new
alignment to the lexical and syntactic scores.

We found this algorithm to be very effective in solving the ILPs arising in our
experiments. While its worst case performance is still exponential in the number of
aligned nodes and edges, it almost always finds the optimum within a relatively small
number of iterations of the outer loop (line 4 in Figure 2). This is also due to the fact that
the alignment domain and range are typically not very large. In a realistic application of
our method, 70% of the ILPs were solvable with less than 100 iterations, 93% with less
than 1,000 iterations, 98.6% with less than 10,000 iterations, and 99.95% with less than
1,000,000 iterations. As the remaining 0.05% of the ILPs may still take an inordinate
amount of time, we abort the search at this point. In this case, it is highly likely that the
alignment domain and range are large and any resulting alignment would be overly
specific and thus not very useful. Aborting at 1,000,000 iterations is also preferable to a
time-out based on processing time, as it makes the result deterministic and independent
of the specific implementation and hardware. All expansion sets in the experiments
described in Sections 5 and 6 were computable within hours on modern hardware and
under moderate parallelization, which is trivial to implement over the instances of the
unlabeled corpus.

Because our branch-and-bound algorithm performs exact optimization, it could be
replaced by any other exact solution algorithm, without affecting our results. To assess
its runtime performance further, we compared it to the publicly available lp solve7

solver which can handle integer variables via the branch-and-bound algorithm. We
sampled 100 alignment problems for each problem size (measured in number of nodes
in the alignment domain) and determined the average runtime of our algorithm and
lp solve. (The latter was run with the option -time, which excludes CPU time spent
on input parsing). Figure 3 shows how the average time required to solve an ILP
varies with the problem size. As can be seen, our algorithm is about one order of
magnitude more efficient than the implementation of the general-purpose branch-and-
bound algorithm.

3.5 Annotation Projection

Given a labeled graph l, an unlabeled graph u, and an optimal alignment σ between
them, it is relatively straightforward to project frame and role information from one to
the other. As described in Section 3.1, frame names are associated with the nodes of their
FEEs and role names with the nodes of their role filler heads. By definition, all of these
nodes are in the alignment range M. It is therefore natural to label σ(x) ∈ N with the
role carried by x for each role-bearing node x ∈ M. The only complicating factor is that
we have allowed unaligned nodes, that is, nodes with σ(x) = ε. Although this is useful
for ignoring irrelevant nodes in M, we must decide how to treat these when they are
role-bearing (note that FEEs are always aligned by constraint (6), so frame names can
always be projected).

A possible solution would be to only project roles on nodes x with σ(x) �= ε, so
that roles associated with unaligned nodes do not show up in the inferred annotation.
Unfortunately, allowing such partial projections introduces a systematic bias in favor

7 Version 5.5, available at http://lpsolve.sourceforge.net/.
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Figure 3
Average time required to solve an ILP as a function of the size of the alignment domain.

of simpler structures. When these new instances are used as a training set for a role
labeler, they will bias the classifier towards under-annotating roles and thus decrease
performance. We therefore do not want to allow partial projections and demand that
σ(x) �= ε for all role-bearing nodes x.

We could incorporate this additional constraint into the ILP by finding a (lower scor-
ing) solution that satisfies it. However, there is no theoretical justification for favoring a
lower ranking alignment over the optimal one only because of projection requirements.
If lexical and structural measures tell us that a certain alignment is best, we should
not dismiss this information, but rather take the contradiction between the optimal
alignment and the frame semantic (non-)projectability to indicate that l is not suitable
for inferring a labeling of u. There are several possible reasons for this, ranging from
idiosyncratic annotations to parser or pre-processing errors. We therefore do not discard
the optimal alignment in favor of a lower scoring one, but rather dismiss the seed l as a
source of information for inferring a labeling on u. This reflects our precision-oriented
approach: If u does not find a better partner among the other seeds, it will be discarded
as unsuitable for the expansion set.

4. Experimental Set-up

In this section, we describe the data and supervised semantic role labeler used in our
experiments and explain how the free parameters of our method were instantiated. We
then move on to present two experiments that evaluate our semi-supervised method.

4.1 Data

In our experiments, we use various subsets of the English FrameNet corpus (version 1.3;
Fillmore, Johnson, and Petruck 2003) as seed sets for our semi-supervised method and
as test sets in our evaluation. We only consider sentences with verbal FEEs (60,666 in
total). Furthermore, we always assume that an oracle identifies the verbal predicate, so
recognition of the FEE is not part of our evaluation. Unlabeled sentences for expansion
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Table 1
Features used by the frame classifier. Example values for the annotated graph in Figure 1 are
given in parentheses.

Feature Type Description and example value

target lemma atomic lemma of the target node (blink)
frames set frames that can be evoked by the target verb

({BODY MOVEMENT})
voice binary voice of the target node (active)
parent word set lemma of the parents of the target node ({and})
parent POS set part of speech of the parents of the target node ({CC})
rel to parent set grammatical relations between the target node and its

parents ({CONJ})
parent has obj binary whether any parents have an outgoing “object”

relation (no)
dsubcat atomic subcategorization frame, the multi-set of all outgoing

relations of the target node (DOBJ)
child word set set lemma of the children of the target node ({eye})
child dep set set outgoing relations of the target node ({DOBJ})
child word dep set set pair (lemma, relation) for the children of the target

node ({(eye, DOBJ)})

were taken from the British National Corpus (BNC), excluding sentences with manual
annotations in FrameNet. The BNC is considerably larger compared with FrameNet,
approximately by a factor of 100. Dependency graphs were produced with RASP
(Briscoe, Carroll, and Watson 2006). Frame semantic annotations for labeled sentences
were merged with their dependency-based representations as described in Section 3.1.
Sentences for which this was not possible (mismatch score greater than 0) were excluded
from the seed set, but retained in the test sets to allow for unbiased evaluation. For unla-
beled BNC sentences, we used an existing RASP-parsed version of the BNC (Andersen
et al. 2008).

4.2 Supervised SRL System

A natural way of evaluating the proposed semi-supervised method is by comparing
two instantiations of a supervised SRL system, one that is trained solely on FrameNet
annotations and one that also uses the additional training instances produced by our
algorithm. We will henceforth use the term unexpanded to refer to the corpus (and sys-
tem trained on it) that contains only human-annotated instances, and accordingly, the
term expanded to describe the corpus (and system) resulting from the application of our
method or any other semi-supervised approach that obtains training instances automat-
ically. As our approach is based on dependency graphs, we employed a dependency-
based SRL system for evaluation.8

We thus implemented a supervised SRL system based on the features proposed
by Johansson and Nugues (2007a). Many of these features have been found useful in
a number of previous SRL systems, and can be traced back to the seminal work of
Gildea and Jurafsky (2002). Our own implementation uses the features listed in Tables 1
and 2 for frame labeling and role labeling, respectively. Atomic features are converted

8 Semantic role labelers that take advantage of dependency information perform comparably to those that
rely on phrase structure trees (Johansson 2008).
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Table 2
Features used by the role classifiers. Example values for the Body part role of the annotated
graph in Figure 1 are given in parentheses.

Feature Type Description and example value

target lemma atomic lemma of the FEE (blink)
target POS atomic part of speech of the FEE (VVD)
roles set roles that can feature in the given frame ({Agent, Body part,

Addressee, ...})
voice binary voice of the FEE (active)
parent word set lemma of the parents of the FEE ({and})
parent POS set part of speech of the parents of the FEE ({CC})
rel to parent set grammatical relation between the FEE and its parents ({CONJ})
parent has obj binary whether any parents have an outgoing “object” relation (no)
dsubcat atomic subcategorization frame, multi-set of all outgoing relations

of the FEE (DOBJ)
child dep set set outgoing relations of the FEE ({DOBJ})

arg word atomic lemma of the argument (eye)
arg POS atomic part of speech of the argument (NN1)
position atomic position of the argument (before, on, or after) in the sentence,

relative to the FEE (after)
left word atomic lemma of the word to the left of the argument in the sentence (his)
left POS atomic part of speech of the word to the left of the argument in the sentence

(APP$)
right word atomic lemma of the word to the right of the argument in the sentence (and)
right POS atomic part of speech of the word to the right of the argument in the

sentence (CC)
path atomic path of grammatical relations between FEE and argument (DOBJ)
function set relations between argument and its heads ({DOBJ})

into binary features of the SVM by 1-of-k coding, and for set features each possible set
element is represented by its own binary feature. (Features pertaining to parent nodes
are set features as we do not require our dependency graphs to be trees and a node
can therefore have more than one parent.) We followed a classical pipeline architecture,
first predicting a frame name for a given lexical unit, then identifying role-bearing
dependency graph nodes, and finally labeling these nodes with specific roles. All three
classification stages were implemented as support vector machines, using LIBLINEAR
(Fan et al. 2008). The frame classifier is trained on instances of all available predicates,
while individual role classifiers are trained for each frame. The one-vs-one strategy
(Friedman 1996) was employed for multi-classification.

We evaluate the performance of the SRL system on a test set in terms of frame accu-
racy and role labeling F1. The former is simply the relative number of correctly identified
frame names. The latter is based on the familiar measure of labeled F1 (the harmonic
mean of labeled precision and recall). When a frame is labeled incorrectly, however, we
assume that its roles are also misclassified. This is in agreement with the notion of frame-
specific roles. Moreover, it allows us to compare the performance of different classifiers,
which would not be possible if we evaluated role labeling performance on changing test
sets, such as the set of only those sentences with correct frame predictions.

The misclassification penalty C for the SVM was optimized on a small training set
consisting of five annotated sentences per predicate randomly sampled from FrameNet.
We varied C for the frame classification, role recognition, and role classification SVMs
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between 0.01 and 10.0 and measured F1 on a test set consisting of 10% of FrameNet (see
Section 5.1). For frame and role classification, we did not observe significant changes
in F1 and therefore maintained the default of C = 1.0. For role recognition, we obtained
best performance with C = 0.1 (F1 was 38.78% compared to 38.04% with the default
C = 1), which we subsequently used for all our experiments. All other SVM parameters
were left at their default values.

4.3 Lexical and Syntactic Similarity

Our definition of the lexical similarity measure, lex, uses a vector space model of word
co-occurrence which we created from a lemmatized version of the BNC. Specifically, we
created a semantic space with a context window of five words on either side of the target
word and the most common 2,000 context words as vector dimensions. Their values
were set to the ratio of the probability of the context word given the target word to the
probability of the context word overall. Previous work shows that this configuration is
optimal for measuring word similarity (Mitchell and Lapata 2010; Bullinaria and Levy
2007). In our specific setting, lex is then simply the cosine of the angle between the
vectors representing any two words.9

For the syntactic measure syn we chose the simplest definition possible: syn(r, r′) is 1
if r and r′ denote the same grammatical relation (r = r′), and 0 otherwise. We also con-
sidered more sophisticated definitions based on different degrees of similarity between
grammatical relations, but were not able to find parameters performing consistently
better than this simple approach.

A crucial parameter in the formulation of our similarity score (see Equation (1)) is
the relative weight α of syntactic compared to lexical similarity. Intuitively, both types
of information should be taken into account, as favoring one over the other may yield
sentences with either similar structure or similar words, but entirely different meaning.
This suggests that α should be neither very small nor very large and will ultimately also
depend on the specific measures used for lex and syn.

We optimized α on a development set using F1 score as the objective function.
Specifically, we used a random sample of 20% of the FrameNet instances as seed
corpus and expanded it with instances from the BNC using different values for α. For
each seed sentence, the most similar neighbor was selected (i.e., k = 1). We evaluated
performance of the role labeler enhanced with automatic annotations on a test set
consisting of another random 10% of the FrameNet instances. (These development and
test sets were not used in any of the subsequent experiments.) The parameter α ranges
between 0 (using only lexical information) and ∞ (using only syntactic information).
We therefore performed a grid search on a logarithmic scale, varying logα between −3
and 3 with steps of size 0.2. We also computed performance in the extreme cases of
logα = ±∞.

Figure 4 shows the results of the tuning procedure. With the exception of α = −∞
(i.e., ignoring syntactic information) all expansions of the seed corpus lead to better
role labelers in terms of F1. Furthermore, extreme values of α are clearly not as good as
values that take both types of information into account. The optimal value according
to this tuning experiment is logα = −0.6. Finer tuning of the parameter will most

9 Experiments with off-the-shelf WordNet-based similarity measures did not yield performance superior to
the cosine measure (see Fürstenau [2011] for details).

153



Computational Linguistics Volume 38, Number 1

Figure 4
Performance of our method on the development set for different values of the α parameter. The
baseline is the performance of a semantic role labeler trained on the seed set.

likely not yield improvements, as the differences in F1 are already relatively small.
We therefore set α = e−0.6 ≈ 0.55 for all further experiments. This means that lex is
weighted approximately twice as strongly as syn.

5. Experiment 1: Known Verbs

In this section, we describe a first set of experiments with the aim of automatically
creating novel annotation instances for SRL training. We assume that a small number
of manually labeled instances are available and apply our method to obtain more
annotations for the FEEs attested in the seed corpus. The FEE of the labeled sentence and
the target verb of the unlabeled sentence are presumed identical. However, we waive
this restriction in Experiment 2, where we acquire annotations for unknown FEEs, that
is, predicates for which no manual annotations are available.

5.1 Method

We applied our expansion method to seed corpora of different sizes. A random sample
of 60% of the FrameNet instances was used as training set and 10% as test set (the
remaining 30% were used as development set for tuning the α parameter). The training
set was reduced in size by randomly choosing between 1 and 10 annotated instances
per FEE. These reduced sets are our seed corpora. We first trained the supervised SRL
system on each of these seed corpora. Next, we used our expansion method to add the
k nearest neighbors of each seed instance to the training corpus, with k ranging from 1
to 6, and retrained the SRL classifiers.

We also compared our approach to self-training by selecting k sentences from the
unlabeled corpus, labeling them with the baseline classifier trained on the unexpanded
corpus (instead of applying our projection method), and then adding these to the
training corpus and retraining the classifier. Specifically, we employed three variants of
self-training. Firstly, unlabeled sentences were selected for each seed sentence randomly,
the only constraint being that both sentences feature the same FEE.
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Secondly, new instances were chosen according to a sentence similarity measure
shown to be highly competitive on a paraphrase recognition task (Achananuparp, Hu,
and Shen 2008). We used the measure proposed in Malik, Subramaniam, and Kaushik
(2007), which is a simpler variant of a sentence similarity measure originally described
in Mihalcea, Corley, and Strapparava (2006). Given two sentences or more generally text
segments Ti and Tj, their similarity is determined as follows:

sim(Ti, Tj) =

∑
w∈Ti

maxSim(w, Tj) +
∑

w∈Tj

maxSim(w, Ti)

|Ti|+ |Tj|
(7)

where maxSim(w, Tj) is the maximum similarity score between the word w in Ti and any
word in Tj with the same part of speech (i.e., noun, verb, adjective). A large number of
measures have been proposed in the literature for identifying word-to-word similarities
using corpus-based information, a taxonomy such as WordNet (Fellbaum 1998) or a
combination of both (see Budanitsky and Hirst [2001] for an overview). Here, we use
cosine similarity and the vector space model defined in Section 4.3.

Our third variant of self-training identified new instances according to our own
measure (see Section 4.3), which incorporates both lexical and syntactic similarity. The
different self-training settings allow us to assess the extent to which the success of
our method depends simply on the increase of the training data, the definition of the
sentence similarity measure, the alignment algorithm for annotation projection, or their
combination.

5.2 Results

Our results are summarized in Figure 5 (and documented exhaustively in the Ap-
pendix). Here, we only consider role labeling performance, that is, we use gold-standard

Figure 5
Role labeling F1 obtained by expanding seed corpora of different sizes: The dotted lines show
performance of unexpanded classifiers trained on two to six seed instances per verb. Each
solid line starts from such a baseline at k = 0 and for k > 0 shows the performance obtained
by adding the k nearest neighbors of each seed to the respective baseline corpus.
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frames of the test set and evaluate the role recognition and classification stages of the
classifiers. (Frame labeling accuracy will be evaluated in the following section.) The
dotted lines show the performance of unexpanded classifiers trained on two to six seed
instances per verb. The solid lines show the performance of our expanded classifiers
when the k nearest neighbors (of each seed instance) are added to the training set. So, to
give a concrete example, the unexpanded classifier trained on a corpus with two seeds
per verb yields an F1 of 35.94%. When the single nearest neighbors are added, F1 in-
creases to 36.63%, when the two nearest neighbors are added, F1 increases to 37.00%,
and so on.

As can be seen in Figure 5, most expansions lead to improved SRL performance. All
improvements for 1 ≤ k ≤ 5 are statistically significant (at p < 0.05 and p < 0.001) as
determined by stratified shuffling (Noreen 1989; see the Appendix for details). The only
exception is k = 5 for two seeds per FEE. We obtain largest improvements when k ranges
between 2 and 4, with a decline in performance for higher values of k. This illustrates the
trade-off between acquiring many novel annotations and inevitably introducing noise.
For progressively less similar neighbors, the positive effect of the former is out-weighted
by the detrimental effect of the latter.

It is also interesting to observe that automatically generated instances often have
a positive effect on role labeling performance similar to, or even larger than, manually
labeled instances. For example, the corpus with two seeds per FEE, expanded by two,
three or four nearest neighbors, leads to better performance than the corpus with three
manually labeled seeds; and an expanded version of the five seeds/FEE corpus closes
60% of the gap to the six seeds/FEE corpus. Generally, the positive effect of our expan-
sion method is largest for corpora with only a few seed instances per FEE. The results in
Figure 5 may seem low, especially with respect to the state of the art (see the discussion
in Section 1). Bear in mind, however, that the semantic role labeler is trained on a small
fraction of the available annotated data. This fits well with its intended application to
minimize annotation effort when creating resources for new languages or adapting to
new domains.

Figure 6 shows the results of self-training. Dotted lines again denote the perfor-
mance of unexpanded classifiers trained on seed corpora of different sizes (ranging
from two to five seeds per verb). The solid lines show the performance of these clas-
sifiers expanded with k neighbors. Figures 6(a)–6(c) correspond to different methods
for selecting the k-best sentences to add to the seed corpus (i.e., randomly, according
to the similarity function presented in Malik, Subramaniam, and Kaushik (2007), and
our own similarity measure that takes both syntactic and semantic information into
account). In all cases we observe that self-training cannot improve upon the baseline
classifier. Randomly selecting new sentences yields the lowest F1 scores, followed by
Malik, Subramaniam, and Kaushik and our own measure. Figure 6(d) compares the
three self-training methods in the five seeds per verb setting. These results indicate that
the ability to improve labeling performance is not merely due to selecting sentences
similar to the seeds. In other words, the graph alignment algorithm is worth the added
work as the projection of annotations contributes to achieving better SRL results.

To gain a better understanding of the quality of the annotations inferred by our
system, we further analyzed a small sample. Specifically, we randomly selected 100 seed
instances from the FrameNet corpus, and used 59,566 instances as the unlabeled ex-
pansion corpus, treating their gold standard annotations as unseen (the remaining
1,000 instances were held out as a separate test set, as discussed subsequently). Seed
and expansion corpora were thus proportionately similar to those used in our main
experiments (where seed instances in the range of [2,092–16,595] were complemented
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Figure 6
Role labeling F1 with self-training; dotted lines show the performance of unexpanded classifiers
trained on two to five seed instances per verb. Each solid line starts from such a baseline at k = 0
and for k > 0 shows the performance obtained by adding k sentences with the same FEE to the
respective baseline corpus.

with approximately 6 million unlabeled BNC sentences). For each of the 100 seeds,
we projected annotations to their nearest neighbors according to our algorithm, and
compared their quality to the held-out gold standard. Figure 7 reports labeled F1 for
the sets of d-th neighbors. Unlike the neighbors used in our previous experiments, these
are mutually exclusive. In other words, the set for d = 1 includes only the first most
similar neighbors, for d = 2 the second most similar neighbors, and so on. As expected,
we observe decreasing quality for more distant neighbors, falling from 44.24% for d = 1
to 20.53% for d = 12.

Next, we examined how the quality of the novel annotations impacts the semi-
supervised learning task when these are used as additional training data. As in our
previous experiments, we trained the system on the 100 seed sentences alone to obtain
an “unexpanded” baseline and on several “expanded” versions containing the seeds
and one of the d = 1, . . . , 12 sets. The resulting role labeling systems were evaluated
on the 1,000 held-out test sentences mentioned previously. As shown in Figure 7,
performance increases for intermediate values of d and then progressively decreases
for larger values. The performance of the expanded classifiers corresponds closely to
the quality of the projected annotations (or lack thereof). We observe substantial gains
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for the sets d = 1, . . . , 6 compared to the baseline role labeler. The latter achieves an F1
of 9.06% which increases to 12.82% for d = 1 neighbors, to 11.61% for d = 2 neighbors,
and so on. In general, improvements in semantic role labeling occur when the projected
annotations maintain an F1 quality in the range of [40–30%]. When F1 drops below 30%,
improvements are relatively small and finally disappear.

We also manually inspected the projected annotations in the set of first neighbors
(i.e., d = 1). Of these, 33.3% matched the gold standard exactly, 55.5% received the right
frame but showed one or more role labeling errors, and 11.1% were labeled with an
incorrect frame. We further analyzed sentences with incorrect roles and found that
for 22.5% of them this was caused by parser errors, whereas another 42.5% could not
have received a correct annotation in the first place by any alignment, because there was
no node in the dependency graph whose yield exactly corresponded to the annotated
substring of the gold standard. This was again due to parser errors or to FrameNet
specific idiosyncrasies (e.g., the fact that roles may span more than one constituent).
For 35.0% of these sentences, the incorrect roles were genuine failures of our projection
algorithm. Some of these failures are due to subtle role distinctions (e.g., Partner1
and Partners for the frame FORMING RELATIONSHIPS), whereas others require detailed
linguistic knowledge which the parser does not capture either by mistake or by design.
For example, seed sentences without overtly realized subjects (such as imperatives) can
lead to incomplete annotations, missing on the Agent role.

In total, we found that parser errors contributed to 45.8% of the erroneous annota-
tions. The remaining errors range from minor problems, which could be fixed by more
careful preprocessing or more linguistically aware features in the similarity function,
to subtle distinctions in the FrameNet annotation, which are not easily addressed by
computational methods. As parsing errors are the main source of projection errors, one
would expect improvements in semantic role labeling with more accurate parsers. We
leave a detailed comparison of dependency parsers and their influence on our method
to future work, however. Moreover, our results demonstrate that some mileage can be

Figure 7
Evaluation of annotations projected onto the d-th neighbors of 100 randomly chosen seed
sentences. The quality of the novel annotations is evaluated directly against held-out
gold-standard data, and indirectly when these are used as training data for an SRL system.
In both cases, we measure labeled F1.
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gained from annotation projection in spite of parser noise. In fact, comparison with
self-training indicates that annotation projection is a major contributor to performance
improvements.

6. Experiment 2: Unknown Verbs

In this section, we describe a second set of experiments, where our method is ap-
plied to acquire novel instances for unknown FEEs, that is, predicates for which no
manually labeled instances are available. Unknown predicates present a major obstacle
to existing supervised SRL systems. Labeling performance on such predicates is typi-
cally poor due to the lack of specific training material for learning (Baker, Ellsworth,
and Erk 2007).

6.1 Method

To simulate frame and role labeling for unknown FEEs, we divided the set of verbal
FEEs in FrameNet into two sets, namely, “known” and “unknown.” All annotations of
verbs marked as “unknown” made up the test set, and the annotations for the “known”
verbs were the seed corpus (in both cases excluding the 30% of FrameNet used as
development set). To get a balanced division, we sorted all verbal predicates by their
number of annotated sentences and marked every fifth verb in the resulting list (i.e., 20%
of the verbs) as “unknown,” the rest as “known.” We used our expansion algorithm to
automatically produce labeled instances for unknown verbs, selecting the most similar
neighbor of each seed sentence (k = 1). Then we trained the SRL system on both the
seeds and the new annotations and tested it on the held-out instances of the “unknown”
verbs.

6.2 Frame Candidates

So far we have made the simplifying assumption (see Experiment 1, Section 5) that the
FEE of the labeled sentence and the target verb of the unlabeled sentence are identical.
This assumption is not strictly necessary in our framework; however, it reduces com-
putational effort and ensures precision that is higher than would be expected when
comparing arbitrary pairs of verbs. When acquiring novel instances for unseen FEEs, it
is no longer possible to consider identical verbs. The vast majority of seeds, however,
will be inappropriate for a given unlabeled sentence, because their predicates relate to
different situations. So, in order to maintain high precision, and to make expansions
computationally feasible, we must first identify the seeds that might be relevant for a
sentence featuring an unknown predicate. In the following, we propose two methods
for determining frame candidates for an unknown verb, one using vector-based simi-
larity and one that takes WordNet information into account. As we shall see, WordNet-
based similarity yields significantly better results, but its application is restricted to
languages or domains with similar resources.

6.2.1 Vector-based Method. To associate unknown FEEs with known frames, Pennacchiotti
et al. (2008) make use of a simple co-occurrence-based semantic space similar to the one
we used to define the lexical measure lex. They represent each FEE v by a vector �v and
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then compute a vector representation �f for a frame f as the weighted centroid of the
vectors of all words evoking it:

�f =
∑
v∈f

wvf�v (8)

The weight wvf is operationalized as the relative frequency of v among the FEEs evok-
ing f , counted over the corpus used in building the vector space. The (cosine) similarity
between the unknown target �v0 and each frame vector �f produces an ordering of frames,
the n-best of which are considered frame candidates.

simV(v0, f ) = cos
(
�v0,�f

)
(9)

6.2.2 WordNet-based Method. In addition to the vector-based approach, Pennacchiotti
et al. (2008) propose a method that is based on WordNet (Fellbaum 1998) and treats
nouns, verbs, and adjectives differently. Given a frame and an unknown verb v0, they
count the number of FEEs that are co-hyponyms of v0 in WordNet. If the number of
co-hyponyms exceeds a threshold τ,10 then the frame is considered a candidate for v0.

In our experiments, we found this method to perform poorly. This suggests that
the improvements reported in Pennacchiotti et al. (2008) are due to their more refined
treatment of nouns, which are not considered in our set-up. We thus follow the basic
idea of measuring relatedness between an unknown verb v0 and the set of lexical
units of a frame, and propose a measure based on counts of synonyms, hypernyms,
hyponyms, and co-hyponyms in WordNet. We define:

simW (v0, f ) =
∑
v∈F

r(v0, v) (10)

where r(v, v′) is 1 if v and v′ are synonyms, 1
2 if one is a hypernym of the other, 1

4 if
they are co-hyponyms, and 0 otherwise. These numbers were chosen heuristically to
represent different degrees of relatedness in WordNet. Relations more distant than co-
hyponymy did not improve performance, as the verb hierarchy in WordNet is shallow.
It therefore seems unlikely that much could be gained by refining the measure r, for
example, by incorporating traditional WordNet similarity measures (e.g., Budanitsky
and Hirst 2001).

6.2.3 Method Comparison. To evaluate which of the methods just described performs best,
we used a leave-one-out procedure over the FrameNet predicates marked as “known”
in our experimental set-up. Specifically, we set aside one predicate at a time and use
all remaining predicates to predict its frame candidates. The resulting candidates are
then compared to the true frames evoked by the predicate. (We do not consider “un-
known” predicates here as these are reserved for evaluating the expansion method as a
whole.) For the vector-based method we also explore an unweighted variant, setting all
wvf = 1.

Evaluation results are summarized in Figure 8, which shows the proportion of
predicates for which at least one frame candidate is among the true evokable frames

10 Set to τ = 2 according to personal communication.
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Figure 8
Frame labeling accuracy out of n frame candidates; open circles indicate vector-based similarity;
black circles indicate WordNet-based similarity.

(when considering up to 10 best candidates).11 As can be seen, performance increases
by a large margin when unweighted centroids are considered instead of weighted ones.
Apparently, the stabilizing effect of the centroid computation, which allows common
meaning aspects of the predicates to reinforce each other and reduces the effect of spuri-
ous word senses, is more pronounced when all predicates are weighted equally. Figure 8
also shows that a WordNet-based approach that takes into account various kinds of
semantic relations is superior to vector-based methods and to Pennachiotti et al.’s (2008)
original proposal based only on co-hyponyms. All subsequent experiments will identify
frame candidates using our WordNet-based definition (Equation (10)).

6.3 Results

Evaluation results of our approach on unknown verbs are summarized in Figure 9.
Frame labeling accuracy is shown in Figure 9(a) and role labeling performance in
Figure 9(b).

As far as frame labeling accuracy is concerned, we compare a semantic role labeler
trained on additional annotations produced by our method against a baseline classifier
trained on known verbs only. Both expanded and unexpanded classifiers choose frames
from the same sets of candidates, which is also the set of frames that the expansion
algorithm is considering. We could have let the unexpanded classifier select among the
entire set of FrameNet frames (more than 500 in total). This would perform poorly,
however, and our evaluation would conflate the effect of additional training material
with the effect of restricting the set of possible frame predictions to likely candidates.

11 Note that although our evaluation is similar to Pennacchiotti et al. (2008) the numbers are not strictly
comparable due to differences in the test sets, as well as the fact that they consider FEEs across parts of
speech (not only verbs) and omit infrequent predicates.
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Figure 9
Frame labeling accuracy (a) and role labeling performance (b); comparison between unexpanded
and expanded classifiers and random baseline; frame candidates selected based on WordNet.

We also show the accuracy of a simple baseline labeler, which chooses one of the k
candidate frames at random.

As illustrated in Figure 9(a), both expanded and unexpanded classifiers outperform
the random baseline by a wide margin. This indicates that the SRL system is indeed able
to generalize to unknown predicates, even without specific training data. The expanded
classifier is in turn consistently better than the unexpanded one for all numbers of
frame candidates (x axis). The case where only one frame candidate (k = 1) is considered
deserves a special mention. Here, a predicate is assigned the frame most similar to it,
irrespectively of its sentential context. In other words, all instances of the predicate
are assigned the same frame, without any attempt at disambiguation. In this case,
both expanded and unexpanded classifiers obtain the same performance. Although
the unexpanded classifier does not improve over and above this type-based frame
labeling approach, however, the expanded classifier yields significantly better results
for two candidates (p < 0.01 with McNemar’s test). This means that the additional
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training material enables the classifier to successfully favor lower scoring candidates
over higher-scoring ones based on sentential context.

Figure 9(b) shows our results for the role labeling task. We again compare ex-
panded and unexpanded classifiers. Note that there is no obvious random baseline
for the complex task of predicting role spans and their labels, however. Again, we
observe that the expanded classifier outperforms the unexpanded one, save the arti-
ficial case of one candidate where it yields slightly lower results. In this configuration,
our expansion framework cannot account for FEEs that are polysemous by selecting
among different frames, and as a result role labeling performance is compromised.
For two candidates the expanded classifier yields significantly better results than this
token-based approach (p < 0.05 with stratified shuffling). For three, four, and five can-
didates, performance is also numerically better, but the results do not reach statistical
significance. This shows that the expanded classifier is not only able to correctly select
lower scoring frame candidates for unknown verbs, but also to accurately label their
roles. The overall scale of our F1 scores might seem low. This is due to both the
difficulty of the task of predicting fine-grained sense distinctions for verbs without
specific training data, and the comprehensive evaluation measure, which takes into
account all three stages of the SRL system: frame labeling, role recognition, and role
classification.

Incidentally, we should point out that similar tendencies are observed when using
vector-based similarity for identifying the frame candidates. Although overall classi-
fier performance is worse, results are qualitatively similar: The expanded classifiers
outperform the unexpanded ones, and obtain best frame accuracy and labeled F1
with two candidates. Performance also significantly improves compared to selecting a
frame randomly or defaulting to the first candidate (we summarize these results in the
Appendix).

7. Conclusions

We have presented a novel semi-supervised approach for reducing the annotation effort
involved in creating resources for semantic role labeling. Our method automatically
produces training instances from an unlabeled corpus. The key idea is to project an-
notations from labeled sentences onto similar unlabeled ones. We formalize the projec-
tion task as a graph alignment problem. Specifically, we optimize alignments between
dependency graphs under an objective function that takes both lexical and structural
similarity into account. The optimization problem is solved exactly by an integer linear
program.

Experimental results show that the additional training instances produced by our
method significantly improve role labeling performance of a supervised SRL system on
predicates for which only a few or no manually labeled training instances are available.
In the latter case, we first determine suitable frame candidates, improving over similar
methods proposed in the literature. Comparison with a self-training approach shows
that the improvements attained with our method are not merely a side effect of addi-
tional training data. Rather, by identifying sentences that are structurally and lexically
similar to the labeled seeds we are able to acquire qualitatively novel annotations.
Our experiments make use of relatively simple similarity measures, which could be
improved in future work. Incorporating a notion of selectional preferences would allow
for finer-grained distinctions in computing argument similarities. Analogously, our
definition of syntactic similarity could be refined by considering grammar formalisms
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with richer syntactic categories such as Combinatory Categorial Grammar (Steedman
2000).

Possible extensions to the work presented in this article are many and varied.
For example, we could combine our approach with cross-lingual annotation projection
(Johansson and Nugues 2006; Padó and Lapata 2009). For languages without any role
semantic resources, initial annotations could be obtained by cross-lingual projection and
then extended with our semi-supervised method. Another application of our frame-
work would be in domain adaptation, where a supervised model is trained on a seed
corpus, and then unlabeled data from a target domain is used to select new instances
and thus train a new semantic role labeler for the given domain. As our algorithm
produces novel annotated sentences, it could also be used to reduce annotation effort
by offering automatically labeled sentences to humans to inspect and correct. The
experiments presented here are limited to verbal categories and focus solely on English.
In the future, we would like to examine whether our approach generalizes to other
syntactic categories such as nouns, adjectives, and prepositions. An obvious extension
also involves experiments with other languages. Experiments on the SALSA corpus
(Burchardt et al. 2006) show that similar improvements can be obtained for German
(Fürstenau 2011).

Finally, the general formulation of our expansion framework allows its application
to other tasks. Deschacht and Moens (2009) adapt our approach to augment subsets
of the PropBank corpus and observe improvements over a supervised system for a
small seed corpus. They also show that defining the lexical similarity measure in terms
of Jensen–Shannon divergence instead of cosine similarity can additionally improve
performance. Another possibility would be to employ our framework for the acquisition
of paraphrases, for example, by extending the multiple-sequence alignment approach
of Barzilay and Lee (2003) with our notion of graph alignments. Finally, it would be
interesting to investigate how to reduce the dependency on full syntactic analyses, for
example, by employing shallow parsers or chunkers.

Appendix: Detailed Experimental Results

In this appendix, we give complete results for the expansion experiments discussed in
Sections 5 and 6. Asterisks in the tables indicate levels of significance. For simplicity, we
only present two levels of significance, p < 0.05 with a single asterisk (*) and p < 0.001
with two asterisks (**). Significance tests for exact match and frame labeling accuracy
were performed using McNemar’s test. We used stratified shuffling Noreen (1989) to
examine whether differences in labeled F1 were significant.12

Experiments on Known Predicates. The following table shows the performance of ex-
panded classifiers when [1–6] automatically generated nearest neighbors (NN) are
added to seed corpora containing [1–10] manually labeled sentences per verb. We report
precision (Prec), recall (Rec), their harmonic mean (F1), and exact match (ExMatch; the
proportion of sentences that receive entirely correct frame and role annotations). Some
of these results were visualized in Figure 5.

12 We used the sigf tool (Padó 2006).
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Training set Size Prec (%) Rec (%) F1 (%) ExMatch (%)

1 seed/verb 2, 092 40.74 23.69 29.96 6.38
+ 1-NN 3, 297 40.52 24.23 30.33 6.81 *
+ 2-NN 4, 481 40.29 24.99 30.85 * 6.97 *
+ 3-NN 5, 649 39.52 25.02 30.64 * 7.35 **
+ 4-NN 6, 803 39.52 25.39 30.92 * 7.30 **
+ 5-NN 7, 947 39.04 25.34 30.73 * 7.12 *
+ 6-NN 9, 076 38.40 25.16 30.40 6.89

2 seeds/verb 4, 105 45.22 29.81 35.94 9.40
+ 1-NN 6, 500 45.09 30.84 36.63 * 10.19 **
+ 2-NN 8, 850 44.82 31.50 37.00 ** 10.32 **
+ 3-NN 11, 157 44.65 31.85 37.18 ** 10.32 **
+ 4-NN 13, 423 43.99 31.94 37.01 ** 10.15 *
+ 5-NN 15, 652 42.64 31.23 36.05 9.73
+ 6-NN 17, 846 42.57 31.36 36.11 9.63

3 seeds/verb 6, 021 45.03 31.29 36.92 9.81
+ 1-NN 9, 492 44.78 32.45 37.63 * 10.35 *
+ 2-NN 12, 874 44.15 32.69 37.57 * 10.37 *
+ 3-NN 16, 179 43.90 33.00 37.68 * 10.68 *
+ 4-NN 19, 424 43.60 33.36 37.80 * 10.35
+ 5-NN 22, 609 43.15 33.26 37.56 * 10.50 *
+ 6-NN 25, 734 42.72 33.17 37.34 10.45 *

4 seeds/verb 7, 823 44.42 32.21 37.35 9.48
+ 1-NN 12, 321 44.45 33.31 38.09 * 10.20 **
+ 2-NN 16, 688 44.26 34.13 38.54 ** 10.40 **
+ 3-NN 20, 944 43.71 34.20 38.37 ** 10.72 **
+ 4-NN 25, 098 43.37 34.35 38.34 ** 10.57 **
+ 5-NN 29, 166 43.25 34.45 38.35 * 10.67 **
+ 6-NN 33, 142 42.48 34.24 37.92 10.40 *

5 seeds/verb 9, 515 45.45 33.81 38.78 10.35
+ 1-NN 15, 026 45.47 34.90 39.49 * 10.95 *
+ 2-NN 20, 363 45.03 35.39 39.63 * 11.42 **
+ 3-NN 25, 533 44.56 35.51 39.53 * 11.56 **
+ 4-NN 30, 576 44.44 35.78 39.64 * 11.70 **
+ 5-NN 35, 494 44.22 35.94 39.65 * 11.72 **
+ 6-NN 40, 286 43.74 35.83 39.39 * 11.49 **

6 seeds/verb 11, 105 46.50 35.44 40.22 10.95
+ 1-NN 17, 553 46.05 36.11 40.48 11.56 *
+ 2-NN 23, 779 45.71 36.67 40.70 12.07 **
+ 3-NN 29, 787 45.16 36.83 40.57 11.92 **
+ 4-NN 35, 623 44.82 36.92 40.49 11.80 *
+ 5-NN 41, 310 44.60 36.91 40.40 12.13 **
+ 6-NN 46, 851 44.07 36.86 40.14 12.02 **

8 seeds/verb 13, 999 47.60 37.29 41.82 12.25
+ 1-NN 22, 115 47.08 37.71 41.88 12.48
+ 2-NN 29, 907 46.45 38.01 41.81 12.64
+ 3-NN 37, 400 46.01 38.11 41.69 12.69
+ 4-NN 44, 656 45.55 38.12 41.51 12.78
+ 5-NN 51, 705 45.53 38.38 41.65 13.22 *
+ 6-NN 58, 562 45.00 38.24 41.34 13.34 **

10 seeds/verb 16, 595 48.97 39.02 43.43 13.73
+ 1-NN 26, 180 48.24 39.55 43.47 14.01
+ 2-NN 35, 336 47.11 39.32 42.86 13.80
+ 3-NN 44, 113 46.69 39.45 42.77 13.85
+ 4-NN 52, 602 46.18 39.31 42.47 13.63
+ 5-NN 60, 827 46.22 39.76 42.75 13.68
+ 6-NN 68, 791 45.69 39.58 42.42 13.95
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Experiments on Unknown Predicates. In the following, we show the performance of un-
expanded and expanded classifiers when selecting among [1–5] frame candidates gen-
erated by the WordNet-based method. We report frame labeling accuracy, role labeling
performance, and exact match scores. Asterisks indicate that the expanded classifier is
significantly better than an unexpanded classifier choosing among the same number
of candidates. For frame labeling accuracy, we additionally provide the results of the
random baseline and an upper bound, which always chooses the correct frame if it is
among the candidates. Some of these results were shown in Figure 9.

Frame labeling accuracy (%)
Candidates Random Unexpanded Expanded Upper bound

1 45.50 45.50 45.50 45.50
2 29.61 41.24 46.89 ** 59.23
3 22.20 36.02 44.82 ** 66.60
4 17.31 28.75 44.75 ** 69.23
5 14.45 26.56 43.58 ** 72.25

Unexpanded (%) Expanded (%)
Candidates Prec Rec F1 ExMatch Prec Rec F1 ExMatch

1 24.77 18.94 21.47 6.54 23.61 18.72 20.88 6.56
2 22.52 17.63 19.78 5.87 24.60 20.05 22.09 ** 7.02 **
3 19.52 15.20 17.09 5.04 24.23 19.79 21.79 ** 7.24 **
4 16.18 12.31 13.98 4.02 24.59 20.09 22.11 ** 7.26 **
5 14.78 11.27 12.78 3.77 24.12 19.70 21.69 ** 7.44 **

For two candidates, the expanded classifier also performs significantly better than the
best unexpanded classifier (i.e., the one given only one candidate) in terms of frame
labeling accuracy, F1, and exact match (p < 0.05). In terms of exact match, it also
performs significantly better for three candidates (p < 0.05), four candidates (p < 0.05),
and five candidates (p < 0.001).

Vector-based frame candidates. The following graphs show the performance of the un-
expanded and expanded classifiers when frame candidates are selected by the vector-
based method. The expanded classifiers significantly outperform the unexpanded ones
in terms of frame labeling accuracy and role labeling F1 for [2–5] candidates (p < 0.001).
For two candidates, frame labeling accuracy and role labeling F1 also significantly
improve compared with the type-based approach of always choosing the first candidate
(p < 0.001). For three candidates performance is significantly better only in terms of
frame labeling accuracy (p < 0.05) but not F1.
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