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This article proposes ESA, a new unsupervised approach to word segmentation. ESA is an
iterative process consisting of three phases: Evaluation, Selection, and Adjustment. In Eval-
uation, both the certainty and uncertainty of character sequence co-occurrence in corpora are
considered as statistical evidence supporting goodness measurement. Additionally, the statistical
data of character sequences with various lengths become comparable with each other by using
a simple process called Balancing. In Selection, a local maximum strategy is adopted without
thresholds, and the strategy can be implemented with dynamic programming. In Adjustment,
a part of the statistical data is updated to improve successive results. In our experiment, ESA
was evaluated on the SIGHAN Bakeoff-2 data set. The results suggest that ESA is effective
on Chinese corpora. It is noteworthy that the F-measures of the results are basically monotone
increasing and can rapidly converge to relatively high values. Furthermore, empirical formulae
based on the results can be used to predict the parameter in ESA to avoid parameter estimation
that is usually time-consuming.

1. Introduction

Word segmentation is an important task in natural language processing (NLP) for
languages without word delimiters (e.g., Chinese). To date, most existing approaches
to Chinese word segmentation (CWS) are supervised. Although supervised approaches
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reach higher accuracy than unsupervised ones in many cases, they involve much more
human effort. Furthermore, unsupervised approaches are more adaptive to relatively
unfamiliar languages for which we do not have enough linguistic knowledge. In ad-
dition, unsupervised approaches can cooperate with supervised ones to overcome
drawbacks of both.

Since Sproat and Shih (1990) introduced mutual information (MI) to word seg-
mentation, some researchers have conducted research on unsupervised approaches to
word segmentation (Chang and Su 1997). Peng and Schuurmans (2001) proposed an
unsupervised approach based on an improved expectation maximum (EM) learning
algorithm and a pruning algorithm based on MI. Their approach outperforms soft-
counting (Ge, Pratt, and Smyth 1999) that is also based on EM and MI. Non-parametric
Bayesian techniques—for example, the Pitman-Yor process (PYP, a generalization of the
Dirichlet process, DP) (Pitman and Yor 1997), hierarchical DP (HDP) (Teh et al. 2006;
Goldwater, Griffiths, and Johnson 2006), hierarchical PYP (HPYP) (Teh 2006a, 2006b),
and hierarchical HPYP (HHPYP) (Wood and Teh 2008)—have been introduced to word
segmentation. Mochihashi, Yamada, and Ueda (2009) proposed a novel unsupervised
approach based on HPYP, and evaluated it on a part of SIGHAN Bakeoff-2 data set
(Emerson 2005). Their evaluation results suggested that their approach outperformed
the previous ones.

Some approaches, such as TONGO (Ando and Lee 2000, 2003) and Voting Experts
(Cohen, Heeringa, and Adams 2002; Cohen, Adams, and Heeringa 2007), are based on
relatively simple ideas. In most cases, an unsupervised approach can be viewed as
a kind of goodness measurement to find boundaries between words or filter words
from candidates or both. There are four goodness algorithms reviewed by Zhao and
Kit (2008a). The algorithms, including Description Length Gain (DLG) (Kit and Wilks
1999), Accessor Variety (Feng et al. 2004a, 2004b), and Branching Entropy (Tanaka-Ishii
2005; Jin and Tanaka-Ishii 2006), were evaluated on SIGHAN Bakeoff-3 data set (Levow
2006).

In this article, we propose ESA, a new unsupervised approach to word segmen-
tation, and demonstrate its effectiveness on Chinese corpora. The approach was moti-
vated by the following considerations:

1. In contrast to the semi-supervised or supervised approaches, we want
to find an approach which produces acceptable results under harsh
conditions. The harsh conditions are lack of prior knowledge, namely, no
lexicons, annotated corpora, or linguistic rules. The acceptability involves
comparison with the gold standards, which usually means the manually
segmented results.

2. In contrast to existing unsupervised approaches, we want to explore the
potential of completely unsupervised approaches. Therefore, we try
to avoid any manual interference.

To avoid manual interference, we need to consider the following issues:

1. Unsupervised approaches usually rely on a maximization strategy or
thresholds or both. Approaches adopting the maximization strategy alone
can be easily adapted to various contexts with few manual adjustments,
whereas approaches using thresholds may have a higher accuracy in
some cases.
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2. Many approaches have constraints on maximum word length.
Furthermore, some approaches adopt different strategies for processing
words of different lengths. The constraints and the different strategies
may improve results on specific languages, however they reduce the
generality of the approaches.

3. Many approaches process characters with different strategies according
to different character types. The character types are usually identified
by encoding information. Because encoding information is prior
knowledge of specific languages, a completely unsupervised approach
should avoid it as much as possible in order to be applicable under
any conditions.

ESA is based on a new goodness algorithm that adopts a local maximum strategy
and avoids thresholds. ESA has no constraints on maximum word length. In practice,
this kind of constraint can have a negative impact on ESA’s segmentation. A simple
process called Balancing is introduced to uniformly process words of different lengths.
Moreover, ESA uses a self-revision mechanism to improve segmentation accuracy and
guarantees convergence after a small number of iterations. In practice, ESA has only one
parameter that needs to be configured, and the parameter can be predicted by empirical
formulae proposed in this article.

In Section 2, we describe ESA in detail. The SIGHAN Bakeoff-2 archives are avail-
able for research on the official Web site and therefore we can easily test ESA on that
data. We provide our experimental results and discuss them in Section 3. In Section 4,
we compare ESA with other approaches. Finally, we draw our conclusions in Section 5.

2. ESA

ESA consists of Evaluation, Selection, and Adjustment as shown in Figure 1, and it is
based on two simple ideas:

1. A better result can be produced by combining certainty and uncertainty.
The key is how to combine them.

2. A better result can be produced by adopting the self-revised pattern based
on an iterative process.

Figure 1
ESA and input/output data.

423



Computational Linguistics Volume 37, Number 3

The input text can be viewed as a character sequence. A character sequence can be
divided into two adjacent subsequences. The certainty mentioned previously means
certainty of co-occurrence of adjacent subsequences. And the uncertainty means un-
certainty of co-occurrence of adjacent subsequences. For example, suppose there are
two character sequences, AB and AC. The occurrence of AB represents the certainty of
co-occurrence of A and B, whereas the occurrence of AC represents the uncertainty of
co-occurrence of A and B, and vice versa. The two kinds of information are combined to
evaluate the segmentation. In other words, the decision of whether to segment a char-
acter sequence into two adjacent subsequences or not depends on both certainty and
uncertainty. An iterative process can produce better results than a non-iterative scheme
(Chang and Su 1997). In fact, the current result can be viewed as prior knowledge to
adjust the next one.

Devising an unsupervised approach is similar to clarifying how infants segment
words without explicit instructions. In particular, infants are able to learn words from
various kinds of information such as familiar names (Bortfeld et al. 2005), edges of
utterances (Seidl and Johnson 2006), meaning maps (Estes et al. 2007), and auditory
forms of words (Swingley 2008). There are a few notable issues:

1. Familiarity (Bortfeld et al. 2005) can be represented by high frequency.
Frequent character sequences provide more credibility than infrequent
ones. The appearance frequencies are the most important information for
word segmentation.

2. The edges of utterances (Seidl and Johnson 2006) can be viewed as natural
boundaries. In practice, the boundaries given by punctuation can improve
the accuracy of segmentation. However, we think that punctuation should
be ignored by completely unsupervised approaches in order to avoid
relying on encoding information.

3. Both word lists and statistical data as prior knowledge enable human
infants to segment words (Estes et al. 2007). For a completely
unsupervised approach, the prior knowledge can be the approach
itself and the previous results produced by the approach.

4. The early vocabularies of human infants are based on the sounds of words
(Swingley 2008). Some research (Goldwater, Griffiths, and Johnson 2006)
is based on phonemes, but the input data are still text.

Before completely clarifying the mechanism of human learning, we tend to believe that
machines can understand symbol sequences with simple logic.

2.1 Evaluation

Evaluation is the phase that gives a character sequence or a pair of adjacent subse-
quences a goodness value according to statistical information. There are three issues
to be settled:

1. What are the character sequence and the pair of adjacent subsequences
that can be evaluated?

2. What is the necessary statistical information and how do we get it?

3. How do we calculate the goodness?
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2.1.1 The Target of Evaluation. A character sequence contains (N+1)×N
2 subsequences,

where N is the number of characters in the character sequence. These subsequences
are the targets to be evaluated.

A character sequence can be divided into various pairs of adjacent subsequences as
shown in Figure 2. A pair of adjacent subsequences contains a gap that is the potential
boundary between the two subsequences. Every character sequence has an individual
goodness value (IV). Every pair of adjacent subsequences has a combined goodness
value (CV) based on the IV of each subsequence and the goodness value of the gap
(LRV). IV and LRV indicate certainty and uncertainty of co-occurrence, respectively.
Therefore, CV is the combination of certainty and uncertainty. IV is the base of CV, and
LRV serves as the modifier of the base.

2.1.2 The Information Needed. The information mentioned here is the statistical informa-
tion that can be extracted from corpora. There are two basic quantities to be directly
measured:

1. The frequency of a character sequence. For example, if the character
sequence is ABAB: the frequencies of A, B, and AB are all 2; and the
frequencies of ABAB, ABA, BAB, and BA are all 1.

2. The number of character sequences of the same length. For example, if the
character sequence is ABC: the sequences of length 1 are A, B, and C; the
sequences of length 2 are AB and BC; and the sequence of length 3 is ABC
itself. Therefore, the number of the sequences of length 1, 2, and 3 are 3, 2,
and 1, respectively.

Furthermore, there are three other quantities that can be calculated according to those
just mentioned:

1. The average frequency of character sequences of the same length. For
example, there are only two sequences of length 1: A and B. The
frequencies of A and B are 2 and 8, respectively. Therefore, the arithmetic
mean of frequencies of A and B is 5. In other words, the average frequency
of character sequences of length 1 is 5.

2. The entropy of Sequence Plus One (SP1) of a character sequence. For
example, consider the character sequence X. The SP1 of X is a set, and each
member of the SP1 contains X and one character. In detail, the entropy

Figure 2
A character sequence and its subsequence pairs.
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mentioned here is denoted by H(SP1L(X)) and H(SP1R(X)), where SP1L
(SP1 Left) and SP1R (SP1 Right) are two subsets of SP1. In other words,
SP1L(X) and SP1R(X) mean that the left side of X is attached with one
character and the right side of X is attached with one character,
respectively. For example, there are several character sequences: BC, ABC,
BBC, BCD, and BCB. ABC and BBC are the members of SP1L(BC), whereas
BCD and BCB are the members of SP1R(BC). Therefore, H(SP1L(BC)) is
calculated according to the frequencies of ABC, BBC, and other members
of SP1L(BC), whereas H(SP1R(BC)) is calculated according to the
frequencies of BCD, BCB, and other members of SP1R(BC). The formal
descriptions of SP1L and SP1R are

SP1L(x) = {s|s = c · x, s ∈ S, x ∈ S, c ∈ Σ} (1)

and

SP1R(x) = {s|s = x · c, s ∈ S, x ∈ S, c ∈ Σ} (2)

respectively. The symbol · denotes the attachment operator; s denotes a
subsequence of the character sequence S; c denotes a character in the
alphabet Σ. In fact, x is the largest proper subsequence of s.

3. The average entropies of SP1s of character sequences of the same length.
The SP1s refer to both SP1Ls and SP1Rs. For example, there are only three
character sequences of length 2: AB, BC, and CD. Therefore, the sum of
H(SP1L(AB)), H(SP1L(BC)), and H(SP1L(CD)) is the numerator of the
arithmetic mean, and the denominator is 3. The arithmetic mean is the
average entropies of SP1Ls of AB, BC, and CD.

We directly use the prefix tree (trie) (Fredkin 1960) to record the information. Some other
data structures can also be used (Morrison 1968; McCreight 1976; Manber and Myers
1990).

2.1.3 The Calculation of Goodness. The IV of a character sequence is formulated as

IV(x) = (
Fx

FML
)L (3)

The superscript L is the exponent; x is the character sequence to be evaluated; L is the
length of x. F denotes the frequency of a character sequence, and therefore Fx is that
of x; FM denotes the average frequency of character sequences of the same length,
and therefore FML is that of length L. F can be viewed as a local variable, and FM
brings global effects to the formula. By the division in IV, the character sequences of
different lengths become comparable with each other. The division is based on a pattern
called Balancing, which means keeping balance between the local and global effects.
Furthermore, FM is formulated as

FML = 1
N

∑
N

FL (4)
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The entropies of SP1L and SP1R are formulated as

H(SP1L(x)) = −
n∑

i=1

p(FLxi ) ln p(FLxi ) (5)

and

H(SP1R(x)) = −
n∑

i=1

p(FRxi ) ln p(FRxi ) (6)

respectively. Lxi and Rxi denote the ith members in SP1L(x) and SP1R(x), respectively;
FLx and FRx denote the frequencies of members in SP1L(x) and SP1R(x), respectively.
The average entropies of SP1Ls and SP1Rs of character sequences of the same length
are formulated as

HLML = 1
N

∑
N

HLL (7)

and

HRML = 1
N

∑
N

HRL (8)

respectively. HLM and HRM denote the average entropies of SP1Ls and SP1Rs of
character sequences of certain length, respectively; HL and HR denote the entropies of
SP1L and SP1R of a character sequence of a certain length, respectively; N is the number
of HL or HR; L is the length of character sequences.

The CV of a pair of adjacent subsequences is formulated as

CV(Sleft · Sright) = IV(Sleft)× IV(Sright)× LRV(Sleft · Sright) (9)

where the LRV is formulated as

LRV(Sleft · Sright) = (
H(SP1R(Sleft))×H(SP1L(Sright))

HRML1 ×HLML2
)x (10)

The superscript x is the exponent; The symbol · denotes that Sleft and Sright are two
adjacent sequences; L1 and L2 denote the lengths of character sequences in SP1R(Sleft)
and SP1L(Sright), respectively. Actually, L1 and L2 are equal to the lengths of Sleft + 1 and
Sright + 1, respectively. The division in LRV represents a Balancing process. As before,
the entropies of SP1s of character sequences of different lengths become comparable
with each other by using Balancing.

IV and LRV represent certainty and uncertainty of co-occurrence of two adjacent
character sequences, respectively. Their combination is CV. The exponent in LRV repre-
sents the weight of LRV in CV.
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2.2 Selection

Selection is the phase in which a maximization strategy is used to determine the best
segmentation of a character sequence.

For example, the character sequence ABC has six subsequences: A, B, C, AB, BC,
and ABC. Therefore, ABC can be divided into various pairs of adjacent subsequences,
as shown in Figure 3.

The process of Selection can be viewed as the sets of comparisons. Each set consists
of all comparisons between a character sequence itself and all pairs of adjacent subse-
quences of the character sequence. In Figure 3, the character sequence BC is compared
with the pair of adjacent subsequences B · C. If the CV of B · C is higher than the IV of
BC, BC will be segmented into B and C.

Processing the longer sequence is done in a similar manner. For example, ABC
has two adjacent subsequence pairs: A · BC and AB · C. Both BC and AB have their
own adjacent subsequence pairs B · C and A · B, respectively. Therefore, Selection must
process BC and AB before processing ABC. The IV of ABC, the CV of A · BC, and the
CV of AB · C are compared with each other after Selection finishes processing both BC
and AB. The one with the highest goodness value is the final choice.

We adopt a dynamic programming technique to limit the computational complexity
of the algorithm in Selection. Therefore, the algorithm takes polynomial time over the
length of the character sequence being processed.

2.2.1 The Primary Criterion and Secondary Criteria. The task of Selection is to maximize the
goodness value, which can be defined as

seg∗ = argmax
seg

E(seg) (11)

where seg denotes all possible segmentations of a character sequence, seg* denotes the
finally selected segmentation, and E denotes an evaluation.

Figure 3
The pairs of adjacent subsequences.
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For a character sequence and its pairs of adjacent subsequences, Selection is further
formulated as

S∗ = argmax
0≤ i≤N

E(Si) (12)

where

E(Si) =

{
IV(S0) i = 0,

CV(Si) 1 ≤ i ≤ N − 1.
(13)

S0 is the character sequence and N is its length; Si(1≤i≤N − 1) is the pair of adjacent
subsequences in S0, where the second subsequence starts at i. The evaluations for a
character sequence and a pair of adjacent subsequences are IV and CV, respectively.
The combination of IV and CV is the primary criterion in Selection.

Besides the primary criterion, it is necessary to provide a mechanism for making the
decision when the primary criterion cannot resolve it. For instance, when the IVs and
CVs being compared are equal to each other, other criteria are needed. LRV is used as a
secondary criterion in Selection:

E(Si) =

{
LRV(S0) = 1 i = 0,

LRV(Si) = LRV(Si.left · Si.right) 1 ≤ i ≤ N – 1.
(14)

Although the secondary criteria exist in Selection, their effects are not significant in
practice.

2.2.2 The Path of Selection. ESA records the paths of processes of Selection as shown in
Figure 4. The result of Selection can be viewed as a binary tree as shown in Figure 5.

2.3 Adjustment

Adjustment is the phase that updates the data. Specifically, it uses the result produced
by the previous Selection to update the data that will be used by the next Evaluation.
There are two issues to be settled:

1. What data can be updated after the previous Selection?

2. How can we use the updated data for the next Evaluation?

Figure 4
The path of Selection.
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Figure 5
The binary tree of Selection.

2.3.1 Updatable Data. Our idea is that the result of the previous Selection is based on
the overestimation of frequencies of some character sequences. For example, when the
character sequence X is selected as a word after Selection, the original frequencies of
X’s proper subsequences are considered as being overestimated because all of them
were regarded as potential words before the Selection. In other words, if X is selected
as a word, its proper subsequences will not continue to be regarded as potential words.
Therefore, the frequencies of these subsequences are reduced, and Adjustment can be
viewed as the corrections to the overestimated frequencies.

In our example, the character sequence ABC occurs twice in an input, as shown
in Figure 6. After Selection, one of the ABCs is selected as a word but not the other.
Therefore, the frequencies of all proper subsequences of the selected ABC are reduced
by 1 and those of the other ABC are not changed, as shown in Figure 7.

This process reminds us of Statistical Substring Reduction (SSR) (Zhang et al.
2003; Lü, Zhang, and Hu 2004), although the idea of SSR is not similar to ours. SSR
implies that the existence of a character sequence usually has a negative impact on
the independent existence of subsequences of this character sequence. If the frequency
of a subsequence is near to that of its supersequence, the subsequence will be re-
moved. Frequency of Substring with Reduction (FSR) (Zhao and Kit 2008a) is derived
from SSR.

2.3.2 Using Updated Data. The frequency of a character sequence (the F in IV) is the only
quantity to be changed. FM in IV, LRV, and others are not changed.

Figure 6
The initial frequencies of character sequences.
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Figure 7
The adjusted frequencies of character sequences.

For example, there are two character sequences: ABC and BBC. The initial records
are A(1), B(3), C(2), AB(1), BB(1), BC(2), ABC(1), and BBC(1), where the number in
parentheses is the F in IV. After Selection, ABC and BBC are segmented into AB C and
BB C, respectively. The subsequences of AB are A and B, and the subsequences of BB
are two Bs. Because of the idea of Adjustment, the Fs of these subsequences need to be
reduced. Therefore, the records become A(1 − 1 = 0), B(3 − 1 − 2 = 0), C(2), AB(1),
BB(1), BC(1), ABC(1), and BBC(1) after Adjustment.

2.4 Preprocessing Input Data

Sentences are the input data directly accepted by many approaches. The difference
between a sentence and a character sequence as discussed in this article is whether or
not punctuation is used as prior knowledge to segment text. Some approaches further
utilize encoding information. For example, non-Chinese characters such as digits and
Latin letters can be separated from Chinese characters so that they can be separately
processed.

In ESA, the length of a character sequence is limited for computational complexity.
Limiting the length of a character sequence is different from limiting that of a word. In
other words, ESA limits the length of the input but not that of the output. In practice,
the limitation has a negative impact on the segmentation accuracy of ESA.

2.4.1 Maximum Sequence Length. The time complexity of ESA is polynomial over the
length of the character sequence being processed. The preprocessing segments the
whole character sequence into multiple sequences within a length limit, and line breaks
are regarded as the only natural delimiters. If a character sequence is still longer than
the limited length, it will be further divided into two shorter sequences. The location of
segmentation (LoS) is determined by the formula

LoS(S) = argmax
0<i<L

LRV(s0i · s
i
L−i) (15)

where S denotes the character sequence to be divided, L is the length of S, i is the index
of the character in S, and s denotes the sequence after division. The superscript and the
subscript of s denote the start index and the length of s, respectively. If the length of s
exceeds the limit, s will be further divided.
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The algorithm of LoS uses LRV alone to segment character sequences before the
execution of the main algorithm of ESA. LRV alone is inferior to the main algorithm.
Therefore, limiting the input character sequence to a short length reduces the effective-
ness of the main algorithm.

One-character and two-character words are the most common for Chinese, but
words of more than five characters are very rare (Teahan et al. 2000). Therefore, Zhao
and Kit (2008a) limited the word length to two or seven in their test. In practice, limiting
the maximum word length usually has a positive impact on many approaches.

2.4.2 Encoding Information. There are two levels of encoding information that can be used
to improve the results:

1. Punctuation can be used to divide a character sequence into natural
sentences.

2. Different types of characters can be separately processed.

2.5 The Result Form

ESA can output the segmentation results in a hierarchical format. Figure 8 shows an
example.

The result in the hierarchical format cannot directly be evaluated by the Bakeoff
score script. Therefore, the hierarchical format will be changed to a format that looks
like A B C, where the symbol denotes a space character.

2.6 Summary

In this section, we briefly describe the whole algorithm of ESA and provide some
thoughts about it.

2.6.1 The Whole Algorithm in Brief. The implementation of ESA consists of four steps:

Step 1: Preprocessing.

Step 2: Evaluation and Selection.

Figure 8
The hierarchical form of a result.
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Step 3: Adjustment.

Step 4: Completion. When the current result of segmentation is the same as the previous
result, or ESA reaches a given number of iterations, ESA stops. Otherwise, ESA repeats
the process from Step 1.

Preprocessing has two steps:

Step 1: Segment a corpus into multiple character sequences. No character sequence
exceeds the limit of maximum length.

Step 2: The frequencies (F in IV) of all subsequences in every character sequence are
recorded. According to the frequencies, FM in IV and the other quantities in LRV are
calculated.

ESA integrates Evaluation and Selection into a recursive algorithm Segment:

Algorithm: Segment.

Input: An entry of data structure. The entry represents a character sequence S.

Output: None.

Comment: L denotes the length of S; FV denotes the final goodness value; FS denotes
the final segmentation; s[i][j] denotes the subsequence of S, where i and j denote the
start and end indices of s in S, respectively; and · denote the delimiter and linkage of
character sequences, respectively.

01: If S’s FV = 0 then
02: If L = 1 then
03: S’s FV← IV(S)
04: S’s FS← s[1][L]
05: Else
06: Max← IV(S)
07: Seg← s[1][L]
08: For i← 1 to L
09: Segment (s[1][i])
10: Segment (s[i][L])
11: CV← s[1][i]’s FV × s[i][L]’s FV × LRV(s[1][i]· s[i][L])
12: If Max < CV then
13: Max← CV
14: Seg← s[1][i]’s FS· · s[i][L]’s FS
15: End if
16: End for
17: S’s FV←Max
18: S’s FS← Seg
19: End if
20: End if

2.6.2 Discussion. IV is an exponential formula. The base is a ratio, which represents the
influence of a segment on the goodness of segmentation. The exponent is the length of
the segment, which means that each character in the segment has an equal influence on
the goodness.
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LRV is also an exponential formula. The base is the product of two ratios, which
represents the influence of the gap between two adjacent segments on the goodness of
segmentation. The exponent is the weight needed to harmonize the influences of IV and
LRV in CV.

CV is the combination of IV and LRV. The whole goodness of segmentation can
be viewed as nested CVs. For example, the character sequence ABC is segmented into
A B C. The whole goodness is equivalent to

CV(A · B · C) = IV(A)× CV(B · C)× LRV(A · BC) (16)

or

CV(A · B · C) = CV(A · B)× IV(C)× LRV(AB · C) (17)

Although the character sequence can possibly be segmented in a different order, the
whole goodness is equivalent to

CV(A · B · C) = IV(A)× IV(B)× IV(C)× LRV(A · BC)× LRV(AB · C) (18)

Therefore, the design of CV ensures the consistency of the goodness measurement
across different orders of segmentation.

By using the length as the exponent of IV, CV has a feature. For example, the
character sequence ABC can be segmented into A B C, AB C, A BC, and ABC. The
products of IVs in the nested CVs are

FA
FM1

× FB
FM1

×
FC
FM1

(19)

FAB
FM2

× FAB
FM2

×
FC
FM1

(20)

FA
FM1

×
FBC
FM2

×
FBC
FM2

(21)

FABC
FM3

×
FABC
FM3

×
FABC
FM3

(22)

No matter how it is segmented, the influence of each character is equally considered.
The idea of ESA is to introduce few manually assigned parameters when using the

unannotated corpora alone. The only parameter in ESA is the exponent in LRV, which
can be predicted with the empirical formulae.

We think that a completely unsupervised approach to word segmentation should
be tested with the closed criterion in Bakeoff. Furthermore, there are three reasons why
the approach should not depend on punctuation to segment sentences:

1. Although punctuation is easily identified with encoding information, it
cannot be identified when lacking such information.
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2. Segmenting sentences with punctuation is based on the assumption that a
language must have punctuation. In fact, some languages, such as ancient
Chinese, have no such symbols. This phenomenon even partly exists in
modern Chinese, which implies a lack of delimiters between words.

3. The completely unsupervised approach should have more abilities to
process unfamiliar languages, because this kind of approach is similar to
the infant language learner without prior knowledge such as lexicons,
annotated corpora, and character information. The completely
unsupervised approach should discover new knowledge instead of just
using it.

3. Experiment

The experiment uses the SIGHAN Bakeoff-2 data set that is publicly available on the
SIGHAN Web site (www.sighan.org). We tested ESA with various settings.

In this section, we describe the test settings, report experimental results, and discuss
those results. According to the experiment, we establish the empirical formulae to
predict the exponent in LRV.

3.1 Settings

We used four different settings to test ESA:

1. Punctuation and other encoding information are not used, and the
maximum length of character sequences is 30. The result with this setting
can be viewed as a baseline.

2. Punctuation and other encoding information are not used, and the
maximum length of character sequences is 10. The result with this setting
demonstrates that the limitation to the maximum length of character
sequences has a negative impact on ESA.

3. Punctuation is used to segment character sequences into sentences, and
the maximum length of character sequences is 30. The result with this
setting demonstrates that punctuation can significantly improve the
segmentation accuracy of ESA.

4. Both punctuation and other encoding information are used, and the
maximum length of character sequences is 30. The result with this setting
demonstrates that discriminating non-Chinese characters from Chinese
ones can further improve the accuracy.

A simple algorithm called character-as-word (CAW) (Palmer 1997) was used for
the baseline in the paper of Zhao and Kit (2008a). We believe there are two rea-
sons why CAW might be viewed as evidence of the effectiveness of unsupervised
approaches:

1. The unsupervised approaches are not comparable with supervised
ones in general, because the conventional criteria are the manual
segmentations known as gold standards. Gold standards, however,
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cannot be unified into a single standard (Fung and Wu 1994; Sproat et al.
1996).

2. The unsupervised approaches are not comparable with each other to
some extent. This is not only because the researchers carried out their
experiments on different corpora and with test settings, but also because
the different approaches may be adapted to different applications
(Sproat and Shih 2001; Sproat and Emerson 2003; Wu 2003; Gao et al.
2005).

Zhao (2009) even suggested that character-level analysis could replace word-level
analysis for Chinese. However, we think that making comparisons based on similar
corpora and settings with other approaches is necessary when regarding word segmen-
tation as an independent task.

3.2 Targets

There are eight corpora consisting of four training and four test corpora in the Bakeoff-2
data set. Because of the different sizes of the corpora and the different settings in the
experiment, the number of character sequences (N1) and nodes in trie (N2) produced
by ESA are also different, as shown in Table 1.

3.3 Results

The experimental results produced by ESA with the four different settings are shown
in Tables 2, 3, 4, and 5, respectively. X denotes the exponent in LRV; the numbers in
the column headings of the tables are the numbers of iterations; the bold F-measure is
almost the best; the asterisked number is the proper exponent.

Table 1
The scales of corpora.

Corpus Character Type Setting 1 Setting 2 Setting 3 Setting 4

CITYU test 67,689 N1 1,428,763 609,921 463,756 406,312
N2 1,308,964 491,328 363,120 312,151

PKU test 172,733 N1 4,431,621 1,640,688 1,248,317 1,093,046
N2 3,953,008 1,214,480 896,741 769,674

MSR test 184,355 N1 3,910,003 1,665,511 1,313,351 1,269,858
N2 3,462,762 1,227,640 946,220 907,226

AS test 197,681 N1 1,840,266 1,353,924 1,305,937 1,210,572
N2 1,477,908 993,669 992,100 912,221

PKU train 1,826,448 N1 47,565,891 17,430,107 13,227,039 12,721,709
N2 41,906,011 12,011,275 8,837,184 8,414,698

CITYU train 2,403,354 N1 50,633,595 21,654,982 17,152,484 15,065,762
N2 43,831,426 15,074,334 11,714,172 9,987,122

MSR train 4,050,469 N1 84,599,783 36,594,096 30,639,574 29,616,260
N2 71,293,182 23,936,279 20,164,516 19,183,186

AS train 8,368,050 N1 69,454,846 53,877,473 51,986,335 49,455,126
N2 46,782,170 31,499,015 32,641,248 30,788,602
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The results are monotone increasing and rapidly converging in most cases, un-
less the exponent considerably diverges from the proper value. The larger exponent
leads to more insertion errors, whereas the smaller one leads to more deletion er-
rors. On one hand, ESA segments a character sequence into more parts when we
increase the exponent in LRV (the weight of LRV in CV), which can produce fewer
deletion errors. On the other hand, the character sequence is segmented into fewer parts

Table 2
The results of setting 1 (Punctuation and other encoding information are not used; the maximum
length is 30).

X 1 2 3 4 5 6 7 8 9 10

CITYU test 0.5* .613 .679 .702 .713 .718 .720 .721 .722 .723 .723
1.0 .586 .647 .669 .683 .688 .693 .695 .696 .697 .697
1.5 .557 .613 .629 .637 .643 .645 .647 .649 .649 .650
2.0 .532 .572 .585 .590 .592 .594 .594 .595 .595 .595

PKU test 0.5 .666 .722 .737 .743 .745 .744 .744 .744 .743 .742
1.0* .648 .713 .732 .740 .745 .747 .748 .749 .750 .750
1.5 .625 .687 .713 .724 .725 .727 .728 .729 .730 .730
2.0 .607 .665 .678 .687 .691 .693 .693 .694 .694 .695

MSR test 0.5 .672 .739 .755 .759 .759 .758 .758 .758 .758 .757
0.9* .658 .725 .749 .757 .762 .764 .763 .764 .764 .764
1.0 .654 .721 .743 .754 .758 .760 .761 .761 .762 .762
1.5 .629 .697 .716 .723 .726 .729 .731 .732 .732 .732
2.0 .606 .668 .686 .694 .697 .699 .699 .700 .700 .700

AS test 0.5 .664 .725 .747 .757 .758 .760 .761 .762 .761 .762
0.6* .661 .725 .743 .754 .759 .761 .762 .763 .764 .764
1.0 .640 .704 .729 .739 .744 .747 .748 .749 .749 .749
1.5 .604 .663 .690 .699 .705 .709 .710 .710 .711 .711
2.0 .579 .623 .643 .650 .653 .655 .656 .656 .656 .656

PKU train 0.5 .686 .714 .712 .710 .706 .705 .703 .703 .702 .702
1.0 .690 .729 .733 .734 .734 .733 .733 .732 .732 .732
1.5 .688 .736 .747 .748 .750 .751 .752 .752 .753 .753
1.8* .685 .740 .755 .758 .760 .760 .760 .761 .761 .761
2.0 .682 .734 .750 .755 .758 .759 .759 .759 .759 .760

CITYU train 0.5 .681 .718 .719 .716 .713 .713 .711 .712 .711 .711
1.0 .683 .728 .737 .739 .739 .739 .738 .738 .738 .738
1.5 .678 .732 .746 .751 .754 .754 .755 .756 .757 .757
1.7* .676 .732 .747 .756 .759 .761 .761 .763 .763 .764
2.0 .666 .727 .745 .753 .756 .758 .759 .761 .761 .762

MSR Train 0.5 .687 .701 .690 .684 .681 .680 .678 .678 .677 .678
1.0 .696 .722 .720 .717 .714 .713 .712 .712 .711 .711
1.5 .695 .735 .740 .742 .742 .742 .742 .742 .742 .742
2.0 .689 .740 .753 .757 .758 .759 .760 .760 .760 .761
2.5* .683 .736 .752 .758 .760 .761 .762 .763 .763 .763

AS Train 0.5 .670 .659 .647 .641 .639 .638 .637 .637 .637 .637
1.0 .685 .688 .680 .676 .673 .673 .672 .672 .672 .672
1.5 .698 .713 .709 .706 .704 .704 .704 .703 .703 .703
2.0 .701 .726 .731 .733 .734 .734 .734 .735 .734 .734
2.8* .699 .739 .750 .753 .755 .754 .755 .755 .755 .756

Column headings represent the number of iterations. Boldfaced results represent almost the best F-measure.
* = the proper exponent.
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Table 3
The results of setting 2 (Punctuation and other encoding information are not used; the maximum
length is 10).

X 1 2 3 4 5 6 7 8 9 10

CITYU test 0.35* .614 .676 .694 .701 .705 .704 .705 .706 .706 .706
0.5 .607 .667 .690 .697 .699 .701 .702 .703 .702 .703
1.0 .577 .636 .656 .669 .674 .678 .679 .680 .680 .681
1.5 .552 .601 .617 .624 .629 .630 .632 .632 .633 .633
2.0 .525 .564 .574 .577 .578 .579 .580 .580 .580 .581

PKU test 0.5 .662 .715 .731 .737 .738 .739 .739 .738 .738 .738
0.65* .655 .714 .730 .734 .737 .737 .739 .738 .739 .739
1.0 .642 .702 .721 .728 .732 .734 .735 .736 .737 .737
1.5 .619 .674 .696 .707 .711 .713 .714 .715 .715 .715
2.0 .598 .648 .663 .667 .671 .673 .674 .675 .676 .676

MSR test 0.5 .668 .733 .748 .753 .753 .754 .754 .753 .753 .753
0.65* .662 .729 .745 .751 .753 .754 .754 .754 .754 .755
1.0 .649 .712 .731 .739 .744 .746 .747 .748 .749 .749
1.5 .622 .686 .706 .712 .716 .718 .719 .719 .719 .720
2.0 .598 .656 .674 .682 .684 .687 .687 .688 .688 .688

AS test 0.45* .659 .718 .736 .744 .747 .749 .750 .751 .751 .752
0.5 .656 .716 .734 .742 .745 .747 .748 .749 .749 .750
1.0 .633 .696 .717 .725 .729 .731 .731 .732 .732 .732
1.5 .598 .652 .676 .686 .690 .693 .694 .695 .695 .695
2.0 .574 .615 .631 .639 .642 .642 .643 .643 .643 .643

PKU train 0.5 .700 .734 .737 .737 .734 .735 .733 .734 .733 .734
1.0 .696 .737 .747 .749 .749 .750 .750 .750 .750 .750
1.5* .686 .736 .748 .75 .754 .753 .754 .754 .754 .754
2.0 .677 .728 .743 .747 .750 .749 .751 .750 .752 .750

CITYU train 0.5 .695 .741 .744 .746 .743 .745 .742 .744 .742 .744
1.0 .689 .739 .750 .755 .755 .756 .755 .757 .755 .757
1.5* .679 .733 .746 .755 .756 .760 .759 .761 .760 .761
2.0 .663 .723 .740 .747 .748 .752 .751 .753 .752 .753

MSR Train 0.5 .708 .735 .731 .729 .726 .726 .724 .725 .724 .725
1.0 .706 .743 .747 .748 .746 .747 .746 .747 .746 .747
1.5 .698 .744 .753 .756 .756 .757 .756 .758 .757 .758
1.9* .690 .740 .751 .757 .757 .760 .759 .760 .759 .760
2.0 .687 .738 .750 .756 .756 .759 .758 .759 .758 .759

AS Train 0.5 .694 .697 .691 .688 .686 .686 .685 .685 .685 .685
1.0 .702 .716 .714 .713 .712 .712 .712 .712 .712 .712
1.5 .706 .730 .732 .733 .733 .733 .733 .733 .733 .733
2.0 .704 .732 .739 .742 .743 .744 .744 .745 .745 .745
2.8* .694 .733 .745 .748 .751 .752 .752 .752 .752 .752

Column headings represent the number of iterations. Boldfaced results represent almost the best F-measure.
* = the proper exponent.

after a number of iterations, which can produce more deletion errors. ESA produced
too many deletion errors with an excessively low weight of LRV (such as 0.5 in the
test of the AS training corpus), which is why the iteration finally produced a worse
result.

Increasing the maximum length of input character sequences magnifies the effect
of the main algorithm (CV) and reduces that of preprocessing (LRV alone). In prac-
tice, the results are improved when increasing the maximum length from 10 to 30
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Table 4
The results of setting 3 (Punctuation is used; the maximum length is 30).

X 1 2 3 4 5 6 7 8 9 10

CITYU test 0.3* .627 .701 .726 .739 .744 .747 .748 .749 .748 .749
0.5 .615 .688 .714 .723 .729 .734 .737 .738 .738 .739
1.0 .587 .649 .673 .683 .689 .692 .696 .697 .698 .699
1.5 .553 .606 .629 .639 .642 .644 .645 .645 .645 .646
2.0 .528 .570 .583 .589 .590 .591 .591 .591 .591 .591

PKU test 0.5* .673 .739 .759 .767 .771 .774 .774 .774 .774 .774
1.0 .651 .719 .741 .751 .756 .759 .760 .761 .761 .762
1.5 .623 .687 .713 .724 .731 .735 .736 .737 .737 .737
2.0 .602 .657 .672 .678 .680 .681 .682 .683 .683 .683

MSR test 0.5* .680 .753 .773 .779 .781 .782 .783 .783 .783 .784
1.0 .656 .726 .749 .759 .766 .769 .771 .772 .772 .772
1.5 .627 .693 .716 .724 .728 .730 .731 .732 .732 .732
2.0 .600 .658 .681 .686 .690 .692 .694 .695 .695 .695

AS test 0.3* .673 .739 .762 .773 .776 .778 .778 .779 .779 .779
0.5 .664 .732 .753 .764 .770 .773 .775 .776 .776 .777
1.0 .632 .699 .725 .737 .742 .745 .746 .747 .748 .748
1.5 .598 .658 .678 .690 .695 .696 .697 .697 .697 .698
2.0 .575 .619 .633 .641 .644 .645 .646 .646 .646 .646

PKU train 0.5 .736 .777 .783 .783 .782 .782 .781 .781 .781 .781
1.0 .725 .776 .788 .791 .793 .794 .794 .794 .794 .794
1.1* .721 .775 .787 .792 .794 .794 .794 .795 .795 .795
1.5 .710 .767 .782 .788 .791 .792 .792 .792 .793 .793
2.0 .694 .754 .772 .779 .781 .783 .783 .784 .784 .784

CITYU train 0.5 .740 .790 .797 .797 .796 .796 .795 .795 .795 .795
1.0 .732 .788 .802 .806 .808 .808 .808 .808 .808 .808
1.4* .719 .782 .800 .808 .812 .814 .815 .815 .816 .816
1.5 .714 .778 .797 .806 .810 .812 .813 .814 .815 .815
2.0 .693 .759 .781 .790 .794 .796 .797 .798 .798 .798

MSR Train 0.5 .744 .775 .774 .771 .770 .769 .768 .768 .768 .768
1.0 .741 .782 .788 .788 .788 .788 .788 .787 .787 .787
1.5 .728 .781 .793 .796 .797 .798 .798 .799 .799 .799
1.6* .728 .782 .795 .799 .800 .801 .801 .802 .802 .802
2.0 .709 .770 .786 .792 .794 .796 .796 .797 .797 .797

AS Train 0.5 .728 .738 .735 .732 .730 .730 .729 .729 .729 .729
1.0 .732 .752 .753 .752 .752 .751 .751 .751 .751 .751
1.5 .732 .762 .766 .768 .769 .769 .769 .769 .769 .769
2.0 .729 .764 .774 .776 .778 .779 .779 .780 .780 .780
2.2* .726 .763 .772 .777 .779 .781 .782 .782 .782 .782

Column headings represent the number of iterations. Boldfaced results represent almost the best F-measure.
* = the proper exponent.

as shown in Figure 9. Therefore, the limitation on the maximum length really makes
a negative impact on ESA. However, when the maximum length of input character
sequences is further increased to 50 or 100, the results are not very different, as shown in
Table 6.

Although we insist that a completely unsupervised approach should not rely on
encoding information, punctuation and other encoding information are effective in
improving segmentation results, as shown in Figure 9.
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Table 5
The results of setting 4 (Punctuation and other encoding information are used; the maximum
length is 30).

X 1 2 3 4 5 6 7 8 9 10

CITYU test 0.3* .635 .709 .735 .748 .754 .757 .758 .759 .760 .760
0.5 .623 .695 .722 .732 .738 .743 .744 .745 .746 .747
1.0 .596 .656 .682 .693 .699 .702 .705 .706 .707 .707
1.5 .561 .615 .637 .644 .649 .650 .650 .650 .650 .650
2.0 .538 .579 .591 .597 .600 .600 .601 .601 .601 .601

PKU test 0.5* .682 .746 .766 .773 .776 .778 .778 .778 .778 .778
1.0 .659 .728 .749 .759 .764 .766 .768 .769 .770 .770
1.5 .632 .696 .720 .732 .737 .740 .741 .742 .742 .742
2.0 .610 .666 .683 .688 .691 .693 .693 .694 .694 .694

MSR test 0.5* .693 .770 .790 .797 .800 .800 .800 .800 .801 .801
1.0 .670 .741 .767 .777 .783 .786 .788 .789 .789 .789
1.5 .640 .708 .731 .740 .745 .748 .750 .750 .751 .751
2.0 .614 .675 .699 .704 .708 .710 .712 .712 .712 .713

AS test 0.3* .682 .747 .769 .779 .783 .783 .784 .785 .785 .785
0.5 .673 .740 .759 .771 .777 .780 .782 .784 .784 .784
1.0 .641 .708 .733 .744 .749 .751 .753 .754 .754 .754
1.5 .606 .666 .686 .698 .703 .704 .705 .705 .705 .705
2.0 .584 .627 .642 .649 .652 .653 .654 .654 .654 .655

PKU train 0.5 .743 .782 .788 .787 .786 .785 .785 .785 .784 .784
1.0 .732 .781 .792 .795 .797 .798 .798 .797 .798 .798
1.2* .726 .777 .791 .795 .797 .798 .799 .799 .800 .800
1.5 .718 .771 .786 .792 .795 .796 .797 .797 .798 .798
2.0 .702 .760 .777 .783 .785 .786 .787 .787 .787 .787

CITYU train 0.5 .750 .803 .812 .813 .812 .811 .811 .811 .811 .811
1.0 .740 .799 .814 .819 .821 .822 .822 .822 .822 .822
1.4* .728 .792 .811 .820 .824 .826 .827 .828 .829 .829
1.5 .723 .787 .807 .816 .821 .823 .824 .825 .825 .826
2.0 .701 .768 .791 .800 .804 .807 .808 .809 .809 .809

MSR Train 0.5 .760 .792 .790 .787 .785 .784 .784 .784 .784 .784
1.0 .758 .799 .805 .805 .805 .805 .804 .804 .804 .804
1.5 .745 .799 .811 .814 .815 .815 .816 .816 .816 .816
1.6* .742 .797 .810 .814 .816 .817 .817 .818 .818 .818
2.0 .725 .787 .803 .809 .812 .813 .814 .814 .814 .814

AS Train 0.5 .732 .742 .738 .735 .733 .733 .732 .732 .732 .732
1.0 .736 .755 .756 .755 .755 .755 .755 .754 .754 .754
1.5 .736 .765 .770 .771 .772 .772 .772 .772 .772 .772
2.0 .734 .767 .777 .780 .781 .782 .783 .783 .784 .784
2.2* .730 .767 .776 .781 .783 .785 .785 .785 .785 .786

Column headings represent the number of iterations. Boldfaced results represent almost the best F-measure.
* = the proper exponent.

It is noteworthy that there is a strong correlation between the proper exponent in
LRV and the scale of the corpus (N1 and N2), as shown in Figure 10. According to
the simple regression analysis, the proper exponents can be approximately predicted.
The empirical formulae for the prediction are shown in Table 7. The predictions can-
not perfectly fit the proper exponents, but they can be used to produce acceptable
results.
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Figure 9
The difference between the results of four settings.

3.4 Discussion

In this section, we discuss the convergence of segmentation results and computational
complexity of ESA.

3.4.1 Convergence. In this section, we discuss the convergence of ESA.

Definition 1
For a given character sequence A of length N, there is a set I of all possible segmen-
tations. The seg denotes the member of I (i.e., seg ∈ I). There is a sequence S of which
each item si is a subset of I: I =

⋃N − 1
0 si, si ∩ sj = ∅, i ∈ [0,N − 1], j ∈ [0,N − 1], and i �=j.

Therefore,

si = {segk|The amount of delimitors of segk is i;

segk ∈ I, k ∈ [1,

(
N − 1

i

)
]}, i ∈ [0,N − 1] (23)

Table 6
The results brought by different maximum lengths.

Corpus 10 30 50 100

CITYU test .706 .723 .726 .726
PKU test .739 .750 .750 .749
MSR test .755 .764 .765 .764
AS test .752 .764 .765 .765
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Figure 10
The correlation between the scales and the proper exponents.

For example, the set I consists of all possible segmentations of the character sequence
ABC, namely I = {A B C, AB C, A BC, ABC}, where is a delimiter. There are three
items s0, s1, and s2 in the sequence S. Specifically, s0 = {ABC}, s1 = {AB C, A BC},
and s2 = {A B C}, where the subscript is the number of delimiters contained by the

Table 7
The empirical formulae for the prediction (linear model).

Setting Equation df R2

1 P = 0.0699×N1×N2−0.8−0.7766 6 .973
2 P = 1.2056×N1×N2−0.94−3.132 6 .982
3 P = 0.0005×N1×N2−0.55+0.0696 6 .986
4 P = 0.0023×N1×N2−0.63−0.0586 6 .985

In all cases, significance = .000 (i.e., p < .001)
P denotes the proper exponent in LRV.
R2 is the coefficient of determination.
df is the degree of freedom.
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segmentation in the item. The subscripts are non-negative integers and they are never
equal to each other. Therefore, S can also be viewed as a finite sequence of non-negative
integers (i.e., the subscripts 0, 1, 2).

Definition 2
According to Definition 1, there are four types of changes from the current segmentation
to the next one, as shown in Figure 11:

Change 1 denotes that the number of delimiters in the next segmentation
is smaller than that in the current one.

Change 2 denotes that the number of delimiters in the next segmentation
is larger than that in the current one.

Change 3a denotes that the number of delimiters in the next segmentation
is equal to that in the current one, and the locations of delimiters in the
next segmentation are identical to those in the current one.

Change 3b denotes that the number of delimiters in the next segmentation
is equal to that in the current one, but the locations of delimiters in the
next segmentation are different from those in the current one.

Theorem 1
The main algorithm of ESA is a monotone increasing function of F (the F in IV).

Proof
In ESA, the goodness evaluation E of segmentations of a character sequence X is

E =
∏

CV =
∏
M1

IV×
∏
M2

LRV (24)

Figure 11
The four types of changes.
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where

∏
M1

IV =
(

F
FM

)N
(25)

M1 and M2 are the numbers of segments and delimiters in the segmentation, respec-
tively. N is the length of X. LRV, FM, and N are constant for a given X. M1 and M2 are
also constant for a given segmentation of X. Therefore, F is the only variable and E can
be viewed as a function of F, that is,

E = C× FN (26)

Both C and N are constant; meanwhile, C, N, and F are positive integers. Consequently,
E is a monotone increasing function of F. �

Theorem 2
For an input character sequence of finite length, the segmentation results produced by
ESA converge.

Proof
When si and si+1 are the selected result and the discarded result in the current segmen-
tation of X respectively, the goodness value of si is larger than that of si+1, that is, E(si) >

E(si+1). Additionally, the number of delimiters in si+1 is larger than that in si. Adjustment
in ESA ensures that the frequencies of segments in the selected result are not changed,
and the frequencies of all proper subsequences of the segments are reduced. According
to Theorem 1, E(si) > E(si+1) is true in the next segmentation. Therefore, change 2 in
Definition 2 cannot exist.

For example, the selected result in the current segmentation of a character sequence
ABC is AB C. Therefore, E(AB C) > E(A B C) is true in the current segmentation. The
frequencies of subsequences A and B are reduced by 1, whereas those of segments
AB and C are not changed. According to Theorem 1, E(AB C) > E(A B C) is true in
the next segmentation. Therefore, the selected result in the next segmentation cannot
be A B C.

The selected results that have the same number of delimiters are regarded as the
same segmentation, which means that the results with changes 3a or 3b are viewed
as unchanged results by ESA. Therefore, the results produced by ESA are monotone
decreasing on the sequence S defined by Definition 1, which means that there are only
changes 1 and 3 in ESA. Additionally, S can be viewed as a finite sequence of non-
negative integers, which means that S can also be viewed as a finite sequence of real
numbers with a lower bound. According to the monotone convergence theorem, the
successive results produced by ESA converge. �

The experimental results support the conclusion of convergence. ESA approxi-
mately converged after five iterations in all cases as shown in Figure 12. Although we
cannot prove that the results always converge to the optimum F-measure, ESA ensures
that the F-measure is monotone increasing in most cases.

Otherwise, we could head in another direction to explain the convergence: If the
iterative process of ESA can be viewed as an EM type, the property of EM will be borne
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Figure 12
Convergence of results.

by ESA, which means that ESA theoretically can converge (Dempster, Laird, and Rubin
1977; Wu 1983).

3.4.2 Complexity. The core algorithm, Segment, is implemented with dynamic pro-
gramming. Each character sequence is only processed once. The total number of
processes is N×(N+1)

2 , where N is the number of characters in the character sequence.
In detail, each character sequence is compared N − 1 times and is calculated N times
including 1 IV and N − 1 CVs, which means that the growth rate is O(N2). Further
analyzing the algorithm, the total number of comparisons is

N−1∑
k=1

(N− k)× k = N
N−1∑
k=1

k−
N−1∑
k=1

k2

=
N2(N− 1)

2
−

N(N− 1)(2N− 1)
6

= N3 −N
6

(27)
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and the total number of calculations is

N∑
k=1

(N− k + 1)× k = (N + 1)
N∑

k=1

k−
N∑

k=1

k2

=
N(N + 1)2

2
−

N(N + 1)(2N + 1)
6

= N3 + 3N2 + 2N
6

(28)

Therefore, the time complexity is O(N3) in the worst case.
For an iterative process, the total complexity is the product of the number of itera-

tions and the complexity per iteration. For example, the complexity of Nested Pitman-
Yor Language Model (NPYLM) (Mochihashi, Yamada, and Ueda 2009) is O(N×L2) for
bigrams, where N is the length of a character sequence and L is the maximum word
length accepted. Therefore, the time complexity of NPYLM is O(N3) when the length
of the character sequence and the maximum word length are equal to each other. In
addition, NPYLM approximately converges around 50 iterations in the experiment
reported, whereas ESA converges around five iterations in our experiment. Therefore,
ESA seems to be faster.

In practice, the time complexity of ESA is not greater than O(N2), as shown in
Figure 13, where N is the maximum length of input character sequences. The ESA
implementation is a single thread program, and we run it on an AMD Athlon64 system
at 2.61GHz.

4. Comparison

In this section, we briefly describe some approaches to word segmentation and compare
them with ESA. We mainly concentrate on unsupervised approaches because of the
motivation for our study.

4.1 Descriptive Comparison

A statistical approach was proposed by Teahan et al. (2000) (TH), which is based on
the partial matching (PPM) symbol-wise compression scheme. The approach consists of
multiple order models and an escape strategy that is used to transition from the higher
order model to the lower one. The approach calculates the escape probabilities and the
probabilities of successive characters according to the training corpus that is manually
segmented. Therefore, TH is a supervised approach.

Iterative Word Segmentation and Likelihood Ratio Ranking (IWSLRR) (Chang and
Su 1997) is an iterative process that uses both certainty and uncertainty information
(MI and entropy, respectively). The approach segments words according to an aug-
mented dictionary and adds potential words to the dictionary. The program consists
of a segmentation module and a filtering module. The augmented dictionary consists
of a system dictionary and the potential words. The system dictionary stores the known
words given as prior knowledge. The potential words are produced by merging and
filtering. MI and entropy are combined by Gaussian mixture in the filtering algorithm.
The filtering algorithm uses a threshold to make the choice for the potential words. In
Chang and Su (1997), the system dictionary was the combination of two dictionaries.
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Figure 13
The time complexity in practice (4 samples: 10, 30, 50, and 100).

In addition, their approach extracted the potential words from unannotated corpora.
Therefore, IWSLRR is semi-supervised. Whereas ESA is completely unsupervised, both
IWSLRR and ESA use the combination of certainty and uncertainty. MI and entropy
are the measures of two kinds of information in IWSLRR, whereas ESA uses IV and
LRV. ESA directly multiplies IV and LRV to combine them, unlike IWSLRR, which uses
Gaussian mixture.

Description Length Gain (DLG) (Kit and Wilks 1999) can be viewed as a compres-
sion algorithm. The algorithm finds the best substitutes for certain sequences to reduce
the description length calculated by the encoding algorithms. The DLG value is negative
when replacing the one-character sequence. Therefore DLG cannot uniformly process
words of different lengths. That is to say, DLG needs an additional strategy to process
one-character words, whereas ESA uniformly processes words of different lengths.

TONGO (Threshold and maximum for n-grams that overlap) (Ando and Lee 2000,
2003) counts non-straddling strings on two sides of potential boundaries and straddling
strings containing the potential boundaries. To process words of different lengths, the al-
gorithm compares the two types of strings of the same length with each other. The sum
of goodness values produced from the comparisons is called the “total vote.” If the
“total vote” is the local maximum or exceeds a threshold, the location of the boundary
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will be determined. The algorithm uses held-out data sets to estimate the maximum
order of n-grams and the threshold. The held-out data sets are manually annotated.
Therefore, TONGO is semi-supervised. The non-straddling and straddling strings can
be viewed as uncertainty and certainty, respectively. In addition, the “total vote” is the
strategy used to combine the two kinds of information. Therefore, the similarities and
differences between ESA and TONGO are similar to those between ESA and IWSLRR.

The Self-Supervised (SS) (Peng and Schuurmans 2001) approach has two parts:

1. Use EM to establish a core lexicon and a candidate lexicon. The selected
word candidates move from the candidate lexicon to the core lexicon,
which is termed forward selection. The selected word candidates move
from the core lexicon to the candidate lexicon, which is termed backward
selection. The two kinds of selection are made by a self-improving
algorithm. The algorithm is based on the changes of F-measures evaluated
by validation corpora.

2. Use MI to split long words in the lexicon.

The pruning algorithm uses two thresholds that are manually assigned, and the vali-
dation corpus is manually annotated. Therefore, SS is semi-supervised. The word can-
didates represent certainty and MI is used to measure uncertainty. These two kinds of
information are independently considered by SS, whereas ESA uses a different method
to combine them.

Voting Experts (VE) (Cohen, Heeringa, and Adams 2002; Cohen, Adams, and
Heeringa 2007) uses logarithm frequency and boundary entropy. Two independent
voting experts are based on the two kinds of information, respectively. VE uses a local
maximum strategy in a window. The maximum window size limits the word length.
To process words of different lengths, VE standardizes frequencies and boundary en-
tropies. A threshold is used to make the final decision on segmentation. VE indepen-
dently processes the two kinds of information, whereas ESA combines them in CV.

Accessor Variety (AV) (Feng et al. 2004a, 2004b) uses uncertainty between a string
and its adjacent characters to assess the string’s independence of its context. The counts
of right and left adjacent characters are called right and left AV, respectively. The AV
of the string is the minimum between the right and left AV. The algorithm uses a local
maximum strategy. It uses a threshold to process short words, especially one-character
words. Several functions are provided to balance words of different lengths. The AV
value is similar to H(SP1) in ESA.

Branching Entropy (BE) (Tanaka-Ishii 2005; Jin and Tanaka-Ishii 2006) is based on
a law, namely: The uncertainty of tokens coming after a long character sequence must
be lower than that coming after a short character sequence when the long sequence is
a supersequence of the short sequence. If the law is broken, there must be boundaries.
Specifically, the algorithm has three rules to determine the location of boundaries:

1. The entropy of the location is the local maxima.

2. The entropy of the location is greater than that of the previous location in
the same sequence and the difference of the two entropies is greater than a
given threshold.

3. The entropy of the location is larger than a given threshold.

BE only uses uncertainty information.
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Nested Pitman-Yor Language Model (NPYLM) (Mochihashi, Yamada, and Ueda
2009) is a Hierarchical Pitman-Yor Language Model (HPYLM) (Teh 2006a, 2006b). The
base measure of the HPYLM is also a HPYLM. Specifically, NPYLM uses a character
HPYLM as the base measure of a word HPYLM. To process words of different lengths,
NPYLM uses Poisson distribution to correct the base measure of the character HPYLM.
The parameter λ of the Poisson distribution is a variable determined by specific lan-
guage and word types. In detail, the λ is estimated by a Gamma distribution with
two hyperparameters assigned manually. It is noteworthy that the F-measures of this
approach were higher than 0.8 on two corpora of Bakeoff-2.

Most approaches use certainty and uncertainty information. Some use only one
of them, such as AV and BE. Others use both of them, such as IWSLRR, TONGO, SS,
VE, and ESA. The combination of certainty and uncertainty is necessary for the latter
approaches, though the specific strategies of combination are different in each approach.

Seeking the maxima and using thresholds are two strategies adopted to make a final
decision on segmentation. All of the approaches use either the local maximum strategy,
the global strategy, or both. Their difference lies in whether or not they use thresholds.
Using thresholds involves more human effort and introduces random factors because
of differences in each corpus. ESA avoids using thresholds so that it can be applied to
different corpora without much adjustment.

Many approaches have their own strategies to process words of different lengths:

1. The Poisson distribution in NPYLM.

2. Pruning in SS.

3. The restriction on the order of n-gram in TONGO.

4. Standardizing in VE.

5. Several functions and thresholds in AV.

6. Ignoring one-character words in DLG.

7. Merging and filtering in IWSLRR.

8. Balancing in ESA.

Some approaches adopt an iterative process, such as NPYLM, SS, IWSLRR, and
ESA. The iterative process can often improve the accuracy of an unsupervised approach
(Chang and Su 1997). In practice, ESA greatly improves its segmentation results by
using an iterative process.

4.2 Quantitative Comparison

In this section, we compare the performance of ESA with that of other approaches,
which we can divide into two categories:

1. Unsupervised approaches. NPYLM, AV, BE, and DLG were tested on
Bakeoff data sets, and therefore ESA can be directly compared with them.
VE was not evaluated on a Bakeoff data set, and therefore we compare
ESA with it on a similar scale and setting.

2. Semi-supervised and supervised approaches. We compare ESA with
IWSLRR, SS, TONGO, and TH on similar scales and settings.
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Mochihashi, Yamada, and Ueda (2009) trained NPYLM on Bakeoff-2 training data
and tested it on Bakeoff-2 test data, which means that the statistical information of the
training and test data was used together by NPYLM. Therefore, we evaluate ESA on the
merged corpora to compare with NPYLM. Specifically, we merge the test corpora with
the corresponding training ones. For example, the CITYU test corpus is added to the end
of the CITYU training corpus as a single corpus. NPYLM considered specific language
and word types. Therefore, we use setting 4 to test ESA, as shown in Table 8. In addition,
we cite the best and worst F-measures of supervised approaches in the Bakeoff-2 closed
test (Emerson 2005) for comparison in Table 8.

Zhao and Kit (2008a) tested AV, BE, and DLG with both the training and test data of
Bakeoff-3 to extract word candidates. Therefore, we evaluate ESA on merged corpora.
Zhao and Kit claimed that the approaches were tested without any prior knowledge.
Therefore, we use setting 1 to test ESA, as shown in Table 9. In addition, we cite the best
and worst F-measures of supervised approaches in the Bakeoff-3 closed test (Levow
2006) for comparison in Table 9.

In Tables 8 and 9, there are two different evaluations: E1 and E2. ESA segments the
merged corpora in both of them. The part of a segmentation result belonging to the
original test corpus is evaluated alone in E1, whereas the whole of the segmentation
result is evaluated in E2.

VE was evaluated on Guo Jin’s Mandarin Chinese PH corpus (Cohen, Heeringa,
and Adams 2002; Cohen, Adams, and Heeringa 2007). When the average length of

Table 8
The comparison between NPYLM and ESA.

CITYU MSR

NPYLM bigram .824 .802
NPYLM trigram .817 .807
ESA E1 .828 .819
ESA E2 .804 .831
Worst Closed .759 .896
Best Closed .943 .966

The exponent in LRV 1.4 1.7

Table 9
The comparison between DLG, AV, BE, and ESA.

CKIP(AS) CITYU UPUC(CTB) MSRA

DLG .655 .659 .632 .655
AV .630 .650 .618 .638
BE .629 .649 .618 .638
DLG&AV .663 .692 .658 .667
DLG&BE .650 .689 .650 .656
ESA E1 .752 .757 .770 .760
ESA E2 .748 .764 .783 .779
Worst Closed .710 .589 .818 .819
Best Closed .958 .972 .933 .963

The exponent in LRV 2.8 1.8 1.4 1.9

450



Wang et al. A New Unsupervised Approach to Word Segmentation

words (VE1) was given, the F-measure of VE was 0.77. However, the F-measure was
0.57 without a given length (VE2). Because the scale of the PH corpus is relatively small
(19,163 characters), we use the arithmetic mean of F-measures of four Bakeoff-2 test
corpora, whose scales are also relatively small, to compare with VE. The window size
of VE was six and the punctuation of the corpus was removed in their experiment.
Therefore, we use the result of setting 3 to compare with VE, as shown in Table 10.

We use the result of setting 4 to compare both semi-supervised and supervised ap-
proaches: IWSLRR (Chang and Su 1997), SS (Peng and Schuurmans 2001), and TONGO
(Ando and Lee 2000, 2003) are semi-supervised; TH (Teahan et al. 2000) is supervised.
These four approaches used relatively large corpora to train and test, and therefore we
use the arithmetic mean of F-measures of four Bakeoff-2 training corpora to compare
with them, as shown in Table 11.

The system dictionary in the tests of IWSLRR was the combination of the Academia
Sinica dictionary (CKIP 90) and the BDC electronic dictionary (BDC 93). The unanno-
tated Chinese corpus used by IWSLRR contained 311,591 sentences (about 1,670,000
words, a relatively large scale), which came from the China Times Daily News. B, T, and
Q denote bigrams, trigrams, and quadragrams (i.e., words of 2, 3, and 4 characters),
respectively. The result of IWSLRR was achieved after 21 iterations.

SS used segmented text as validation data. The training corpus had 90M characters,
which contained one year of the People’s Daily news service stories. The test corpus was
the Chinese Tree bank from LDC (1M characters), which contained 325 articles from the
Xinhua newswire. The maximum length of words in the test of SS was four.

TONGO used segmented text as held-out data. The corpus had 79,326,406 char-
acters, which came from the 1993 Nikkei Japanese newswire. The maximum order of
n-grams in the test of TONGO was six. However, Ando and Lee (2000, 2003) did not
directly present specific F-measures. The F-measure of TONGO was approximately
0.816 in their charts.

TH is typically supervised, and therefore we estimate the accuracy of TH on cross-
corpora to compare with ESA. According to the results presented in Teahan et al. (2000),
we establish the correlation between error rate and F-measure by using simple regres-
sion analysis. The corpora used by TH were Guo Jin’s Mandarin Chinese PH corpus
containing about 1M words and the Rocling Standard Segmentation Corpus containing
about 2M words. L and P in the table denote the estimations of a linear regression
model (R2 = 0.905) and a second order polynomial model (R2 = 0.95), respectively.
T1 denotes training with the PH corpus and testing with the Rocling corpus, and T2
denotes training with the Rocling corpus and testing with the PH corpus.

Table 10
The comparison between VE and ESA.

VE1 VE2 ESA

F-measure .770 .570 .781

Table 11
The comparison between IWSLRR(I), SS(S), TONGO(O), TH(T), and ESA.

I-B I-T I-Q S O T1-L T1-P T2-L T2-P ESA

F-measure .761 .536 .703 .742 .816 .805 .637 .750 .419 .808
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5. Conclusion

This article proposes ESA, an unsupervised approach to word segmentation and
demonstrates its effectiveness on Chinese corpora. ESA has no thresholds or parameters
estimated. The only parameter (the exponent in LRV) can be predicted via empirical
formulae. ESA can produce acceptable results without any encoding information ex-
cept line breaks. When ESA utilizes prior knowledge such as punctuation and other
encoding information, it performs much better.

In practice, unsupervised approaches can take a few steps to improve usability,
including:

1. Combine with supervised approaches (Zhao and Kit 2008b) or become
a supervised approach (Mochihashi, Yamada, and Ueda 2009).

2. Find more suitable applications for unsupervised approaches (Bod 2006).
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