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Human syntactic processing shows many signs of taking place within a general-purpose
short-term memory. But this kind of memory is known to have a severely constrained storage
capacity — possibly constrained to as few as three or four distinct elements. This article describes
a model of syntactic processing that operates successfully within these severe constraints, by
recognizing constituents in a right-corner transformed representation (a variant of left-corner
parsing) and mapping this representation to random variables in a Hierarchical Hidden Markov
Model, a factored time-series model which probabilistically models the contents of a bounded
memory store over time. Evaluations of the coverage of this model on a large syntactically
annotated corpus of English sentences, and the accuracy of a bounded-memory parsing strategy
based on this model, suggest this model may be cognitively plausible.

1. Introduction

It is an interesting possibility that human syntactic processingmay occur entirely within
a general-purpose short-term memory. Like other short-term memory processes, syn-
tactic processing is susceptible to degradation if short-term memory capacity is loaded,
for example, when readers are asked to retain lists of words while reading (Just
and Carpenter 1992); and memory of words and syntax degrades over time within
and across sentences (Sachs 1967; Jarvella 1971), unlike semantics and discourse
information about referents from other sentences (Ericsson and Kintsch 1995). But
short-term memory is known to have severe capacity limitations of perhaps no more
than three to four distinct elements (Miller 1956; Cowan 2001). These limits may seem
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too austere to process the rich tree-like phrase structure commonly invoked to explain
word-order regularities in natural language.

This article aims to show that they are not. The article describes a comprehension
model, based on a right-corner transform—a reversible tree transform related to the
left-corner transform of Johnson (1998a)—that associates familiar phrase structure trees
with the contents of a memory store of three to four partially completed constituents
over time. Coverage results on the large syntactically annotated Penn Treebank corpus
show a vast majority of naturally occurring sentences can be recognized using a mem-
ory store containing a maximum of only three incomplete constituents, and nearly all
sentences can be recognized using four, consistent with estimates of human short-term
memory capacity.

This transform reduces memory usage in incremental (left to right) processing
by transforming right-branching constituent structures into left-branching structures,
allowing child constituents to be composed with parent constituents before either have
been completely recognized. But because this composition identifies an incomplete
child as the awaited portion of an incomplete parent, it implicitly predicts that this
child constituent will be the rightmost (i.e., last) child of the parent, before this child
has been completely recognized. Parsing accuracy results on the Penn Treebank
using a Hierarchical Hidden Markov Model (Murphy and Paskin 2001)—essentially a
probabilistic pushdown automaton with a bounded pushdown store—show that this
prediction can be reliably learned from training data.

The remainder of this article is organized as follows: Section 2 describes some
related models of human syntactic processing using a bounded memory store; Section 3
describes a Hierarchical Hidden Markov Model (HHMM) framework for statistical
parsing using this bounded store of incomplete constituents; Section 4 describes the
right-corner transform and how it relates conventional phrase structure to incomplete
constituents in a bounded memory store; Section 5 describes an experiment to estimate
the level of coverage of the Penn Treebank corpus that can be achieved using this
transform with various memory limits, given a linguistically motivated binarization of
this corpus; and Section 6 gives accuracy results of this bounded-memorymodel trained
on this corpus, given that some amount of incremental prediction (as described earlier)
must be involved.

2. Bounded-Memory Parsing

One of the earliest bounded-memory parsing models is that of Marcus (1980). This
model maintains a bounded store of complete but unattached constituents as a buffer,
and operates on them using a variety of specialized memory manipulation operations,
deferring certain attachment decisions until the contents of this buffer indicate it is safe
to do so. (In contrast, the model described in this article maintains a store of incom-
plete constituents using ordinary stack-like push and pop operations, defined to allow
constituents to be composed before being completely recognized.) The Marcus parser
provides a bounded-memory explanation for human difficulties in processing garden
path sentences: for example, the horse raced past the barn fell, with intended interpretation
[NP the horse [RC (which was) raced past the barn]] fell (Bever 1970), in which raced seems like
the main verb of the sentence until the word fell is encountered. But this explanation due
to memory exhaustion is not compatible with observations of unproblematic parsing
of sentences such as these when contextual information is provided in advance: for
example, two men on horseback had a race; one went by the meadow, and the other went by the
barn (Crain and Steedman 1985).
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Ades and Steedman (1982) introduce the idea of composing incomplete constituents
to reduce storage demands in incremental processing using Combinatorial Catego-
rial Grammar (CCG), avoiding the need to maintain large buffers of complete but
unattached constituents. The right-corner transform described in this article composes
incomplete constituents in very much the same way, but CCG is essentially a compe-
tence model, in that it seeks to unify lexical category representations used in processing
with learned generalizations about argument structure, whereas the model described
herein is exclusively a performance model, allowing generalizations about lexical ar-
gument structures to be learned in some other representation, then combined with
probabilistic information about parsing strategies to yield a set of derived incomplete
constituents. As a result, the model described in this article has a freer hand to satisfy
strict working memory bounds, which may not permit some of the alternative compo-
sition operations proposed in the CCG account, thought to be associated with available
prosody and quantifier scope analyses.1

Johnson-Laird (1983) and Abney and Johnson (1991) propose a pure processing
account of memory capacity limits in parsing ordinary phrase structure trees. The
Johnson-Laird and Abney and Johnson models adopt a left-corner parsing strategy, of
which the right-corner transform introduced in this article is a variant, in order to bring
memory usage for most parsable sentences to within seven or so active or awaited
phrase structure constituents. This account may be used to explain human processing
difficulties in processing triply center-embedded sentences like the rat that the cat that the
dog chased killed ate the malt, with intended interpretation [NP the rat that [NP the cat that [NP

the dog] chased] killed] ate the malt (Chomsky and Miller 1963). But this explanation does
not account for examples of triply center-embedded sentences that typically do not
cause processing problems: [NP that [NP the food that [NP John] ordered] tasted good] pleased
him (Gibson 1991). Moreover, the apparent competition between comprehension of
center-embedded object relatives and retention of unrelated words in general-purpose
memory (Just and Carpenter 1992) suggests that general-purpose memory is (or at
least, can be) used to store incomplete constituents during comprehension. This would
predict three or four elements of reliable storage, rather than seven (Cowan 2001).
The transform-based model described in this article exploits a conception of chunking
(Miller 1956) to combine pairs of active and awaited constituents from the Abney
and Johnson analysis, connected by recognized structure, in order to operate within
estimates of human short-term memory bounds.

Because of these counterexamples to the memory-exhaustion explanation of garden
path and center-embedding difficulties, recent work has turned to explanations other
than memory exhaustion for these phenomena. Lewis and Vasishth (2005) attribute
processing errors to activation interference among stored constituents that have sim-
ilar syntactic and semantic roles. Hale’s surprisal (2001) and entropic model (2006)
link human processing difficulties to significant changes in the relative probability of
competing hypotheses in incremental parsing, such that if activation is taken to be a
mechanism for probability estimation, processing difficulties may be ascribed to the
relatively slow speed of activation change within the brain (or to collapsing activation
when probabilities grow too small, as in the case of garden path sentences). These
models explain many processing difficulties without invoking memory limits, and are

1 The lack of support for some of these available scope analyses may not necessarily be problematic for the
present model. The complexity of interpreting nested raised quantifiers may place them beyond the
capability of human interactive incremental interpretation, but not beyond the capability of post hoc
interpretation (understood after the listener has had time to think about it).
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compatible with brain imaging evidence of increased cortical activity and recruitment
of auxiliary brain areas during periods of increased uncertainty in sentence processing
(Just and Varma 2007). But if interference or changing activation is posited as the source
of processing difficulty, and delays are not linked to memory exhaustion per se, then
these theories do not explain how (or whether) syntactic processing operates within
general-purpose short-term memory.

Toward this end, this article will specifically evaluate the claim that syntactic
processing can be performed entirely within general-purpose short-term memory by
using this memory to store unassimilated incomplete syntactic constituents, derived
through a right-corner transform from basic properties of phrase structure trees. As
a probabilistic incremental parser, the model described in this article is compatible
with surprisal-based explanations of processing difficulties; it is, however, in some
sense orthogonal, because it models a different dimension of resource allocation. The
surprisal framework models allocation of processing resources (in this case, activation)
among disjunctions of competing hypotheses, which are maintained for some amount
of time in parallel, whereas the framework described here can be taken to model the
allocation of processing resources (in this case, memory elements) among conjunctions
of incompletely recognized constituents within each competing hypothesis.2 Thus, in
this view, there are twoways to simultaneously activatemultiple concepts: disjunctively
(sharing activation among competing hypotheses) and conjunctively (sharing activation
among unassimilated constituents within a hypothesis). But only the inner conjunctive
allocation corresponds to the familiar discretely bounded store of short-term memory
as described by Miller (1956); the outer disjunctive allocation treats activation as a
continuous resource in which like-valued pockets expand and contract as they are
reinforced or contradicted by incoming observations. Indeed, it would be surprising
if these two dimensions of resource allocation did not exist: the former, because it
would contradict years of observations about the behavior of short-term memory; and
the latter, because it would require neural activation spreading to be instantaneous
and uniform, contradicting most neuropsychological evidence. Levy (2008) compares
the allocation of activation in this kind of framework to the distributed allocation
of resources in a particle filter (Gordon, Salmond, and Smith 1993), an approximate
inference technique for probabilistic time-series models in which particles in a (typically
fixed) reservoir are assigned randomly sampled hypotheses from learned transition
probabilities, essentially functioning as units of activation. The model described in this
paper qualifies this analogy by positing that each individual particle in this reservoir
endorses a coherent hypothesis about the contents of a three- to four-element memory
store at any given time, rather than about an entire unbounded phrase structure tree.3

2 Probability distributions in entropy-based models like Hale’s are typically assumed to be defined over
sets of hypotheses pursued in parallel, but other interpretations (for example, lookahead-based
deterministic models) are possible. The model described in this article is also compatible with
deterministic parsing frameworks, in which case it models allocation of processing resources among
incompletely-recognized constituents within a single non-competing hypothesis.

3 Pure connectionist models of syntactic processing (Elman 1991; Berg 1992; Rohde 2002) attempt to unify
storage of constituent structure with that of ambiguous alternative analyses, but the memory demands of
systems based on this approach typically do not scale well to broad-coverage parsing. Recent results for
using self-organizing maps as a unified memory resource are encouraging (Mayberry and Miikkulainen
2003), but are still limited to parsing relatively short travel planning queries with limited syntactic
complexity. Hybrid systems that generate explicit alternative hypotheses with explicit stacked-up
constituents, and use connectionist models for probability estimation over these hypotheses (Henderson
2004) typically achieve better performance in practice.
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Previous memory-based explanations of problematic sentences (explaining garden
path effects as exceeding a bound of four complete but unattached constituents, or ex-
plaining center embedding difficulties as exceeding a bound of seven active or awaited
constituents) have been shown to underestimate human sentence processing capacity
when equally complex but unproblematic sentences were examined. The hypothesis
advanced in this article, that human sentence processing uses general-purpose short-
term memory to store incomplete constituents as defined by a right-corner transform,
leaves the explanation of several negative examples of unparsable garden path and cen-
ter embedding sentences to orthogonal models of surprisal or interference. But in order
to determine whether this right-corner memory hypothesis still underestimates human
sentence processing capacity, a corpus study was performed on two complementary
corpora of transcribed spontaneous speech and newspaper text, manually annotated
with phrase structure trees (Marcus, Santorini, and Marcinkiewicz 1993). These spon-
taneous speech and newspaper text corpora contain only attested positive examples
of parsable sentences, but they may be considered complementary for this purpose
because the complexity of spontaneous speech may somewhat understate human recog-
nition capacity (potentially limiting it to the cost of spontaneously generating sentences
in an unusual social context), and the complexity of newspaper text may somewhat
overstate human recognition capacity (though it is composed and edited to be readable,
it is still composed and edited off-line), so results from these corpora may be taken
together to suggest generous and conservative upper bounds on human processing
capacity.

3. Bounded-Memory Parsing with a Time Series Model

The framework adopted in this article is a factored HMM-like time series model, which
maintains a probability distribution over the contents of a bounded set of random
variables over time, corresponding to hypothesized stores of memory elements. The
random variables in this store may be understood as simultaneous activations in a cog-
nitive model (similar to the superimposed roles described by Smolensky and Legendre
[2006]), and the probability distribution over these stores may be thought of as compet-
ing pockets of activation, as described in the previous section. Some of these variables
persist as elements of the short-term memory store, and some are transient as results of
hypothesized compositions, which are estimated and immediately discarded or folded
into the persistent store according to the dependencies in the model. The variables
have values or contents (or fillers)—in this case incomplete constituent categories—that
change over time, and although these values may be uncertain, the set of hypothesized
contents of this memory store at any given point in time are collectively constrained to
form a coherent (but possibly incomplete) syntactic analysis of a sentence.

The particular model used here is an HHMM (Murphy and Paskin 2001), which
mimics a bounded-memory pushdown automaton (PDA), supporting simple push and
pop operations on a bounded stack-like memory store. A time-series model is used
here instead of an explicit stack machine, first because the probability model is well
defined on a bounded memory store, and second because the plasticity of the random
variables that mimic stack behavior in this model makes the model cross-linguistically
attractive. By evoking additional random variables and dependencies, the model can
be defined (or presumably, trained) to mimic other types of automata, such as extended
pushdown automata (EPDAs) recognizing tree-adjoining languages with crossed and
nested dependencies, as have been hypothesized for languages like Dutch (Shieber
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1985). However, the remainder of this article will only discuss random variables and
dependencies necessary to mimic a bounded stack pushdown automaton.

3.1 Hierarchical HMMs

Hierarchical Hidden Markov Models (Murphy and Paskin 2001) are essentially Hidden
Markov Models factored into some fixed number of stack-like elements at each time
step.

HMMs characterize speech or text as sequences of hidden states qt (which may
consist of phones, words, or other hypothesized syntactic or semantic information), and
observed states ot at corresponding time steps t (typically short, overlapping frames
of an audio signal, or words or characters in a text processing application). A most
likely sequence of hidden states q̂1..T can then be hypothesized given any sequence of
observed states o1..T:

q̂1..T = argmax
q1..T

P(q1..T | o1..T ) (1)

= argmax
q1..T

P(q1..T ) · P(o1..T | q1..T ) (2)

def
= argmax

q1..T

T∏
t=1

PΘA
(qt | qt−1) · PΘB

(ot | qt) (3)

using Bayes’ Law (Equation 2) and Markov independence assumptions (Equation 3)
to define a full P(q1..T | o1..T ) probability as the product of a Language Model (ΘA)

prior probability P(q1..T )
def
=

∏
t PΘA

(qt | qt−1) and anObservation Model (ΘB) likelihood
probability P(o1..T | q1..T )

def
=

∏
t PΘB

(ot | qt) (Baker 1975; Jelinek, Bahl, and Mercer 1975).
Language model transitions PΘA

(qt | qt−1) over complex hidden states qt can be
modeled using synchronized levels of stacked-up component HMMs in an HHMM,
analogous to a shift-reduce parser or pushdown automaton with a bounded stack.
HHMM transition probabilities are calculated in two phases: a “reduce” phase (result-
ing in an intermediate, transient final-state variable ft), modeling whether component
HMMs terminate; and a “shift” phase (resulting in a persistent modeled state qt), in
which unterminated HMMs transition and terminated HMMs are re-initialized from
their parent HMMs. Variables over intermediate ft and modeled qt states are factored
into sequences of depth-specific variables—one for each of D levels in the HHMM
hierarchy:

ft = 〈 f 1t . . . f D
t 〉 (4)

qt = 〈q1t . . . qD
t 〉 (5)

Transition probabilities are then calculated as a product of transition probabilities at
each level, using level-specific ‘reduce’ ΘF,d and ‘shift’ ΘQ,d models:

PΘA
(qt | qt−1) =

∑
ft

P( ft | qt−1) · P(qt | ft qt−1) (6)
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Figure 1
Graphical representation of a Hierarchical Hidden Markov Model. Circles denote random
variables, and edges denote conditional dependencies. Shaded circles denote variables with
observed values.

def
=

∑
f 1t..f

D
t

D∏
d=1

PΘF,d
( f d

t | f d+1
t qd

t−1q
d−1
t−1 ) ·

D∏
d=1

PΘQ,d
(qd

t | f
d+1
t f d

t qd
t−1q

d−1
t ) (7)

with f D+1
t and q0t defined as constants. In these equations, probabilities are marginalized

or summed over all combinations of intermediate variables f 1t ... f D
t , so only the memory

store contents q1t ...q
D
t persist across time steps.4 A graphical representation of anHHMM

with three depth levels is shown in Figure 1.
The independence assumptions in this model can be psycholinguistically moti-

vated. Independence across time points t (Equation 3) arise naturally from causality:
Any change to a memory store configuration to generate a configuration at time step
t + 1 should depend only on the current memory store configuration at time step t;
memory operations should not be able to peek backward or forward in time to consult
past or future memory stores. Independence across depth levels d (Equation 7) arise
naturally from uncertainty about the structure between incomplete constituent chunks
(this property of right-corner transform categories is elaborated in Section 4).5

Shift and reduce probabilities can now be defined in terms of finitely recursive
HMMs with probability distributions over recursive expansion, transition, and reduc-
tion of states at each depth level. In the version of HHMMs used in this paper, each
modeled variable is a syntactic state qd

t ∈ G×G (describing an incomplete constituent
consisting of an active grammatical category from domain G and an awaited grammat-
ical category from domain G—for example, an incomplete constituent S/NP consisting
of an active sentence S awaiting a noun phrase constituent NP); and each intermediate

4 In Viterbi decoding, probabilities over intermediate variables may be maximized rather than
marginalized, but in any case the intermediate variables do not persist.

5 Also, the fact that this is a generative model, in which observations are conditioned on hypotheses, then
flipped using Bayes’ Law (Equation 2)—as opposed to a discriminative or conditional model, in which
hypotheses are conditioned directly on observations—is also appealing as a human model, in that it
allows the same architecture to be used for both recognition and generation. This is a desirable property
for modeling split utterances, in which interlocutors complete one another’s sentences (Lerner 1991;
Helasvuo 2004).
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variable is a reduction or non-reduction state f d
t ∈ G∪{1, 0} (indicating, respectively, a

reduction of incomplete constituent qd
t−1 to a complete right child constituent of some

grammatical category from domainG, or a non-reduction of qd
t−1 as a unary or left child,

as defined in Section 4). An intermediate variable f d
t at depth d may indicate reduction

or non-reduction according to ΘF-Reduction,d if there is a reduction at the depth level
immediately below d, but must indicate non-reduction ( f d

t = 0) with probability 1 if
there is no reduction below:6

PΘF,d
( f d

t | f d+1
t qd

t−1q
d−1
t−1 )

def
=

{
if f d+1

t �∈G : [ f d
t = 0]

if f d+1
t ∈G : PΘF-Reduction,d

( f d
t | qd

t−1, q
d−1
t−1 )

(8)

where f D+1
t = 1 and q0t = ROOT.

Shift probabilities over the modeled variable qd
t at each level are defined using level-

specific transition ΘQ-Transition,d and expansion ΘQ-Expansion,d models:

PΘQ,d
(qd

t | f
d+1
t f d

t qd
t−1q

d−1
t )

def
=



if f d+1

t �∈G, f d
t �∈G : [qd

t = qd
t−1]

if f d+1
t ∈G, f d

t �∈G : PΘQ-Transition,d
(qd

t | f
d+1
t f d

t qd
t−1q

d−1
t )

if f d+1
t ∈G, f d

t ∈G : PΘQ-Expansion,d
(qd

t | q
d−1
t )

(9)

where f D+1
t = 1 and q0t = ROOT. This model is conditioned on final-state intermediate

variables f d
t and f d+1

t at and immediately below each HHMM level. If there is no re-
duction immediately below a given level (the first case provided), it deterministically
copies the current HHMM state forward to the next time step. If there is a reduction
immediately below the current level but no reduction at the current level (the second
case provided), it transitions the HHMM state at the current level, according to the
distribution ΘQ-Transition,d. And if there is a reduction at the current level (the third case
above), it re-initializes this state given the state at the level above, according to the
distribution ΘQ-Expansion,d.

Models ΘF-Reduction,d, ΘQ-Transition,d, and ΘQ-Expansion,d are defined directly from train-
ing examples, for example (in the experiments described in this article), using relative
frequency estimation. The overall effect is that higher-level HMMs are allowed to
transition only when lower-level HMMs terminate. An HHMM therefore behaves like
a probabilistic implementation of a shift–reduce parser or pushdown automaton with a
bounded stack, where the maximum stack depth is equal to the number of depth levels
in the HHMM hierarchy.

4. Right-Corner Transform and Incomplete Constituents

The model described in this article recognizes trees in a right-corner transformed
representation to minimize usage of a bounded short-term memory store. This right-
corner transform is a variant of the left-corner transform described by Johnson (1998a),
but whereas the left-corner transform changes left-branching structure into right-
branching structure, the right-corner transform changes right-branching structure into

6 Here [·] is an indicator function: [φ] = 1 if φ is true, 0 otherwise.
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left-branching structure. Recognition using this transformed grammar, extracted from
a transformed corpus, is similar to recognition using a left-corner parsing strategy (Aho
and Ullman 1972). This kind of strategy was shown to reduce memory requirements
for parsing sentences with mainly left- or right-recursive phrase structure to fewer than
seven active or awaited constituent categories (Abney and Johnson 1991). This is within
Miller’s (1956) estimate of human short-term memory capacity (if memory elements
store individual categories), whereas parsing heavily center-embedded sentences
(known to be difficult for human readers) would require seven or more elements at the
frontier of this capacity.

But recent research suggests that human memory capacity may be limited to as few
as three or four distinct items (Cowan 2001), with longer estimates of seven or more
possibly due to the human capacity to chunk remembered items into associated groups
(Miller 1956). The right-corner strategy described in this paper therefore assumes
constituent categories can similarly be chunked into incomplete constituents A/B formed
by pairing an active category Awith an awaited category B somewhere along the active
category’s right progeny (so, for example, a transitive verb may become an incomplete
constituent VP/NP consisting of an active verb phrase lacking an awaited noun phrase
yet to come).7 These chunked incomplete constituent categories A and B are naturally
related through fixed contiguous phrase structure between them, established during
the course of parsing prior to the beginning of B, and these incomplete constituents can
be composed with other incomplete constituents B/C to form similarly related category
pairs A/C.

These chunks are not only contiguous sections of phrase structure trees, they also
have contiguous string yields, so they correspond to the familiar notion of text chunks
used in shallow parsing approaches (Hobbs et al. 1996). For example, a hypothesized
memory store may contain incomplete constituents S/NP (a sentence without a noun
phrase), followed by NP/NN (a noun phrase lacking a common noun), with cor-
responding string yields demand for bonds propped up and the municipal, respectively,
forming a complete contiguous segmentation of a sentence at any point in processing.
Although these two chunks could be composed into an incomplete constituent S/NN,
doing so at this point would close off the possibility of introducing another constituent
between these two, containing the recognized noun phrase as a left child (e.g., demand
for bonds propped up [NP [NP the municipal bonds]’s prices]).

This conception of chunking applied to right-branching progeny in phrase structure
trees does not have the power to eliminate the bounds of a memory store, however. In a
larger cognitive model, syntactic processing is assumed to occur as part of an interactive
semantic interpretation process, in which referents of constituents are calculated as
these constituents are recognized, and are used to constrain subsequent processing
decisions (Tanenhaus et al. 1995; Brown-Schmidt, Campana, and Tanenhaus 2002).8

The chunked category pairs A and B in these incomplete constituents A/B result from
successful compositions of other such constituents earlier in the recognition process,
which means that the relationship between the referents of A and B is known and fixed

7 Incomplete constituents may also be defined through a left-corner transform, but left-corner transformed
categories are incomplete in the other direction—a goal category yet to come lacking an
already-recognized constituent—so stored incomplete constituent categories resulting from a left-corner
transform would have the character of future goal events, rather than remembered past events. This is
discussed in greater detail in Section 4.4.

8 This can be implemented in a time-series model by factoring the model to include additional random
variables over referents, as described in Schuler, Wu, and Schwartz (2009).
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in any hypothesized incomplete constituent. But syntactic and semantic relationships
between chunks in a hypothesized memory store are unspecified. Chunking beyond
the level of incomplete constituents would therefore involve grouping referents whose
interrelations have not necessarily been established by the parser. Because the set
of referents is presumably much larger than the set of syntactic categories, one may
assume there are real barriers to reliably chunking them in the absence of these fixed
relationships.

There certainly may be cases where syntactically unconnected referents (belonging
to different incomplete constituents) could be grouped together as chunks. But for
simplicity, this article will assume a very strict condition that only a single incomplete
constituent can be stored in each short-term memory element. Experimental results
described in Section 5 suggest that a vast majority of English sentences can be recog-
nized within these human-like memory bounds, even with this strict condition on
chunking. If parsing can be performed in bounded memory under such strict condi-
tions, it can reasonably be assumed to operate at least as well under more permissive
circumstances, where some amount of syntactically-unrelated referential chunking is
allowed.

Several existing incremental systems are organized around a left-corner parsing
strategy (Roark 2001; Henderson 2004). But these systems generally keep large numbers
of constituents open for modifier attachment in each hypothesis. This allows modifiers
to be attached as right children of any such open constituent. But if any number of
open constituents are allowed, then either the assumption that stored elements have
fixed syntactic (and semantic) internal structure will be violated, or the assumption that
syntax operates within a boundedmemory store will be violated, both of which are psy-
cholinguistically attractive as simplifying assumptions. The HHMM model described
in this article upholds both the fixed-element and bounded-memory assumptions by
hypothesizing fixed reductions of right child constituents into incomplete parents in the
same memory element, to make room for new constituents that may be introduced at a
later time. These in-element reductions are defined naturally on phrase structure trees
as the result of aligning right-corner transformed constituent structures to sequences of
random variables in a factored time-series model. The success of this predictive strategy
in corpus-based coverage and accuracy results described in Sections 5 and 6 suggests
that it may be plausible as a cognitive model.

Other accounts may model reductions in bounded memory as occurring as soon
as possible, by maintaining the option of undoing them when necessary (Stevenson
1998). This seems unattractive in the context of an interactive semantic model, however,
where syntactic constituents and semantic referents are composed in tandem, because
potentially very rich referential constraints introduced by composing a child constituent
into a parent would have to be systematically undone. An interesting possibility might
be that the appearance of syntactic restructuring may arise from a collection of hypoth-
esized stores of syntactically fixed incomplete constituents, pursued in parallel. The
results presented in this article suggest that this mechanism is possible, but these two
possibilities might be very difficult to distinguish empirically.

There is also a tradition of defining incomplete constituents as head-driven—
introduced in parsing only at the point in incremental recognition at which they can
be associated with a head word (Gibson 1991: Pritcher 1991: Gorrell 1995). In typically
head-initial languages such as English, incomplete constituents derived from these
head-driven models resemble those derived from a right-corner transform. But head-
driven incomplete constituents do not appear to obey general-purpose memory bounds
in head-final languages such as Japanese, and do not appear to obey attachment prefer-
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ences predicted by a head-driven account (Kamide and Mitchell 1999), favoring a pre-
head attachment account, as a right-corner transform would predict.

4.1 Tree Transforms Using Rewrite Rules

The incomplete constituents used in the present model are defined in terms of tree
transforms, which consist of recursive operations that change tree structures into other
tree structures. These transforms are not cognitive processes—syntax in this model is
learned and used entirely as time-series probabilities over random variable values in
the memory store. The role of these transforms is as a means to associate sequences of
configurations of incomplete constituents in a memory store with linguistically familiar
phrase structure representations, such as those studied in competence models or found
in annotated corpora.

The transforms presented in this article will be defined in terms of destructive rewrite
rules applied iteratively to each constituent of a source tree, from leaves to root, and from
left to right among siblings, to derive a target tree. These rewrites are ordered; when
multiple rewrite rules apply to the same constituent, the later rewrites are applied to
the results of the earlier ones.9 For example, the rewrite

A0

. . . A1

α2 α3

. . . ⇒
A0

. . . α2 α3 . . .

could be used to iteratively eliminate all binary-branching nonterminal nodes in a tree,
except the root.

In the notation used in this article,

� Roman uppercase letters (Ai) are variables matching constituent labels,

� Roman lowercase letters (ai) are variables matching terminal symbols,

� Greek lowercase letters (αi) are variables matching entire subtree structure,

� Roman letters followed by colons, followed by Greek letters (Ai:αi) are
variables matching the label and structure, respectively, of the same
subtree, and

� ellipses (. . . ) are taken to match zero or more subtree structures,
preserving the order of ellipses in cases where there are more than one (as
in the rewrite shown herein).

Many of the transforms used in this article are reversible, meaning that the result
of applying a transform to a tree, then applying the reverse of that transform to the
resulting tree, will be the original tree itself. In general, a transform can be reversed
if the direction of its rewrite rules is reversed, and if each constituent in a target tree

9 The appropriate analogy here is to a Unix sed script, made sensitive to the beginning and end brackets of
a constituent and those of its children.
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matches a unique rewrite rule in the reversed transform. The fact that not all rewrites
can be unambiguously matched to HHMM output means that parse accuracy must be
evaluated on partially-binarized gold-standard trees, in order to remove the effect of
this ambiguous matching from the evaluation. This will be discussed in greater detail
in Section 6.

4.2 Right-Corner Transform Using Rewrite Rules

Rewrite rules for the right-corner transform are shown here, first to flatten out right-
recursive structure,

A1

α1 A2

α2 A3

a3

⇒

A1

A1/A2

α1

A2/A3

α2

A3

a3

,

A1

α1 A2

A2/A3

α2

. . .

⇒

A1

A1/A2

α1

A2/A3

α2

. . .

then to replace it with left-recursive structure,

A1

A1/A2:α1 A2/A3

α2

α3 . . . ⇒

A1

A1/A3

A1/A2:α1 α2

α3 . . .

Here, the first two rewrite rules are applied iteratively (bottom-up on the tree) to flatten
all right recursion, using incomplete constituents to record the original nonterminal
ordering. The second rule is then applied to generate left-recursive structure, preserving
this ordering. Note that the last rewrite leaves a unary branch at the leftmost child of
each flattened node. This preserves the simple category labels of nodes that correspond
directly to nodes in the original tree, so the original tree can be reconstructed when
the right-corner transform concatenates multiple right-recursive sequences into a single
left-recursive sequence.

An example of a right-corner transformed tree is shown in Figure 2(c). An important
property of this transform is that it is reversible. Rewrite rules for reversing a right-
corner transform are simply the converse of those shown here. The correctness of this
can be demonstrated by dividing a tree into maximal sequences of right-recursive
branches (that is, maximal sequences of adjacent right children). The first two “flatten-
ing” rewrites of the right-corner transform, applied to any such sequence, will replace
the right-branching nonterminal nodes with a flat sequence of nodes labeled with
slash categories, which preserves the order of the nonterminal category symbols in the
original nodes. Reversing this rewrite will therefore generate the original sequence of
nonterminal nodes. The final rewrite similarly preserves the order of these nonterminal
symbols while grouping them from the left to the right, so reversing this rewrite will
reproduce the flattened tree.

12
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Figure 2
A sample phrase structure tree (a) as it appears in the Penn Treebank, (b) after it has been
binarized, and (c) after it has been right-corner transformed.

4.3 Mapping Trees to HHMMDerivations

Any tree can be mapped to an HHMM derivation by aligning the nonterminals with qd
t

categories. First, it is necessary to define rightward depth d, right index position t, and
final (rightmost) child status f d

t+1, for every nonterminal node A in a tree, where

� d is defined to be the number of right branches between node A and the
root,

13
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� t is defined to be the number of words beneath or to the left of node A, and

� f d
t+1 is defined to be 0 if A is a left child, 1 if A is a unary child, and A if A is
right.

Any right-corner transformed tree can then be annotated with these values and rewrit-
ten to define labels and final-state values for every combination of d and t covered by
the tree. This is done using the rewrite rule

d, t,A0, 0

d, t,A1, 1
⇒ d, t,A1, 1

to replace unary branches with f d
t+1 flags, and

d, t,A0, f
d
t+1

d, t′,A1, f
d
t′+1 d+1, t,A2,A2

⇒

d, t,A0, f
d
t+1

d, t−1,A1, 0

d, t′+1,A1, 0

d, t′,A1, f
d
t′+1

d+1, t,A2,A2

to copy stacked-up left child constituents over multiple time steps, while lower-level
(right child) constituents are being recognized. The dashed line on the right side of the
rewrite rule represents the variable number of time steps for a stacked-up higher-level
constituent (as seen, for example, in time steps 4–7 at depth 1 in Figure 3). Coordinates
d, t ≤ D, and T that have f d

t+1=1 are assigned label ‘−’, and coordinates not covered by
the tree are assigned label ‘−’ and f d

t+1=1.
The resulting label and final-state values at each node now define a value of qd

t
and f d

t for each depth d and time step t of the HHMM (see Figure 3). Probabilities for
HHMMmodels ΘQ-Expansion,d, ΘQ-Transition,d, and ΘF-Reduction,d can then be estimated from
these values directly. Like the right-corner transform, this mapping is reversible, so qd

t
and f d

t values can be taken from a hypothesized most likely sequence and mapped back

Figure 3
Sample tree from Figure 2 mapped to qd

t variable positions of an HHMM at each stack depth d
(vertical) and time step t (horizontal). This tree uses only two levels of stack memory. Values for
final-state variables f d

t are not shown. Note that the mapping transform omits some nonterminal
labels; labels for these nodes can be reconstructed from their children.
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to trees (which can then undergo the reverse of the right-corner transform to become
ordinary phrase structure trees). Inspection of this rewrite rule will reveal the reverse of
this transform simply involves deleting unary-branching sequences that differ only in
the value of t and restoring unary branches when f d

t+1=1.
This alignment of right-corner transformed trees also has the interesting property

that the categories on the stack at any given time step represent a segmentation of the
input up to that time step. For example, in Figure 3 at t = 12 the stack contains a sentence
lacking a verb phrase: S/VP (strong demand for . . . bonds), followed by a verb projection
lacking a particle: VBN/PRT (propped).

4.4 Comparison with Left-Corner Transform

A right-corner transform is used in this study, rather than a left-corner transform,
mainly because the right-corner version coincides with an intuition about how incom-
plete constituents might be stored in human memory. Stacked-up constituents in the
right-corner form correspond to chunks of words that have been encountered, rather
than hypothesized goal constituents. Intuitively, in the right-corner view, after a sen-
tence has been recognized, the stack memory contains a complete sentential constituent
(and some associated referent). In the left corner view, on the other hand, the stackmem-
ory after a sentence has been recognized contains only the lower-rightmost constituent
in the corresponding phrase structure tree (see Figure 4). This is because a time-order

Figure 4
A left-corner transformed version of the tree (a) and memory store (b) from Figures 2 and 3.
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alignment of a left-corner tree to elements in a bounded memory store corresponds to
a top-down traversal of the tree, whereas a time-order alignment of a right-corner tree
to elements in a bounded memory store corresponds to a bottom-up traversal of the
tree. If referential semantics are assumed to be calculated in tandem (as suggested by
the Tanenhaus et al. [1995] results), a top-down traversal through time requires some
effort to reconcile with the traditional compositional semantic notion that the meanings
of constituents are composed from the meanings of their parts (Frege 1892).

4.5 Comparison with CCG

The incomplete constituent categories generated in the right-corner transform have the
same form and much of the same meaning as non-constituent categories in a CCG
(Steedman 2000).10 Both CCG operations of forward function application:

A1 � A1/A2 A2

and forward function composition:

A1/A3 � A1/A2 A2/A3

appear in the branching structure of right-corner transformed trees. Nested operations
can also occur in CCG derivations:

A1/A2 � A1/A2/A3 A3

as well as in right-corner transformed trees (using underscore delimiters to denote
sequences of constituent categories, described in Section 5.1):

A1/A2 � A1/A3 A2 A3

There are also correlates of type-raising (unary branches introduced by the right-corner
transform operations described in Section 4):

A1/A2 � A3

But, importantly, the right-corner transform generates no correlates to the CCG
operations of backward function application or composition:

A1 � A2 A1\A2
A1\A3 � A2\A3 A1\A2

This has two consequences. First, right-corner transform models do not introduce am-
biguity between type-raised forward and backward operations, as CCG derivations do.
Second, because leftward dependencies (as between a verb and its subject in English)
cannot be incorporated into lexical categories, right-corner transform models cannot be
taken to explicitly encode argument structure, as CCGs are. The right-corner transform
model described in this article is therefore perhaps better regarded as a performance
model of processing, given subcategorizations specified in some other grammar (such
as in this case the Treebank grammar), rather than a constraint on grammar itself.

10 In fact, one of the original motivations for CCG as a model of language was to minimize stack usage in
incremental processing (Ades and Steedman 1982).
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4.6 Comparison with Cascaded FSAs in Information Extraction

Hierarchies of weighted finite-state automata (FSA)–equivalent HMMs may also be
viewed as probabilistic implementations of cascaded FSAs, used for modeling syntax
in information extraction systems such as FASTUS (Hobbs et al. 1996). Indeed, the left-
branching sequences of transformed constituents recognized by this model (as shown
in Figure 3) bear a strong resemblance to the flattened phrase structure representations
recognized by cascaded FSA systems, in that most phrases are consolidated to flat
sequences at one hierarchy level. This flat structure is desirable in cascaded FSA systems
because it allows information to be extracted from noun or verb phrases using straight-
forward pattern matching rules, implemented as FSA-equivalent regular expressions.

Like FASTUS, this system produces layers of flat phrases that can be searched
using regular expression pattern-matching rules. It also has a fixed number of levels
and linear-time recognition complexity. But unlike FASTUS, the model described here
can produce—and can be trained on—complete phrase structure trees (accessible by
reversing the transforms described previously).

5. Coverage

The coverage of this model was evaluated on the large Penn Treebank corpus of
syntactically annotated sentences from the Switchboard corpus of transcribed speech
(Godfrey, Holliman, and McDaniel 1992) and the Wall Street Journal (Marcus, Santorini,
and Marcinkiewicz 1993). These sentences were right-corner transformed and mapped
to a time-aligned bounded memory store as described in Section 4 to determine the
amount of memory each sentence would require.

5.1 Binary Branching Structure

In order to obtain a linguistically plausible right-corner transform representation of
incomplete constituents, the corpus is subjected to another pre-process transform to
introduce binary-branching nonterminal projections, and fold empty categories into
nonterminal symbols in amanner similar to that proposed by Johnson (1998b) and Klein
and Manning (2003). This binarization is done in such a way as to preserve linguistic
intuitions of head projection, so that the depth requirements of right-corner transformed
trees will be reasonable approximations to the working memory requirements of a
human reader or listener.

First, ordinary phrases and clauses are decomposed into head projections, each
consisting of one subordinate head projection and one argument or modifier, for
example:

A0

. . . VB:α1 NP:α2 . . .

⇒

A0

. . . VB

VB:α1 NP:α2

. . .

The selection of head constituents is done using rewrite rules similar to the Magerman-
Black head rules (Magerman 1995). Any new constituent created by this process is
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assigned the label of the subordinate head projection. The subordinate projection may
be the left or complete list of head-projection rewrite rules is provided in Appendix A.11

Conjunctions are decomposed into purely right-branching structures using non-
terminals appended with a “-LIST” suffix:

A0

. . . A1:α1 CC A1:α2

⇒

A0

. . . A1-LIST

A1:α1 CC A1:α2

A0

. . . A1:α1 A1-LIST:α2

⇒

A0

. . . A1-LIST

A1:α1 A1-LIST:α2

This right-branching decomposition of conjoined lists is motivated by the general
preference in English toward right branching structure, and the distinction of right
children as “-LIST” categories is motivated by the asymmetry of conjunctions such as
and and or generally occurring only between constituents at the end of a list, not at the
beginning. (Thus, in decomposing coffee, tea or milk, the words tea or milk form an NP-
LIST constituent, whereas the words coffee, tea do not.)

Empty constituents are removed outright, along with any unary projections that
may arise from this removal. In the case of empty constituents representing traces, the
extracted category label is annotated onto the lowest nonterminal dominating the trace
using the suffix “-extrX,” where “X” is the category of the extracted constituent. To
preserve grammaticality, this annotation is then passed up the tree and eliminated when
awh-, topicalized, or othermoved constituent is encountered, in amanner similar to that
used in Head-driven Phrase Structure Grammar (Pollard and Sag 1994), but this does
not affect branching structure.

Together these rewrites remove about 65% of super-binary branches from the un-
processed Treebank. All remaining super-binary branches are “nominally” decomposed
into right-branching structures by introducing intermediate nodes, each with a label
concatenated from the labels of its children, delimited by underscores:

A0

. . . A1:α1 A2:α2

⇒

A0

. . . A1 A2

A1:α1 A2:α2

This decomposition is “nominal” in that the concatenated labels leave the resulting bi-
nary branches just as complex as the original n-ary branches prior to this decomposition.
It is equivalent to leaving super-binary branches intact and using dot rules in parsing

11 Although it is possible that in some cases these rules may generate counterintuitive branching patterns,
inspection of transformed trees during this experiment showed no unusual branching structure, except in
the case of noun sequences in base noun phrases (e.g. [general obligation] bonds or general [obligation
bonds]), which were left flat in the Treebank. Correct binarization of these structures would require
extensive annotator effort. However, because base noun phrases are often very small, and seldom contain
any sub-structure, it seems safe to assume that structural errors in these base noun phrases would not
drastically alter coverage results reported in this section.
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(Earley 1970). This decomposition therefore does nothing to reduce sparse data effects
in statistical parsing.

5.2 Coverage Results

Sections 2 and 3 (the standard training set) of the Penn Treebank Switchboard corpus
were binarized as described in Section 5.1, then right-corner transformed and mapped
to elements in a boundedmemory store as described in Section 4. Punctuation added by
transcribers was removed. Coverage of this corpus, in sentences, for a recognizer using
right-corner transform chunking with one to five levels of stack memory, is shown in
Table 1. These results show that a simple syntax-based chunking into incomplete con-
stituents, using the right-corner transform defined in Section 4 of this article, allows a
vast majority of Switchboard sentences (over 99%) to be recognized using three or fewer
elements of memory, with no sentences requiring more than five elements, essentially
as predicted by studies of human short-term memory.

Although spontaneous speech is arguably more natural test data than prepared
speech or edited text, it is possible that coverage results on these data may under-
estimate processing requirements, due to the preponderance of very short sentences
and sentence fragments in spontaneous speech (for example, nearly 30% of sentences in
the Switchboard corpus are only one word long). It may also be argued that coverage
results on this corpus more accurately reflect the complexity of speech planning under
somewhat awkward social circumstances (being asked to start a conversation with
a stranger), which may be more cognitively demanding than recognition. For these
reasons, the right-corner transform chunking was also evaluated on Sections 2–21 (the
standard training set) of the Penn Treebank Wall Street Journal (WSJ) text corpus (see
Table 2, column 1).

The WSJ text corpus results appear to show substantially higher memory
requirements than Switchboard, with only 93% of sentences recognizable using three or
fewer memory elements. But much of this increase is due to arguably arbitrary treebank
conventions in annotating punctuation (for example, commas between phrases are
attached to the leftmost phrase: ([Pierre Vinken . . . [61 years old] ,] joined . . . ) which
can lead to psycholinguistically implausible analyses in which phrases (in this case
61 years old) are center-embedded by lone punctuation marks on one side or the other.
In general, branching structure for punctuation can be difficult to motivate on linguistic
grounds, because punctuation marks do not have lexical projections or argument
structure in most linguistic theories. In spoken language, punctuation corresponds to

Table 1
Percent coverage of right-corner transformed Switchboard Treebank Sections 2–3.

memory capacity (right-corner, no punct) sentences coverage

no stack memory 26,201 28.38%
1 stack element 53,740 58.21%
2 stack elements 85,068 92.14%
3 stack elements 91,890 99.53%
4 stack elements 92,315 99.99%
5 stack elements 92,328 100.00%

TOTAL 92,328 100.00%
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Table 2
Percent coverage of left- and right-corner transformed WSJ Treebank Sections 2–21.

memory capacity right-corner, with punct right-corner, no punct left-corner, no punct
sentences coverage sentences coverage sentences coverage

no stack elements 35 0.09% 127 0.32% 127 0.32%
1 stack elements 3,021 7.57% 3,550 8.90% 4,284 10.74%
2 stack elements 21,916 54.95% 25,948 65.06% 26,750 67.07%
3 stack elements 37,203 93.28% 38,948 97.66% 38,853 97.42%
4 stack elements 39,703 99.54% 39,866 99.96% 39,854 99.93%
5 stack elements 39,873 99.97% 39,883 100.00% 39,883 100.00%
6 stack elements 39,883 100.00% - - - -

TOTAL 39,883 100.00% 39,883 100.00% 39,883 100.00%

pauses or patterns of inflection, distributed throughout an utterance. It therefore seems
questionable to account for punctuation marks in a psycholinguistic model as explicit
composable concepts in a memory store. In order to counter possible undesirable
effects of an arbitrary branching analysis of punctuation, a second evaluation of the
model was performed on a version of the WSJ corpus with punctuation removed.

An analysis (Table 2, column 2) of the Penn Treebank WSJ corpus Sections 2–21
without punctuation, using the right-corner transformed trees just described, shows
that 97.66% of trees can be recognized using three hidden levels, and 99.96% can be
recognized using four, and again (similar to the Switchboard results), no sentences
require more than five remembered incomplete constituents. Table 2, column 3, shows
similar results for a left-corner transformed corpus, using left-right reflections of the
rewrite rules presented in Section 4.

Cowan (2001) documents empirically observed short-term memory limits of about
four elements across awide variety of tasks. It is therefore not surprising to find a similar
limit in the memory required to parse the Treebank, assuming elements corresponding
to right-corner-transformed incomplete constituents.

As the table shows, some quintuply center-embedded constituents were found in
both corpora, suggesting that a three- to four-element limit may be soft, and can be
relaxed for short durations. Indeed, all quintuply embedded constituents were only a
few words long. Interestingly, many of the most heavily embedded words seemed to
strongly co-occur, which may suggest that these words arise from fixed expressions and
are not compositional. For example, Figure 5 shows one of the 13 phrase structure trees
in the Switchboard corpus which require five stack elements in right-corner parsing.
The complete sentence is:

So if there’s no one else around and I have a chance to listen to something I’ll turn that on.

If the construction there ’s NP AP in this sentence is parsed non-compositionally as a
single expression (and thus is rendered left-branching by the right-corner transform as
defined in Section 4), the sentence could be parsed using only four memory elements.

Even constrained to only four center embeddings, the existence of such sentences
confounds explanations of the center-embedding difficulties as directly arising from
stack limits in a left-corner (or right-corner) parser (Abney and Johnson 1991). It is
also interesting to note that three of the incomplete constituents in this example are
recursively nested or self-embedded instances of sentential projections, essentially with
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Figure 5
A phrase structure tree requiring five stack elements. Categories in bold will be incomplete at a
point after recognizing so if there’s no . . .

the same category, similar to the center-embedded constructions which human readers
found difficult to process. This suggests that restrictions on self-embedding of identical
constituent categories would also fail to predict readability.

Instead, these data seem to argue in favor of an explanation due to probability:
Although the five-element sentences found in the Treebank use mostly common phrase
structure rules, problematic center-embedded sentences like the salmon the man the dog
chased smoked fell may cause difficulty simply because they are examples of an unusual
construction: a nested object relative clause. The fact that this is an unusual construction
may in turn be a result of the fact that speakers tend to avoid nesting object relative
clauses because they can lead to memory exhaustion, though such constructions may
become readable with practice.

6. In-Element Composition Ambiguity and Parsing Accuracy

The right-corner transform described in Section 4 saves memory because it transforms
any right-branching sequence with left-child subtrees into a left-branching sequence of
incomplete constituents, with the same sequence of subtrees as right children. The left-
branching sequences of siblings resulting from this transform can then be composed
bottom-up through time by replacing each left child category with the category of the
resulting parent, within the same memory element (or depth level). For example, in
Figure 6(a) a left-child category NP/NP at time t = 4 is composed with a noun new of
category NP/NNP (a noun phrase lacking a proper noun yet to come), resulting in a
new parent category NP/NNP at time t = 5 replacing the left child category NP/NP in
the topmost d = 1 memory element.

This in-element composition preserves elements of the bounded memory store for
use in processing descendants of this composed constituent, yielding the human-like
memory demands reported in Section 5. But whenever an in-element composition like
this is hypothesized, it isolates an intermediate constituent (in this example, the noun
phrase new york city) from subsequent composition. Allowing access to this intermediate
constituent—for example, to allow new york city to become a modifier of bonds, which
itself becomes an argument of for—requires an analysis in which the intermediate
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Figure 6
Alternative analyses of strong demand for new york city ...: (a) using in-element composition,
compatible with strong demand for new york city is ... (in which the demand is for the city); and (b)
using cross-element (or delayed) composition, compatible with either strong demand for new york
city is ... (in which the demand is for the city) or strong demand for new york city bonds is ... (in
which a forthcoming referent—in this case, bonds—is associated with the city, and is in
demand). In-element composition (a) saves memory but closes off access to the noun phrase
headed by city, and so is not incompatible with the ...bonds completion. Cross-element
composition (b) requires more memory, but allows access to the noun phrase headed by city, so
is compatible with either completion. This ambiguity is introduced at t = 4 and propagated until
at least t = 7. An ordinary, non-right-corner stack machine would exclusively use analysis (b),
avoiding ambiguity.

constituent is stored in a separate memory element, shown in Figure 6(b). This creates
a local ambiguity in the parser (in this case, from time step t = 4) that may have to be
propagated across several words before it can be resolved (in this case, at time step
t = 7). This is essentially an ambiguity between arc-eager (in-element) and arc-standard
(cross-element) composition strategies, as described by Abney and Johnson (1991). In
contrast, an ordinary (purely arc-standard) parser with an unbounded stack would only
hypothesize analysis (b), avoiding this ambiguity.12

The right-corner HHMM approach described in this article relies on a learned
statistical model to predict when in-element (arc-eager) compositions will occur, in
addition to hypothesizing parse trees. The model encodes a mixed strategy: with some
probability arc-eager or arc-standard for each possible expansion. Accuracy results on
a right-corner HHMM model trained on the Penn Wall Street Journal Treebank suggest
that this kind of optionally arc-eager strategy can be reliably statistically learned.

6.1 Evaluation

In order to determinewhether amemory-preserving parsing strategy, like the optionally
arc-eager strategy, can be reliably learned, a baseline Cocke-Kasami-Younger (CKY)
parser and bounded-memory right-corner HHMM parser were evaluated on the stan-
dard Penn Treebank WSJ Section 23 parsing task, using the binarized tree set described
in Section 5.2 (WSJ Sections 2–21) as training data. Training examples requiring more

12 It is important to note that neither the right-corner nor left-corner parsing strategy by itself creates this
ambiguity. The ambiguity arises from the decision to use this optionally arc-eager strategy to reduce
memory store allocation in a bounded memory parser. Implementations of left-corner parsers such as
that of Henderson (2004) adopt an arc-standard strategy, essentially always choosing analysis (b), and
thus do not introduce this kind of local ambiguity. But in adopting this strategy, such parsers must
maintain a stack memory of unbounded size, and thus are not attractive as models of human parsing in
short-term memory (Resnik 1992).
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than four stack elements were excluded from training, in order to avoid generating
inconsistent model probabilities (e.g., from expansions that could not be re-composed
within the bounded memory store).

Most likely sequences of HHMM stack configurations are evaluated by reversing
the binarization, right-corner, and time-series mapping transforms described in Sec-
tions 4 and 5. But some of the binarization rewrites cannot be completely reversed,
because they cannot be unambiguously matched to output trees. Automatically derived
lexical projections below the annotated phrase level (e.g., binarizations of base noun
phrases) can be completely reversed, because the derived categories are character-
istically labeled with terminal symbols. So, too, can the conjunction and “nominal”
binarizations described in Section 5.1, because they can be identified by characteristic
“-LIST” and underscore delimiters. But automatically derived projections above the
annotated phrase level cannot be reliably identified in parser output (for example, an
intermediate projection “S� PP S”may or may not be annotated in the corpus). In order
to isolate the evaluation from the effects of these ambiguous matchings, the evaluation
was performed using trees in a partially binarized format, obtained by reversing only
those rewrites that result in unambiguous matches. Evaluating on this partially bina-
rized data does not seem to unfairly increase parsing performance compared to other
published results—quite the contrary: an evaluation using the state-of-the-art Charniak
(2000) parser scores about half a point worse on labeled F-score (89.3% vs. 89.9%) when
its hypotheses and gold standard trees are converted into this format.13

Both CKY baseline and HHMM test systems were run with a simple part of speech
(POS) model using relative frequency estimates from the training set, backed off to a
discriminative (decision tree) model conditioned on the last five letters of each word,
normalized over unigram POS probabilities. The CKY baseline andHHMMresults were
obtained by training and evaluating on binarized trees, which is a necessary condition
for the right-corner transform. The CKY baseline results appear to be better than those
for a baseline probabilistic context-free grammar (PCFG) system reported by Klein and
Manning (2003) using no modifications to the corpus, and no parent or sibling condi-
tioning (see Table 3, top) because the binarization process allows the parser to avoid
some sparse data effects due to large flat branching structures in the Treebank, resulting
in improved parsing accuracy. Klein and Manning note that applying linguistically
motivated binarization transforms can yield substantial improvements in accuracy—as
much as nine points, in their study (in comparison, binarization only seems to improve
accuracy by about seven points above an unmodified baseline in the present study). But
the Klein and Manning results for binarization are provided only for models already
augmented with Markov dependencies (that is, conditioning on parent and sibling
categories, analogous to HHMM dependencies), so it was not possible to compare to
a binarized and un-Markovized benchmark.

The results for HHMM parsing, training, and evaluating on these same binarized
trees (modulo right-corner and variable-mapping transforms) were substantially bet-
ter than binarized CKY, most likely due to the expanded HHMM dependencies on
previous (qd

t−1) and parent (qd−1
t ) variables at each qd

t . For example, binarized PCFG
probabilities may be defined in terms of three category symbols A, B, and C: P(A �

B C |A); whereas some of the HHMM probabilities are defined in terms of five category

13 This is presumably because the probability that a human annotator will annotate phrase structure
brackets at a particular projection or not is something existing parsers learn and exploit to improve their
accuracy. But it is not clear that this distinction is linguistically motivated.
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Table 3
Labeled recall (LR), labeled precision (LP), weighted average (F-score), and parse failure
(% of sentences yielding no tree output) results for basic CKY parser and HHMM parser on
unmodified and binarized WSJ Sections 22 (sentences 1–393: “devset”) and 23–24 (all sentences).
Results are shown with and without punctuation, compared to Klein and Manning 2003
(KM’03) using baseline and parent+sibling (par+sib) conditioning, and Roark 2001 (R’01) using
parent+sibling conditioning. Baseline CKY and test (parent+sibling) cases for the HHMM
system start out at a higher accuracy than for the Klein-Manning system because the HHMM
system requires binarization of trees, which removes some data sparsity in the raw Treebank
annotation, whereas the Klein-Manning results are computed prior to binarization. Because it is
incremental, the parser occasionally eliminates all continuable analyses from the beam, and
therefore fails to find a parse. HHMM parse failures are accounted as zeros in the recall statistics,
but are also listed separately, because in principle it might be possible to recover useful syntactic
structure from partial sequences.

with punctuation: (≤40 wds) LR LP F-score sentence error
failure reduction

KM’03: unmodified, devset − − 72.6 0
KM’03: par+sib, devset − − 77.4 0 17.5%
CKY: binarized, devset 80.3 79.9 80.1 0.8
HHMM: par+sib, devset 84.1 83.5 83.8 0.5 18.6%

CKY: binarized, sect 23 78.8 79.4 79.1 0.1
HHMM: par+sib, sect 23 83.4 83.7 83.5 0.1 21.1%

no punctuation: (≤120 wds) LR LP F fail

R’01: par+sib, sect 23–24 75.2 77.4 − 0.1
HHMM: par+sib, sect 23–24 77.2 78.3 77.7 0.0

labels: P(A/B |C/D, E) (transitioning from incomplete constituent C/D to incomplete
constituent A/B in the context of an expanding category E). This increases the number
of free parameters (estimated conditional probabilities) in the model,14 but apparently
not to the point of sparsity; this is similar to the effect of horizontal Markovization (con-
ditioning on the sibling category immediately previous to an expanded category) and
vertical Markovization (conditioning on the parent of an expanded category) commonly
used in PCFG parsing models (Collins 1999).

The improvement due to HHMM parsing over the PCFG baseline (18.6% reduction
in error) is comparable to that reported by Klein and Manning for parent and sibling
dependencies (first-order vertical and horizontal Markovization) over a baseline PCFG
without binarization (17.5% reduction in error). However, because it is not possible
to run the HHMM parser without binarization, and because Klein and Manning do
not report results for binarization transforms in the absence of parent and sibling
Markovization, it is potentially misleading to compare the results directly. For example,
it is possible that the binarization transforms described here may have performance-
optimizing effects that are latent in the binarized PCFG, but are brought out in HHMM
parsing.

Results on Section 23 of this corpus show close to 84% recall and precision, compa-
rable to that reported for state-of-the-art cubic-time parsers (with no constant bounds

14 Without punctuation, the HHMMmodel has 50,429 free parameters (including both Q and F models),
whereas the binarized PCFG has 12,373.
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on processing storage) using similar configurations of conditioning information, that is,
without lexicalization or smoothing.

Roark (2001) describes a similar incremental parser based on left-corner trans-
formed grammars, and also reports results for parsing with and without parent and
sibling Markovization. Again the performance is comparable under similar conditions
(Table 3, bottom).

This system was run with a beam width of 2,000 hypotheses. This beam width
was selected in order to compare the performance of the bounded-memory model,
which predicts in-element or cross-element composition, with that of conventional
broad-coverage parsers, which also maintain large beams. With better modeling and
vastly more data from which to learn, it is possible that the human processor may
need to maintain far fewer alternative analyses, or perhaps only one, conditioned on
a lookahead window of observations (Henderson 2004).15

These experiments used a maximum stack depth of four, and conditioned expan-
sion and transition probabilities for each qd

t on only the portion of the parent category
following the slash (that is, only A2 of A1/A2), in order to avoid sparse data effects.
Examples requiring more than four stack elements were excluded from training. This
is because in the basic relative frequency estimation used here, training examples are
depth-specific. Because the (unpunctuated) training set contains only about a dozen
sentences requiring more than four depth levels, each occupying that level for only a
few words, the data on which the fifth level of this model would be trained are very
sparse. Models at greater stack depths, and models depending on complete parent cate-
gories (or grandparent categories, etc., as in state-of-the-art parsers) could be developed
using smoothing and backoff techniques or feature-based log-linear models, but this is
left for later work (see Section 7).

7. Conclusion

This article has described a model of human syntactic processing that recognizes com-
plete phrase structure trees using only a small store of memory elements of limited
complexity. Sequences of hypothesized contents of this memory store can be mapped to
and from conventional phrase structure trees using a reversible right-corner transform.
If this syntactic processing model is combined with a bounded-memory interpreter
(Schuler, Wu, and Schwartz 2009), however, allowing the contents of this store to be
incrementally interpreted within the same bounded memory, it stands to reason that
complete, explicit phrase structure trees would not need to be constructed at any time
in processing, in keeping with experimental results showing similar lack of retention of
words and syntactic structure during human processing (Sachs 1967; Jarvella 1971).

Initial results show the use of a memory store consisting of only three to four mem-
ory elements within this framework provides nearly complete coverage of the Penn
Treebank Switchboard and WSJ corpora, consistent with recent estimates of general-
purpose short-term memory capacity. This suggests that, unlike some earlier mod-
els, the hypothesis that human sentence processing uses general-purpose short-term

15 Although, if most competing analyses are unconscious, they would be difficult to detect. Formally, the
competing pockets of activation hypothesized in a parallel-processing version of this model could be
arbitrarily small and numerous, but it seems unlikely that very small pockets of activation would persist
for very long (just as low probability analyses would be unlikely to remain on the HHMM beam). This
possibility is discussed in the particle filter account of Levy (2008).
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memory to store incomplete constituents, as defined by a right-corner transform, does
not seem to substantially underestimate human processing capacity. Moreover, despite
additional predictions that must take place within this model to manage parsing in such
close quarters, preliminary accuracy results for an unlexicalized, un-smoothed version
of this model, using only a four-element memory store, show close to 84% recall and
precision on the standard parsing evaluation. This result is comparable to that reported
for state-of-the-art cubic-time parsers (with no constant bounds on processing storage)
using similar configurations of conditioning information, namely, without lexicalization
or smoothing.

This model does not attempt to derive processing difficulties frommemory bounds,
following evidence that garden path and center-embedding processing difficulties are
caused by interference or local probability estimates rather than encounters with mem-
ory capacity limits. But this does not mean that memory store capacity and probabilistic
explanations of processing difficulty are completely independent. Probability estima-
tion seems likely to be dependent on structural information from the memory store (for
example, incomplete object relative clauses seem to be very improbable in the context
of other incomplete object relative clauses). As hypotheses use more elements in the
memory store, the distribution over these hypotheses will tend to become broader,
taxing the reservoir of activation capacity, and making it more likely for low proba-
bility hypotheses to disappear, increasing the incidence of garden path errors. Further
investigations into how the memory store elements are allocated in various syntactic
contexts may allow these apparently disparate dimensions of processing capacity to be
unified.

The model described here may be promising as an engineering tool as well. But
to achieve competitive performance with unconstrained state-of-the-art parsers will
require the development of additional approximation algorithms beyond the scope of
this article. This is because most modern parsers are lexicalized, incorporating head-
word dependencies into parsing decisions, and employing finely tuned smoothing and
backoff techniques to integrate these potentially sparse head-word dependencies with
denser unlexicalized models. The bounded-memory right-corner HHMM described
in this article can also be lexicalized in this way, but because head word dependencies
are most straightforwardly defined in terms of top-down PCFG-like dependency
structures, this lexicalization requires the introduction of additional formal machinery
to transform PCFG probabilities into right-corner form (Schuler 2009). In other
words, rather than transforming a training set of trees and mapping them to a time
series model, it is necessary to transform a consistent probabilistically weighted
grammar (in some sense, an infinite set of trees) into appropriately weighted and
consistent right-corner PCFG and HHMM models. This requires the introduction of
an approximate inference algorithm, similar to that used in value iteration (Bellman
1957), which estimates probabilities of infinite left-recursive or right-recursive chains
by exploiting the fact that increasingly longer chains of events contribute exponentially
decreasing probability mass. On top of this, preserving head-word dependencies in
incremental processing also requires the introduction of a framework for storing head
words of modifier constituents that precede the head word of a parent constituent;
including some mechanism to ensure that probability assignments are fairly distributed
among competing hypotheses (e.g., by marginalizing over possible head words) in
cases where the calculation of accurate dependency probabilities must be deferred
until the head word of the parent constituent is encountered. For these reasons, a
complete lexicalized model is considered beyond the scope of this article, and is left for
future work.
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Appendix A: Head Transform Rules

The experiments described in this article used a binarization process that included the
following rewrite rules, designed to binarize flat Treebank constituents into linguisti-
cally motivated head projections:

1. NP: right-binarize basal NPs as much as possible; then left-binarize NPs
after left context reduced to nil:

A0=NP|WHNP

. . . A1=[A-Z]*:α1 A2=NN[A-Z]*:α2 . . .

⇒

A0

. . . A2

A1:α1 A2:α2

. . .

A0=NP

A1=NN[A-Z]*|NP:α1 A2=PP|S|VP|WHSBAR:α2 . . .

⇒

A0

A1

A1:α1 A2:α2

. . .

2. VP: left-binarize basal VPs as much as possible; then right-binarize VPs
after right context reduced to nil:

A0=VP|SQ

. . . A1=VB[A-Z]*|BES:α1 A2=[A-Z]*:α2 . . .

⇒

A0

. . . A1

A1:α1 A2:α2

. . .

A0=VP

. . . A1=ADVP|RB[A-Z]*|PP:α1 A2=VB[A-Z]*|VP:α2

⇒

A0

. . . A2

A1:α1 A2:α2

3. ADJP: right-binarize basal ADJPs as much as possible; then left-binarize
ADJPs after left context reduced to nil:

A0=ADJP[A-Z]*

. . . A1=RB[A-Z]*:α1 A2=JJ[A-Z]*:α2 . . .

⇒

A0

. . . A2

A1:α1 A2:α2

. . .

A0=ADJP

A1=JJ[A-Z]*|ADJP:α1 A2=PP|S:α2 . . .

⇒

A0

A1

A1:α1 A2:α2

. . .

4. ADVP: right-binarize basal ADVPs as much as possible; then left-binarize
ADVPs after left context reduced to nil:

A0=ADVP

. . . A1=RB[A-Z]*:α1 A2=RB[A-Z]*:α2 . . .

⇒

A0

. . . A2

A1:α1 A2:α2

. . .

A0=ADVP

A1=RB[A-Z]*|ADVP:α1 A2=PP|S:α2 . . .

⇒

A0

A1

A1:α1 A2:α2

. . .
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5. PP: left-binarize PPs as much as possible; then right-binarize PPs after
right context reduced to nil:

A0=PP|SBAR

. . . A1=IN|TO:α1 A2=[A-Z]*:α2 . . .

⇒

A0

. . . A1

A1:α1 A2:α2

. . .

A0=PP

. . . A1=ADVP|RB|PP:α1 A2=PP:α2

⇒

A0

. . . A2

A1:α1 A2:α2

6. S: group subject NP and predicate VP of a sentence; then group modifiers
to right and left:

A0=S[A-Z]*

. . . A1=NP:α1 A2=VP:α2 . . .

⇒

A0

. . . S

A1:α1 A2:α2

. . .

A0=S[A-Z]*

. . . A1=ADVP|RB[A-Z]*|PP:α1 A2=VB[A-Z]*|VP:α2 . . .

⇒

A0

. . . A2

A1:α1 A2:α2

. . .

A0=S[A-Z]*

. . . A1=ADVP|RB[A-Z]*|PP:α1 A2=A0:α2 . . .

⇒

A0

. . . A2

A1:α1 A2:α2

. . .

A0=S[A-Z]*

. . . A1=A0:α1 A2=ADVP|RB[A-Z]*|PP:α2 . . .

⇒

A0

. . . A1

A1:α1 A2:α2

. . .
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