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Many probabilistic models for natural language are now written in terms of hierarchical tree
structure. Tree-based modeling still lacks many of the standard tools taken for granted in
(finite-state) string-based modeling. The theory of tree transducer automata provides a possible
framework to draw on, as it has been worked out in an extensive literature. We motivate the
use of tree transducers for natural language and address the training problem for probabilistic
tree-to-tree and tree-to-string transducers.

1. Introduction

Much natural language work over the past decade has employed probabilistic finite-
state transducers (FSTs) operating on strings. This has occurred somewhat under the
influence of speech recognition research, where transducing acoustic sequences to word
sequences is neatly captured by left-to-right stateful substitution. Many conceptual tools
exist, such as Viterbi decoding (Viterbi 1967) and forward–backward training (Baum
and Eagon 1967), as well as software toolkits like the AT&T FSM Library and USC/ISI’s
Carmel.1 Moreover, a surprising variety of problems are attackable with FSTs, from
part-of-speech tagging to letter-to-sound conversion to name transliteration.

However, language problems like machine translation break this mold, because
they involve massive re-ordering of symbols, and because the transformation processes
seem sensitive to hierarchical tree structure. Recently, specific probabilistic tree-based
models have been proposed not only for machine translation (Wu 1997; Alshawi,
Bangalore, and Douglas 2000; Yamada and Knight 2001; Eisner 2003; Gildea 2003), but
also for summarization (Knight and Marcu 2002), paraphrasing (Pang, Knight, and
Marcu 2003), natural language generation (Langkilde and Knight 1998; Bangalore and
Rambow 2000; Corston-Oliver et al. 2002), parsing, and language modeling (Baker
1979; Lari and Young 1990; Collins 1997; Chelba and Jelinek 2000; Charniak 2001; Klein
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and Manning 2003). It is useful to understand generic algorithms that may support all
these tasks and more.

Rounds (1970) and Thatcher (1970) independently introduced tree transducers as a
generalization of FSTs. Rounds was motivated by natural language:

Recent developments in the theory of automata have pointed to an extension of
the domain of definition of automata from strings to trees . . . parts of mathematical
linguistics can be formalized easily in a tree-automaton setting . . .We investigate
decision problems and closure properties. Our results should clarify the nature of
syntax-directed translations and transformational grammars . . . (Rounds 1970)

The Rounds/Thatcher tree transducer is very similar to a left-to-right FST, except that
it works top-down, pursuing subtrees independently, with each subtree transformed
depending only on its own passed-down state. This class of transducer, called R in
earlier works (Gécseg and Steinby 1984; Graehl and Knight 2004) for “root-to-frontier,”
is often nowadays called T, for “top-down”.

Rounds uses a mathematics-oriented example of a T transducer, which we repeat
in Figure 1. At each point in the top-down traversal, the transducer chooses a produc-
tion to apply, based only on the current state and the current root symbol. The traversal
continues until there are no more state-annotated nodes. Non-deterministic transducers
may have several productions with the same left-hand side, and therefore some free
choices to make during transduction.

A T transducer compactly represents a potentially infinite set of input/output tree
pairs: exactly those pairs (T1, T2) for which some sequence of productions applied to
T1 (starting in the initial state) results in T2. This is similar to an FST, which compactly
represents a set of input/output string pairs; in fact, T is a generalization of FST. If
we think of strings written down vertically, as degenerate trees, we can convert any
FST into a T transducer by automatically replacing FST transitions with T produc-
tions, as follows: If an FST transition from state q to state r reads input symbol A
and outputs symbol B, then the corresponding T production is q A(x0) → B(r x0). If
the FST transition output is epsilon, then we have instead q A(x0) → r x0, or if the
input is epsilon, then q x0→ B(r x0). Figure 2 depicts a sample FST and its equivalent
T transducer.

T does have some extra power beyond path following and state-based record-
keeping. It can copy whole subtrees, and transform those subtrees differently. It can
also delete subtrees without inspecting them (imagine by analogy an FST that quits and
accepts right in the middle of an input string). Variants of T that disallow copying and
deleting are called LT (for linear) and NT (for nondeleting), respectively.

One advantage to working with tree transducers is the large and useful body of
literature about these automata; two excellent surveys are Gécseg and Steinby (1984)
and Comon et al. (1997). For example, it is known that T is not closed under composition
(Rounds 1970), and neither are LT or B (the “bottom-up” cousin of T), but the non-
copying LB is closed under composition. Many of these composition results are first
found in Engelfriet (1975).

The power of T to change the structure of an input tree is surprising. For example,
it may not be initially obvious how a T transducer can transform the English structure
S(PRO, VP(V, NP)) into the Arabic equivalent S(V, PRO, NP), as it is difficult to move
the subject PRO into position between the verb V and the direct object NP. First,
T productions have no lookahead capability—the left-hand-side of the S production
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Figure 1
Part of a sample T tree transducer, adapted from Rounds (1970).

consists only of q S(x0, x1), although we want the English-to-Arabic transformation to
apply only when it faces the entire structure q S(PRO, VP(V, NP)). However, we can
simulate lookahead using states, as in these productions:

q S(x0, x1)→ S(qpro x0, qvp.v.np x1)
qpro PRO→ PRO
qvp.v.np VP(x0, x1)→ VP(qv x0, qnp x1)
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Figure 2
An FST and its equivalent T transducer.

By omitting rules like qpro NP→ ..., we ensure that the entire production sequence
will dead-end unless the first child of the input tree is in fact PRO. So finite lookahead
(into inputs we don’t delete) is not a problem. But these productions do not actually
move the subtrees around. The next problem is how to get the PRO to appear between
the V and NP, as in Arabic. This can be carried out using copying. We make two copies
of the English VP, and assign them different states, as in the following productions.
States encode instructions for extracting/positioning the relevant portions of the VP.
For example, the state qleft.vp.v means “assuming this tree is a VP whose left child is V,
output only the V, and delete the right child”:

q S(x0, x1)→ S(qleft.vp.v x1, qpro x0, qright.vp.np x1)
qpro PRO→ PRO
qleft.vp.v VP(x0, x1)→ qv x0
qright.vp.np VP(x0, x1)→ qnp x1

With these rules, the transduction proceeds as in Figure 3. This ends our informal pre-
sentation of tree transducers.

Although general properties of T are understood, there are many algorithmic ques-
tions. In this article, we take on the problem of training probabilistic T transducers. For
many language problems (machine translation, paraphrasing, text compression, etc.),
it is possible to collect training data in the form of tree pairs and to distill linguistic
knowledge automatically. Our problem statement is: Given (1) a particular transducer
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Figure 3
Multilevel re-ordering of nodes in a T-transducer.

with rules R, and (2) a finite training set of sample input/output tree pairs, we want
to produce (3) a probability estimate for each rule in R such that we maximize the
probability of the output trees given the input trees. As with the forward–backward
algorithm, we seek at least a local maximum. Tree transducers with weights have been
studied (Kuich 1999; Engelfriet, Fülöp, and Vogler 2004; Fülöp and Vogler 2004) but we
know of no existing training procedure.

Sections 2–4 of this article define basic concepts and recall the notions of relevant au-
tomata and grammars. Sections 5–7 describe a novel tree transducer training algorithm,
and Sections 8–10 describe a variant of that training algorithm for trees and strings.
Section 11 presents an example linguistic tree transducer and provides empirical evi-
dence of the feasibility of the training algorithm. Section 12 describes how the training
algorithm may be used for training context-free grammars. Section 13 discusses related
and future work.

2. Trees

TΣ is the set of (rooted, ordered, labeled, finite) trees over alphabet Σ. An alphabet is a finite
set. (see Table 1)
TΣ(X) are the trees over alphabet Σ, indexed by X—the subset of TΣ∪X where only

leaves may be labeled by X (TΣ(∅) = TΣ). Leaves are nodes with no children.
The nodes of a tree t are identified one-to-one with its paths: pathst ⊂ paths ≡ N∗ ≡⋃∞

i=0 Ni (N0 ≡ {()}). The size of a tree is the number of nodes: |t| = |pathst|. The path
to the root is the empty sequence (), and p1 extended by p2 is p1 · p2, where · is the
concatenation operator:

(a1, . . . , an) · (b1, . . . , bm) ≡ (a1, . . . , an, b1, . . . , bm)

For p ∈ pathst, rankt(p) is the number of children, or rank, of the node at p,
and labelt(p) ∈ Σ is its label. The ranked label of a node is the pair labelandrankt(p) ≡
(labelt(p), rankt(p)). For 1 ≤ i ≤ rankt(p), the ith child of the node at p is located at
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Table 1
Notation guide.

Notation Meaning

(w)FS(T,A) (weighted) finite-state string (transducers,acceptors)
(w)RTG (weighted) regular tree grammars (generalizes PCFG)

(x)(L)(N)T(s) (extended) (linear) (nondeleting) top–down tree(-to-string) transducers
(S)T(A,S)G (synchronous) tree (adjoining,substitution) grammars

(S,P)CFG (synchronous,probabilistic) context-free grammars
R+ positive real numbers

N natural numbers: {1, 2, 3, . . .}
∅ empty set
≡ equals (by definition)
|A| size of finite set A
X∗ Kleene star of X, i.e., strings over alphabet X: {(x1, . . . , xn) | n ≥ 0}
a · b String concatenation: (1) · (2, 3) = (1, 2, 3)
<lex lexicographic (dictionary) order: () < (1) < (1, 1) < . . . < (1, 2) < . . .

Σ alphabet (set of symbols) (commonly: input tree alphabet)
t ∈ TΣ t is a tree with label alphabet Σ
TΣ(X) ... and with variables from additional leaf label alphabet X
A(t) tree constructed by placing a unary A above tree t

A((x1, . . . , xn)) tree constructed by placing an n-ary A over leaves (x1, . . . , xn)
p tree path, e.g., (a, b) is the bth child of the ath child of root

paths the set of all tree paths (≡ N∗)
pathst subset of paths that lead to actual nodes in t

pathst({A,B}) paths that lead to nodes labeled A or B in t
t ↓ p the subtree of twith root at p, so that (t ↓ p) ↓ q = t ↓ (p · q)

rankt(p) the number of children of the node p of t
labelt(p) the label of node p of t

labelandrankt(p) the pair (labelt(p), rankt(p))
t[p← t′] substitution of tree t′ for the subtree t ↓ p

t[p← t′p,∀p ∈P] parallel substitution of tree t′p for each t ↓ p
yieldt(X) the left→ right concatenation of the X labels of the leaves of t
S ∈ N start nonterminal of a regular tree grammar
P,R productions of a regular tree grammar, rules of a tree transducer
D(M) derivations (keeping a list of applied rewrites) ofM
LD(M) leftmost derivations ofM

wM(d ∈ D(M)) weight of a derivation d: product of weight of each rule usage
WM(x) total weight of x inM: sum of weight of all LD(M) producing x
L(M) weighted tree set, tree relation, or tree-to-string relation ofM

∆ output tree alphabet
Qi ∈ Q initial (start) state of a transducer

λ ∈ xTPATΣ functions from TΣ to {0, 1} that examine finitely many paths
True the tree pattern True(t) ≡ 1,∀t
s ∈ Σ∗ s is a string from alphabet Σ, e.g., () the empty string
s[i] ith letter of string s - the ith projection π

i

indicess i such that s[i] exists: (1, . . . , |s|)
letterss set of all letters s[i] in s
|s| length of string; |s| = |indicess|, not |letterss|

spanss Analogous to tree paths, pairs (i,j) denoting substrings
s ↓ (i, j) The substring (s[i], . . . , s[j− 1]) indicated by the span (i, j) ∈ spanss
s ↓ [i] same as s[i]; [i] stands for the span (i, i+ 1)

s[p← s′] Substitution of string s′ for span p of s
s[p← s′p,∀p ∈P] Parallel (non-overlapping) substitution of string s′p for each s ↓ p
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path p · (i). The subtree at path p of t is t ↓ p, defined by pathst↓p ≡ {q | p · q ∈ pathst} and
labelandrankt↓p(q) ≡ labelandrankt(p · q).

The paths to X in t are pathst(X) ≡ {p ∈ pathst | labelt(p) ∈ X}.
A set of paths F ⊂ paths is a frontier iff it is pairwise prefix-independent:

∀p1, p2 ∈ F, p ∈ paths : p1 = p2 · p =⇒ p1 = p2

We write F for the set of all frontiers. F is a frontier of t, if F ⊂ Ft is a frontier whose
paths are all valid for t—Ft ≡ F ∩ pathst.

For t, s ∈ TΣ(X), p ∈ pathst, t[p← s] is the substitution of s for p in t, where the subtree
at path p is replaced by s. For a frontier F of t, the parallel substitution of t′p for the frontier
F ∈ Ft in t is written t[p← t′p,∀p ∈ F], where there is a t′p ∈ TΣ(X) for each path p. The
result of a parallel substitution is the composition of the serial substitutions for all p ∈ F,
replacing each t ↓ pwith t′p. (If Fwere not a frontier, the result would vary with the order
of substitutions sharing a common prefix.) For example: t[p← t ↓ p · (1),∀p ∈ F] would
splice out each node p ∈ F, replacing it by its first subtree.

Trees may be written as strings over Σ ∪ {(, )} in the usual way. For example, the tree
t = S(NP,VP(V,NP)) has labelandrankt((2)) = (VP, 2) and labelandrankt((2, 1)) = (V, 0).
Commas, written only to separate symbols in Σ composed of several typographic
letters, should not be considered part of the string. For example, if we write σ(t) for
σ ∈ Σ, t ∈ TΣ, we mean the tree with labelσ(t)(()) ≡ σ, rankσ(t)(()) ≡ 1 and σ(t) ↓ (1) ≡ t.
Using this notation, we can give a definition of TΣ(X):

If x ∈ X, then x ∈ TΣ(X) (1)

If σ ∈ Σ, then σ ∈ TΣ(X) (2)

If σ ∈ Σ and t1, . . . , tn ∈ TΣ(X), then σ(t1, . . . , tn) ∈ TΣ(X) (3)

The yield of X in t is yieldt(X), the concatenation (in lexicographic order2) over paths
to leaves l ∈ pathst (such that rankt(l) = 0) of labelt(l) ∈ X—that is, the string formed by
reading out the leaves labeled with X in left-to-right order. The usual case (the yield of t)
is yieldt ≡ yieldt(Σ). More precisely,

yieldt(X) ≡



l if r = 0 ∧ l ∈ X where (l, r) ≡ labelandrankt(())
() if r = 0 ∧ l �∈ X
•ri=1yieldt↓(i)(X) otherwise where •ri=1si ≡ s1 · . . . · sr

3. Regular Tree Grammars

In this section, we describe the regular tree grammar, a common way of compactly
representing a potentially infinite set of trees (similar to the role played by the regu-
lar grammar for strings). We describe the version where trees in a set have different
weights, in the same way that a weighted finite-state acceptor gives weights for strings

2 () <lex (a), (a1) <lex (a2) iff a1 < a2, (a1) · b1 <lex (a2) · b2 iff a1 < a2 ∨ (a1 = a2 ∧ b1 <lex b2).
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Σ = {S, NP, VP, PP, PREP, DET, N, V, run, the, of, sons, daughters}
N = {qnp, qpp, qdet, qn, qprep}
S = q
P = {q→1.0 S(qnp, VP(VB(run))),

qnp→0.6 NP(qdet, qn),
qnp→0.4 NP(qnp, qpp),
qpp→1.0 PP(qprep, np),
qdet→1.0 DET(the),
qprep→1.0 PREP(of),
qn→0.5 N(sons),
qn→0.5 N(daughters)}

Sample generated trees:

S(NP(DT(the), N(sons)),
VP(V(run)))

(with probability 0.3)

S(NP(NP(DT(the), N(sons)),
PP(PREP(of), NP(DT(the), N(daughters)))),

VP(V(run)))

(with probability 0.036)

Figure 4
A sample weighted regular tree grammar (wRTG).

in a regular language; when discussing weights, we assume the commutative semiring
({r ∈ R | r ≥ 0},+, ·, 0, 1) of nonnegative reals with the usual sum and product.

A weighted regular tree grammar (wRTG) G is a quadruple (Σ,N,S,P), where Σ is
the alphabet, N is the finite set of nonterminals, S ∈ N is the start (or initial) nonterminal,
and P ⊆ N × TΣ(N)× R+ is a finite set of weighted productions (R+ ≡ {r ∈ R | r > 0}). A
production (lhs, rhs,w) is written lhs→w rhs (if w is omitted, the multiplicative identity
1 is assumed). Productions whose rhs contains no nonterminals (rhs ∈ TΣ) are called
terminal productions, and rules of the form A→w B, for A,B ∈ N are called ε-productions,
or state-change productions, and can be used in lieu of multiple initial nonterminals.

Figure 4 shows a sample wRTG. This grammar generates an infinite number of trees.
We define the binary derivation relation on terms TΣ(N) and derivation histories

(TΣ(N × (paths× P)∗):

⇒G≡

{
((a, h), (b, h · (p, (l, r,w)))) | (l, r,w) ∈ P∧

p ∈ pathsa({l})∧

b = a[p← r]

}
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That is, (a, h)⇒G (b, h · (p, (l, r,w))) iff b may be derived from a by using the rule
l→w r to replace the nonterminal leaf l at path p with r. The reflexive, transitive closure
of ⇒G is written ⇒∗

G, and the derivations of G, written D(G), are the ways the start
nonterminal may be expanded into entirely terminal trees:

D(G) ≡
{

(t, h) ∈ TΣ × (paths× P)∗ | (S, ())⇒∗
G (t, h)

}
We also project the ⇒∗

G relation so that it refers only to trees: t′ ⇒∗
G t iff ∃h′, h ∈

(paths× P)∗ : (t′, h′)⇒∗
G (t, h).

We take the product of the used weights to get the weight of a derivation d ∈ D(G):

wG((t, (h1, . . . , hn)) ∈ D(G)) ≡
n∏
i=1

wi where hi = (pi, (li, ri,wi))

The leftmost derivations of G build a tree preorder from left to right (always expand-
ing the leftmost nonterminal in its string representation):

LD(G) ≡
{

(t, ((p1, r1), . . . , (pn, rn))) ∈ DG | ∀1 ≤ i < n : pi+1 ≮lex pi
}

The total weight of t in G is given byWG : TΣ → R, the sum of the weights of leftmost
derivations producing t: WG(t) ≡

∑
(t,h)∈LD(G) wG((t, h)). Collecting the total weight of

every possible (nonzero weight) output tree, we call L(G) the weighted tree language of
G, where L(G) = {(t,w) |WG(t) = w ∧ w > 0} (the unweighted tree language is simply
the first projection).

For every weighted context-free grammar, there is an equivalent wRTG that gener-
ates its weighted derivation trees (whose yield is a string in the context-free language),
and the yield of any regular tree language is a context-free string language (Gécseg
and Steinby 1984). We can also interpret a regular tree grammar as a context-free string
grammar with alphabet Σ ∪ {(, )}.

wRTGs generate (ignoring weights) exactly the recognizable tree languages, which
are sets of trees accepted by a non-transducing automaton version of T. This acceptor
automaton is described in Doner (1970) and is actually a closer mechanical analogue
to an FSA than is the rewrite-rule-based wRTG. RTGs are closed under intersection
(Gécseg and Steinby 1984), and the constructive proof also applies to weighted wRTG
intersection. There is a normal form for wRTGs analogous to that of regular grammars:
Right-hand sides are a single terminal root with (optional) nonterminal children. What
is sometimes called a forest in natural language generation (Langkilde 2000; Nederhof
and Satta 2002) is a finite wRTG without loops—for all valid derivation trees, each
nonterminal may only occur once in any path from root to a leaf:

∀n ∈ N, t ∈ TΣ(N), h ∈ (paths× P)∗ : (n, ())⇒∗
G (t, h) =⇒ pathst({n}) = ∅

RTGs produce tree sets equivalent to those produced by tree substitution grammars
(TSGs) (Schabes 1990) up to relabeling. The relabeling is necessary because RTGs distin-
guish states and tree symbols, which are conflated in TSGs at the elementary tree root.
Regular tree languages are strictly contained in tree sets of tree adjoining grammars
(TAG; Joshi and Schabes 1997), which generate string languages strictly between the
context-free and indexed languages. RTGs are essentially TAGs without auxiliary trees
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and their adjunction operation; the productions correspond exactly to TAG’s initial trees
and the elementary tree substitution operation.

4. Extended-LHS Tree Transducers (xT)

Section 1 informally described the root-to-frontier transducer class T. We saw that T
allows, by use of states, finite lookahead and arbitrary rearrangement of non-sibling
input subtrees removed by a finite distance. However, it is often easier to write rules that
explicitly represent such lookahead and movement, relieving the burden on the user to
produce the requisite intermediary rules and states. We define xT, a generalization of
weighted T. Because of its good fit to natural language problems, xT is already briefly
touched on, though not defined, in Section 4 of Rounds (1970).

A weighted extended-lhs top-down tree transducer M is a quintuple (Σ,∆,Q,Qi,R)
where Σ is the input alphabet, and ∆ is the output alphabet, Q is a finite set of states,
Qi ∈ Q is the initial (or start, or root) state, and R ⊆ Q× xTPATΣ × T∆(Q× paths)× R+

is a finite set of weighted transformation rules. xTPATΣ is the set of finite tree patterns:
predicate functions f : TΣ → {0, 1} that depend only on the label and rank of a finite
number of fixed paths of their input. A rule (q, λ, rhs,w) is written q λ →w rhs, mean-
ing that an input subtree matching λ while in state q is transformed into rhs, with
Q× paths leaves replaced by their (recursive) transformations. TheQ× paths leaves of a
rhs are called nonterminals (there may also be terminal leaves labeled by the output tree
alphabet ∆).

xT is the set of all such transducers T; the set of conventional top-down trans-
ducers, is a subset of xT where the rules are restricted to use finite tree patterns that de-
pend only on the root: TPATΣ ≡ {pσ,r(t)}where pσ,r(t) ≡ (labelt(()) = σ ∧ rankt(()) = r).

Rules whose rhs are a pure T∆ with no states/paths for further expansion are called
terminal rules. Rules of the form q λ →w q′ () are ε-rules, or state-change rules, which
substitute state q′ for state q without producing output, and stay at the current input
subtree. Multiple initial states are not needed: we can use a single start state Qi, and
instead of each initial state qwith starting weight w add the rule Qi True→w q () (where
True(t) ≡ 1,∀t).

We define the binary derivation relation for xT transducer M on partially trans-
formed terms and derivation histories TΣ∪∆∪Q × (paths× R)∗:

⇒M≡

{
((a, h), (b, h · (i, (q, λ, rhs,w)))) | (q, λ, rhs,w) ∈ R ∧

i ∈ pathsa ∧ q = labela(i) ∧ λ(a ↓ (i · (1))) = 1 ∧

b = a

[
i← rhs

[
p← q′(a ↓ (i · (1) · i′)),

∀p ∈ pathsrhs : labelrhs(p) = (q′, i′)

]]}

That is, b is derived from a by application of a rule q λ →w rhs to an unprocessed
input subtree a ↓ i which is in state q, replacing it by output given by rhs with variables
(q′, i′) replaced by the input subtree at relative path i′ in state q′.3

Let ⇒∗
M, D(M), LD(M), wM, WM, and L(M) (the weighted tree relation of M) follow

from the single-step⇒M exactly as they did in Section 3, except that the arguments are

3 Recall that q(a) is the tree whose root is labeled q and whose single child is the tree a.
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input and output instead of just output, with initial terms Qi(t) for each input t ∈ TΣ in
place of S:

D(M) ≡
{

(t, t′, h) ∈ TΣ × T∆ × (paths× R)∗ | (Qi(t), ())⇒∗
M (t′, h)

}
We have given a rewrite semantics for our transducer, similar to wRTG. In the

intermediate terms of a derivation, the active frontier of computation moves top-down,
with everything above that frontier forming the top portion of the final output. The next
rewrite always occurs somewhere on the frontier, and in a complete derivation, the frontier
finally shrinks and disappears. In wRTG, the frontier consisted of the nonterminal-
labeled leaves. In xT, the frontier items are not nonterminals, but pairs of state and input
subtrees. We choose to represent these pairs as subtrees of terms with labels taken from
Σ ∪∆ ∪Q, where the state is the parent of the input subtree. In fact, given an M ∈ xT
and an input tree t, we can take all the (finitely many) pairs of input subtrees and states
as nonterminals in a wRTGG, with all the (finitely many) possible single-step derivation
rewrites ofM applied to t as productions (taking the weight of the xT rule used), and the
initial term Qi(t) as the start nonterminal, isomorphic to the derivations of theMwhich
start withQi(t): (d, h) ∈ D(G) iff (t, d, h) ∈ D(M). Such derivations are exactly how all the
outputs of an input tree t are produced: when the resulting term d is in T∆, we say that
(t, d) is in the tree relation and that d is an output of t.

Naturally, there may be input trees for which no complete derivation exists—such
inputs are not in the domain of the weighted tree relation, having no output. It is known
that domain(M) ≡ {i | ∃o,w : (i, o,w) ∈ L(M)}, the set of inputs that produce any output,
is always a recognizable tree language (Rounds 1970).

The sources of a rule r = (q, l, rhs,w) ∈ R are the input-paths in the rhs:

sources(r) ≡ {i′ | ∃p ∈ pathsrhs(Q× paths), q
′ ∈ Q : labelrhs(p) = (q′, i′)}

If the sources of a rule refer to input paths that do not exist in the input, then the
rule cannot apply (because a ↓ (i · (1) · i′) would not exist). In the traditional statement
of T, sources(r) are the variables xi, standing for the ith child of the root at path (i),
and the right hand sides of rules refer to them by name: (qi, xi). In xT, however, we
refer to the mapped input subtrees by path (and we are not limited to the immediate
children of the root of the subtree under transformation, but may choose any frontier
of it).

A transducer is linear if for all its rules r, sources(r) are a frontier and occur at most
once: ∀p1, p2 ∈ pathsrhs(Q× paths), p ∈ paths− {()} : p1 �= p2 · p. A transducer is determin-
istic if for any input, at most one rule matches per state:

∀q ∈ Q, t ∈ TΣ, r = (q, p, r,w), r′ = (q′, p′, r′,w′) ∈ R :
p(t) = 1 ∧ p′(t) = 1 =⇒ r = r′

or in other words, the rules for a given state have patterns that partition possible input
trees. A transducer is deleting if there are rules in which (for some matching inputs)
entire subtrees are not used in their rhs.

In practice, we will be interested mostly in concrete transducers, where the patterns
fully specify the labels and ranks of an input subtree including all the ancestors
of sources(r). Naturally, T are concrete. We have taken to writing concrete rules’
patterns as trees with variables X in the leaves (at the sources), and using those same
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variables in the rhs instead of writing the corresponding path in the lhs. For example:
q A(x0:B,C) →w q′ x0 means a xT rule (q, λ, rhs,w) with rhs = (q′, (1)) and

λ ≡ (labelandrankt(()) = (A, 1) ∧ labelt((1)) = B ∧ labelandrankt((2)) = (C, 0))

It might be convenient to convert any xT transducer to an equivalent T transducer,
then process it with T-based algorithms—in such a case, xT would just be syntactic sugar
for T. We can automatically generate T productions that use extra states to emulate the
finite lookahead and movement available in xT (as demonstrated in Section 1), but with
one fatal flaw: Because of the definition of ⇒M, xT (and thus T) only has the ability
to process input subtrees that produce corresponding output subtrees (alas, there is no
such thing as an empty tree), and because TPAT can only inspect the root node while
deriving replacement subtrees, T can check only the parts of the input subtree that lie
along paths that are referenced in the rhs of the xT rule. For example, suppose we want
to transform NP(DET, N) (but not, say, NP(ADJ, N)) into the tree N using rules in T.
Although this is a simple xT rule, the closest we can get with T would be q NP(x0,
x1) → q.N x1, but we cannot check both subtrees without emitting two independent
subtrees in the output (which rules out producing just N). Thus, xT is a bit more
powerful than T.

5. Parsing an xT Tree Relation

Derivation trees for a transducer M = (Σ,∆,Q,Qi,R) are TR (trees labeled by rules)
isomorphic to complete leftmost M-derivations. Figure 5 shows derivation trees for a
particular transducer. In order to generate derivation trees forM automatically, we build
a modified transducerM′. This new transducer produces derivation trees on its output
instead of normal output trees.M′ is (Σ,R,Q,Qi,R

′), with4

R′ ≡ {(q, λ, r(yieldrhs(Q× paths)),w) | r = (q, λ, rhs,w) ∈ R}

That is, the original rhs of rules are flattened into a tree of depth 1, with the root labeled
by the original rule, and all the non-expanding ∆-labeled nodes of the rhs removed, so
that the remaining children are the nonterminal yield in left to right order. Derivation
trees deterministically produce a single weighted output tree, and for concrete trans-
ducers, a single input tree.

For every leftmost derivation there is exactly one corresponding derivation tree: We
start with a sequence of leftmost derivations and promote rules applied to paths that
are prefixes of rules occurring later in the sequence (the first will always be the root), or,
in the other direction, list out the rules of the derivation tree in order.5 The weights of
derivation trees are, of course, just the product of the weights of the rules in them.6

The derived transducer M′ nicely produces derivation trees for a given input, but
in explaining an observed (input/output) pair, we must restrict the possibilities further.
Because the transformations of an input subtree depend only on that subtree and its
state, we can build a compact wRTG that produces exactly the weighted derivation
trees corresponding toM-transductions (I, ())⇒∗

M (O, h) (Algorithm 1).

4 By r((t1, . . . , tn )), we mean the tree r(t1, . . . , tn ).
5 Some path concatenation is required, because paths in histories are absolute, whereas the paths in rule rhs

are relative to the input subtree.
6 Because our product is commutative, the order does not matter.
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Figure 5
Derivation trees for a T tree transducer.

Algorithm 1 makes use of memoization—the possible derivations for a given (q, i, o)
are constant, so we store answers for all past queries in a lookup table and return them,
avoiding needless recomputation. Even if we prove that there are no derivations for
some (q, i, o), successful subhypotheses met during the proof may recur and are kept,
but we do avoid adding productions we know can’t succeed. We have in the worst case
to visit all |Q| · |I| · |O| (q, i, o) pairs and apply all |R| transducer rules successfully at
each of them, so time and space complexity, proportional to the size of the (unpruned)
output wRTG, are both O(|Q| · |I| · |O| · |R|), or O(Gn2), where n is the total size of the
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Algorithm 1. Deriv (derivation forest for I⇒∗
xT O)

Input: xT transducerM = (Σ,∆,Q,Qi,R) and observed tree pair I ∈ TΣ, O ∈ T∆.
Output: derivation wRTG G = (R,N ⊆ Q× pathsI × pathsO,S,P) generating all

weighted derivation trees forM that produce O from I. Returns false instead if
there are no such trees. O(G|I||O|) time and space complexity, where G is a
grammar constant.

begin
S← (Qi, (), ()), N←∅, P←∅, memo←∅
if PRODUCEI,O(S) then
N←{n | ∃(n′, rhs,w) ∈ P : n = n′ ∨ n ∈ yieldrhs(Q× pathsI × pathsO)}
return G = (R,N,S,P)

else
return false

end

PRODUCEI,O(α = (q, i, o) ∈ Q× pathsI × pathsO) returns boolean ≡ begin
if ∃(α, r) ∈ memo then return r
memo←memo ∪ {(α, true)}
anyrule?← false
for r = (q, λ, rhs,w) ∈ R : λ(I ↓ i) = 1 ∧MatchO,∆(rhs, o) do

(o1, . . . , on)← pathsrhs(Q× paths) sorted by o1 <lex . . . <lex on //n = 0 if there are
no rhs variables

labelandrankderivrhs(())← (r,n) //derivrhs is a newly created tree
for j← 1 to n do

(q′, i′)← labelrhs(oj)
β← (q′, i · i′, o · oj)
if ¬PRODUCEI,O(β) then next r
labelandrankderivrhs((j))← (β, 0)

anyrule?← true
P←P ∪ {(α, derivrhs,w)}

memo←memo ∪ {(α,anyrule?)}
return anyrule?

end

Matcht,Σ(t′, p) ≡ ∀p′ ∈ path(t′) : label(t′, p′) ∈ Σ =⇒ labelandrankt′ (p
′) =

labelandrankt(p · p′)

input and output trees, and G is the grammar constant accounting for the states and
rules (and their size).

If the transducer contains cycles of state-change rules, then the generated derivation
forest may have infinitely many trees in it, and thus the memoization of PRODUCE
must temporarily assume that the alignment (q, i, o) under consideration will succeed
upon reaching itself, through such a cycle, even though the answer is not yet conclusive
(it may be conclusively true, but not false). Although it would be possible to detect these
cycles (setting “pending” rather than true for the interim in memo) and deal with them
more severely, we can just remove the surplus later in linear time, using Algorithm 2,
which is an implementation (for wRTG) of a well-known method of pruning useless
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Algorithm 2. RTGPrune (wRTG useless nonterminal/production identification)

Input: wRTG G = (Σ,N,S,P), with P = (p1, . . . , pm) and pi = (qi, ti,wi).
Output: For all n ∈ N, B[n] = (∃t ∈ TΣ : n⇒∗

G t) (true if n derives some output tree t
with no remaining nonterminals, false if it’s useless), and
A[n] = (∃t ∈ TΣ, t′ ∈ TΣ({n}) : S⇒∗

G t
′ ⇒∗

G t) (n additionally can be produced
from an S using only productions that can appear in complete derivations).
Time and space complexity are linear in the total size of the input:
O(|N|+

∑m
i=1 (1 + |pathsti |)

begin
M←∅
for n ∈ N do B[n]← false, Adj[n]←∅
for i← 1 to m do
Y←{labelti (p) | p ∈ pathsti (N)}
// Y are the unique N in rhs of rule i
for n ∈ Y do Adj[n]←Adj[n] ∪ {i}
if |Y| = 0 thenM←M ∪ {i}
r[i]←|Y|

for n ∈M do REACH(n)
/* Now that B[n] are decided, compute A[n] */
for n ∈ N do A[n]← false
USE(S)

end

REACH(n) ≡ begin
B[n]← true
for i ∈ Adj[n] do

if ¬B[qi] then
r[i]← r[i]− 1
if r[i] = 0 then REACH(qi)

end

USE(n) ≡ begin
A[n]← true
for n′ s.t. ∃(n, t,w) ∈ R : n′ ∈ yieldt(N) do

/* for n′ that are in the rhs of rules whose lhs is n */
if ¬A[n′] ∧ B[n′] then USE(n′)

end

productions from a CFG (Hopcroft and Ullman 1979).7 We eliminate all the remains
of failed subforests, by removing all nonterminals n, and any productions involving n,
where Algorithm 2 gives A[n] = false.

In the next section, we show how to compute the contribution of a nonterminal to
the weighted trees produced by a wRTG, in a generalization of Algorithm 2 that gives
us weights that we accumulate per rule over the training examples, for EM training.

7 The idea is to first remove all nonterminals (and productions referring to them) that don’t yield any
terminal string, and after that, to remove those which are not reachable top-down from S.
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6. Inside–Outside for wRTG

Given a wRTGG = (Σ,N,S,P), we can compute the sums of weights of trees derived us-
ing each production by adapting the well-known inside–outside algorithm for weighted
context-free (string) grammars (Lari and Young 1990).
Inside weights βG for a nonterminal or production are the sum of weights of all trees

that can be derived from it:

βG(n ∈ N) ≡
∑

(n,r,w)∈P

w · βG(r)

βG(r ∈ TΣ(N) | (n, r,w) ∈ P}) ≡
∏

p∈pathsr(N)

βG(labelr(p))

By definition, βG(S) gives the sum of the weights of all trees generated by G. For the
wRTG generated by Deriv(M, I,O), this is exactlyWM(I,O).

The recursive definition of β does not assume a non-recursive wRTG. In the
presence of derivation cycles with weights less than 1, β can still be evaluated as a
convergent sum over an infinite number of trees.

The output of Deriv will always be non-recursive provided there are no cycles of
ε-rules in the transducer. There is usually no reason to build such cycles, as the effect
(in the unweighted case) is just to make all implicated states equivalent.
Outside weights αG are for each nonterminal the sums over all its occurrences in

complete derivations in the wRTG of the weight of the whole tree, excluding the
occurrence subtree weight (we define this without resorting to division for cancellation,
but in practice we may use division by βG(n) to achieve the same result).

αG(n ∈ N) ≡


1 if n = S
uses of n in productions︷ ︸︸ ︷∑

p,(n′,r,w)∈P:labelr(p)=n

w · αG(n′) ·
∏

p′∈pathsr(N)−{p}

βG(labelr(p
′))

︸ ︷︷ ︸
sibling nonterminals

otherwise.

Provided that useless nonterminals and productions were removed by Algorithm 2,
and none of the rule weights are 0, all of the nonterminals in a wRTG will have nonzero
α and β. Conversely, if useless nonterminals weren’t removed, they will be detected
when computing inside–outside weights by virtue of their having zero values, so they
may be safely pruned without affecting the generated weighted tree language.

Finally, given inside and outside weights, the sum of weights of trees using a
particular production is γG((n, r,w) ∈ P) ≡ αG(n) · w · βG(r). Here we rely on the com-
mutativity of the product (the left-out inside part reappears on the right of the inside
part, even when it wasn’t originally the last term).

Computing αG and βG for nonrecursive wRTG is a straightforward translation of
the recursive definitions (using memoization to compute each result only once) and is
O(|G|) in time and space. Or, without using memoization, we can take a topological sort
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using the dependencies induced by the equations for the particular forest, and compute
in that order. In case of a recursive wRTG, the equations may still be solved (usually
iteratively), and it is easy to guarantee that the sums converge by appropriately keeping
the rule weights of state-change productions less than one.

7. EM Training

Expectation-Maximization (EM) training (Dempster, Laird, and Rubin 1977) works on
the principle that the likelihood (product over all training examples of the sum of all
model derivations for it) can be maximized subject to some normalization constraint on
the parameters,8 by repeatedly:

1. Computing the expectation of decisions taken for all possible ways of
generating the training corpus given the current parameters, accumulating
(over each training example) parameter counts �c of the portion of all
possible derivations using that parameter’s decision:

∀τ ∈ parameters :

cτ ≡ Et∈training




∑
d∈derivationst

(# of times τ used in d) · pparameters(d)∑
d∈derivationst

pparameters(d)




2. Maximizing by assigning the counts to the parameters and renormalizing:

∀τ ∈ parameters : τ← cτ
Zτ(�c )

Each iteration is guaranteed to increase the likelihood until a local maximum is
reached. Normalization may be affected by tying or fixing of parameters. The deriva-
tions for training examples do not change, but the model weights for them do. Us-
ing inside–outside weights, we can efficiently compute these weighted sums over all
derivations for a wRTG, and thus, using Algorithm 1, over all xT derivations explaining
a given input/output tree pair.

A simpler version of Deriv that computes derivation trees for a wRTG given an
output tree could similarly be used to train weights for wRTG rules.9

Each EM iteration takes time linear in the size of the transducer and linear in the
size of the derivation tree grammars for the training examples. The size of the derivation
trees is at worstO(Gn2), so for a corpus ofN examples with maximum input/output size
n, an iteration takes at worst timeO(NGn2). Typically, we expect only a small fraction of
possible states and rules will apply to a given input/output subtree mapping.

8 Each parameter gives the probability of a single model decision, and a derivation’s probability is the
product of all the decisions producing it.

9 One may also use Deriv unmodified to train an identity (or constant-input) transducer with one rule
per wRTG production, having exactly the range of the wRTG in question, and of course transforming
training trees to appropriate tree pairs.
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The recommended normalization function computes the sum of all the counts for
rules having the same state, which results in trained model weights that give a joint
probability distribution over input/output tree pairs.

Attempts at conditional normalization can be problematic, unless the patterns for all
the rules of a given state can be partitioned into sets so that for any input, only patterns
from at most one set may match. For example, if all the patterns specify the label and
rank of the root, then they may be partitioned along those lines. Input-epsilon rules,
which always match (with pattern True), would make the distribution inconsistent by
adding extra probability mass, unless they are required (in what is no longer a partition)
to have their counts normalized against all the partitions for their state (because they
transform inputs that could fall in any of them).

One can always marginalize a joint distribution for a particular input to get true
conditional probabilities. In fact, no method of assigning rule weights can generally
compute exact conditional probabilities; remarginalization is already required: take as
the normalization constant the inside weight of the root derivation forest corresponding
to all the derivations for the input tree in question.

Even using normalization groups that lead to inconsistent probability distributions,
EM may still compute some empirically useful local maximum. For instance, placing
each q lhs in its own normalization group might be of interest; although the inside
weights of a derivation forest would sum to some s > 1, Train would divide the counts
earned by each participating rule by s (Algorithm 3).

8. Strings

We have covered tree-to-tree transducers; we now turn to tree-to-string transducers.
In the automata literature, such transductions are called generalized syntax-directed
translation (Aho and Ullman 1971), and are used to specify compilers that (deter-
ministically) transform high-level source-language trees into linear target-language
code. Tree-to-string transducers have also been applied to the machine translation of
natural languages (Yamada and Knight 2001; Eisner 2003). Tree-to-string transduction
is appealing when trees are only available on the input side of a training corpus.
Furthermore, tree/string relationships are less constrained than tree/tree, allowing
the possibility of simpler models to account for natural language transformations.
(Though we will not pursue it here, string-to-string training should also be possible
with tree-based models, if only string-pair data is available; string/string relations
induced by tree transformations are sometimes called translations in the automata
literature.)

Σ� are the strings over alphabet Σ. For s = (s1, . . . , sn), the length of s is |s| ≡ n and
the ith letter is s[i] ≡ si, for all i ∈ indicess ≡ {i ∈ N | 1 ≤ i ≤ n}. indicess(X) is the subset
{i ∈ indicess | i[s] ∈ X}. The letters in s are letterss = {l|∃i ∈ indicess : s[i] = l}. The spans
of s are spanss = {(a, b) ∈ {N2 | 1 ≤ a ≤ b ≤ n+ 1}, and the substring at span p = (a, b) of
s is s ↓ p ≡ (sa, . . . sb−1), with s ↓ (a, a) = (). We use the shorthand [i] ≡ (i, i+ 1) for all
i ∈ N, so s ↓ [i] = s[i]. The substitution of t for a span (a, b) ∈ spanss in s is s[(a, b)← t] ≡
(s ↓ (1, a)) · t · (s ↓ (b,n+ 1)).10

A partition is a set of non-overlapping spans P—∀(a, b), (c, d) ∈ P : c ≤ d ≤ a ∨ b ≤
c ≤ d ∨ (a, b) = (c, d), and the parallel substitution of s′p for the partition P of s is writ-
ten s[p← s′p,∀p ∈ P]. In contrast to parallel tree substitution, we cannot take any

10 a · b is string concatenation, defined already in Section 2.

408



Graehl, Knight, and May Training Tree Transducers

composition of the individual substitutions, because the replacement substrings may
be of different length, changing the referent of subsequent spans. It suffices to perform
a series of individual substitutions, in right to left order—(an, bn), . . . , (ai, bi), . . . , (a1, b1)
(ai ≥ bi+1,∀1 ≤ i < n).

Algorithm 3. Train (EM training for tree transducers)

Input: xR transducerM = (Σ,∆,Q,Qd,R) with initial rule weights, observed weighted
tree pairs T ∈ TΣ × T∆ × R+, minimum relative log-likelihood change for
convergence ε ∈ R+, maximum number of iterations maxit ∈ N, and for each
rule r ∈ R: prior counts (for a Dirichlet prior) prior : R �→ R for smoothing, and
normalization function Zr : (R �→ R) �→ R used to update weights from counts
w′
r← count(r)/Zr(count).

Output: New rule weightsW ≡ {wr | r ∈ R}.
begin

for (i, o,w) ∈ T do
di,o←Deriv(M, i, o) // Algorithm 1
if di,o = false then
T←T − {(i, o,w)}
Warn(more rules are needed to explain (i, o))

Compute inside–outside weights for di,o
If Algorithm 2 (RTGPrune) has not already been used to do so, remove all useless
nonterminals n (and associated rules) whose βdi,o (n) = 0 or αdi,o (n) = 0

i← 0, L←−∞, δ← ε

for r = (q, λ, rhs,w) ∈ R do wr←w
while δ ≥ ε ∧ i < maxit do

for r ∈ R do count[r]← prior(r)
L′← 0
for (i, o,wexample) ∈ T / / Estimate

do
let D ≡ di,o ≡ (R,N,S,P)
compute αD,βD using latestW ≡ {wr | r ∈ R} // see Section 6
for ρ = (n, rhs,w) ∈ P do

γD(ρ)←αD(n) · w · βD(rhs)
let r ≡ labelrhs(())
count[r]← count[r] + wexample ·

γD(ρ)
βD(S)

L′← L′ + logβD(S) · wexample
for r ∈ R / / Maximize
do

wr←
count[r]
Zr(count)

// e.g., joint

Zr(�c ) ≡
∑

r′=(qr,d,e,f )∈R

c(r′),∀r = (qr, λ, rhs,w) ∈ R

δ← L
′ − L
|L′|

L← L′, i← i+ 1
end
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9. Extended Tree-to-String Transducers (xTs)

A weighted extended-lhs root-to-frontier tree-to-string transducer M is a quintuple
(Σ,∆,Q,Qi,R) where Σ is the input alphabet, ∆ is the output alphabet, Q is a finite
set of states, Qi ∈ Q is the initial (or start, or root) state, and R ⊆ Q× xTPATΣ × (∆ ∪
(Q× paths))� × R+ is a finite set of weighted transformation rules, written q λ→w rhs. A
rule says that to transform an input subtree matching λ while in state q, replace it by
the string of rhs with its nonterminal (Q× paths) letters replaced by their (recursive)
transformation.

xTs is the same as xT, except that the rhs are strings containing some nonterminals
instead of trees containing nonterminal leaves. By taking the yields of the rhs of an xT
transducer’s rules, we get an xTs that derives exactly the weighted strings that are the
yields of the weighted trees generated by its progenitor.

As discussed in Section 1, we may consider strings as isomorphic to degener-
ate, monadic-spined right-branching trees, for example, the string (a, b, c) is the tree
C(a,C(b,C(c,END))). Taking the yield of such a tree, but with END yielding the empty
string, we have the corresponding string. We choose this correspondence instead of flat
trees (e.g., C(a, b, c)) because our derivation steps proceed top-down, choosing the states
for all the children at once (what’s more, we don’t allow symbols C to have arbitrary
rank). If all the rhs of an xTs transducer are transformed into such trees, then we have
an xT transducer. The yields of that transducer’s output trees for any input are the
same as the outputs of the xTs transducer for the same input, but again, only if END is
considered to yield the empty string. Note that in general the produced output trees will
not have the canonical right-branching monadic spine that we use to encode strings,11 so
that yield-taking is a nontrivial operation. Finally, consider that for a given transducer,
the same output yield may be derived via many output trees, which may differ in the
number and location of END, and in the branching structure induced by multi-variable
rhs. Because this leads to additional difficulties in inferring the possible derivations
given an observed output string, we must study tree-to-string relations apart from tree
relations.

Just as wRTG can generate PCFG derivation trees, xTs can generate tree/string pairs
comparable to a Synchronous CFG (SCFG), with the tree being the CFG derivation tree
of the SCFG input string, with one caveat: an epsilon leaf symbol (we have used END)
must be introduced which must be excluded from yield-taking, after which the string-
to-string translations are identical.

We define the binary derivation relation on (∆ ∪ (Q× TΣ))� × (N× R)∗ (strings of
output letters and state-labeled input trees and their derivation history)

⇒M≡

{
((a, h), (b, h · (i, (q, λ, rhs,w)))) | ∃(q, λ, rhs,w) ∈ R, i ∈ indicesa :

a[i] = (q, I) ∈ Q× TΣ ∧
λ(I) = 1 ∧

b = a

[
[i]← rhs

[
[p]← (q′, I ↓ i′),

∀p ∈ indicesrhs : rhs[p] = (q′, i′) ∈ Q× paths

]]}

11 In the special case that all rhs contain at most one variable, and that every variable appears in the final
position of its rhs, the output trees do, in fact, have the same canonical monadic-spined form. For these
transducers there is no meaningful difference between xTs and xT.
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where at position i, an input tree I (labeled by state q) in the string a is replaced by
a rhs from a rule that matches it. Of course, the variables (q′, i′) ∈ Q× paths in the rhs
get replaced by the appropriate pairing of (q′, I ↓ i′). Each rewrite flattens the string of
trees by breaking one of the trees into zero or more smaller trees, until (in a complete
derivation) only letters from the output alphabet ∆ remain. As with xT, rules may only
apply if the paths in them exist in the input (if i′ ∈ pathsI), even if the tree pattern doesn’t
mention them.

Let⇒∗
M, D(M), LD(M), wM,WM, and L(M) (the weighted tree-to-string relation ofM)

follow from the single-step⇒M exactly as they did in Section 4.12

10. Parsing an xTs Tree-to-String Relation

Derivation trees for an xTs transducer are defined by an analogous xT transducer,
exactly as they were for derivation trees for xT, where the nodes are labeled by rules
to be applied preorder, with the ith child rewriting the ith variable in the rhs of its parent
node.

Algorithm 4 (SDeriv) is the tree-to-string analog of Algorithm 1 (Deriv), building a
tree grammar that generates all the weighted derivation trees explaining an observed
input tree/output string pair for an xTs transducer.

SDeriv differs from Deriv in the use of arbitrary output string spans instead of
output subtrees. The looser alignment constraint causes additional complexity: There
areO(m2) spans of an observed output stringO of lengthm, and each binary production
over a span has O(m) ways of dividing the span in two (we also have the n different
input subtrees and q different rule states).

There is no way to fix in advance a tree structure over the training example and
transducer rule output strings without constraining the derivations to be consistent with
the bracketing. Another way to think of this is that any xTs derivation implies a specific
tree bracketing over the output string. In order to compute the derivations using the
tree-to-tree Deriv, we would have to take the union of forests for all the possible output
trees with the given output yield.

SDeriv takes time and space linear to the size of the output: O(Gnm3) where G
combines the states and rules into a single grammar constant, and n is the size of the
input tree. The reduced O(m2) space bound from 1-best CFG parsing does not apply,
because we want to keep all successful productions and split points, not only the best
for each item.

We use the presence of terminals in the right hand side of rules to constrain the
alignments of output subspans to nonterminals, giving us minimal-sized subproblems
tackled by VarsToSpan.

The canonicalization of same-substring spans is most obviously applicable to zero-
length spans (which become (1, 1), no matter where they arose), but in the worst case,
every input label and output letter is unique, so nothing further is gained. Canonical-
ization may also be applied to input subtrees. By canonicalizing, we effectively name
subtrees and substrings by value, instead of by path/span, increasing best-case sharing
and reducing the size of the output. In practice, we still use paths and spans, and hash
to a canonical representative if desired.

12 Because the locations in derivation histories are string indexes now rather than tree paths, we use the
usual < on naturals as the ordering constraint for leftmost derivations.
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Algorithm 4. SDeriv (derivation forest for I⇒∗
xTs O)

Input: xTs transducerM = (Σ,∆,Q,Qi,R), observed input tree I ∈ TΣ, and output
string O = (o1, . . . , on) ∈ ∆∗

Output: derivation wRTG G = (R ∪ {�},N ⊆ N′,S,P) generating all weighted
derivation trees forM that produce O from I, with
N′ ≡ ((Q× pathsI × spansO)∪

(pathsI × spansO × (Q× paths)∗)). Returns false instead if there are no such trees.
begin
S← (Qi, (), (1,n)), N← ∅, P←∅,memo←∅
if PRODUCEI,O(S) then
N←{n | ∃(n′, rhs,w) ∈ P : n = n′ ∨ n ∈ yieldrhs(N

′)}
return G = (R ∪ {�},N,S,P)

else
return false

end

PRODUCEI,O(α = (q ∈ Q, in ∈ pathsI, out = (a, b) ∈ spansO)) returns boolean ≡ begin
if ∃(α, r) ∈ memo then return r
memo←memo ∪ {(α, true)}
anyrule?← false
for rule = (q, pat, rhs,w) ∈ R : pat(I ↓ in) = 1 ∧ FeasibleO(rhs, out) do

(r1, . . . , rk)← indicesrhs(∆) in increasing order
/* k← 0 if there are none */
p0← a− 1, pk+1← b
r0← 0, rk+1←|rhs|+ 1
for p = (p1, . . . , pk) : (∀1 ≤ i ≤ k : O[pi] = rhs[ri])∧
(∀0 ≤ i ≤ k : pk < pk+1 ∧ (rk+1 − rk = 1 =⇒ pk+1 − pk = 1)) do

/* for all alignments p between rhs[ri] and O[pi], such that
order, beginning/end, and immediate adjacencies in rhs
are observed in O. The degenerate k = 0 has just p = ().
*/

labelderivrhs(())← (rule)
v← 0
for i← 0 to k do

/* variables rhs ↓ (ri + 1, ri+1) must generate O ↓ (pi + 1, pi+1)
*/

if ri + 1 = ri+1 then next i
v← v+ 1
spangen← (in, (pi + 1, pi+1), rhs ↓ (ri + 1, ri+1))
n←VarsToSpanI,O(spangen)
if n = false then next p
labelandrankderivrhs((v))← (n, 0)

anyrule?← true
rankderivrhs(()) = v
P←P ∪ {α, derivrhs,w)}

memo←memo ∪ {(α,anyrule?)}
return anyrule?

end

FeasibleO(rhs, span) ≡ ∀l ∈ lettersrhs : l ∈ ∆ =⇒ l ∈ lettersO↓span
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Algorithm SDeriv (cont.) �-labeled nodes are generated as artifacts of sharing by
cons-nonterminals of derivations for the same spans.
VarsToSpanI,O
(wholespan = (in ∈ pathsI, out = (a, b) ∈ spansO,nonterms ∈ (Q× paths)∗)) returns
N′ ∪ {false} ≡
/* Adds all the productions that can be used to map from parts of the

nonterminal string referring to subtrees of I ↓ in into O ↓ out and
returns the appropriate derivation-wRTG nonterminal if there was a
completely successful derivation, or false otherwise. */

begin
ret← false
if |nonterms| = 1 then

(q′, i′)← nonterms[1]
if PRODUCEI,O(q′, in · i′, out) then return (q′, in · i′, out)
return false

wholespan← (in,CANONICALO(out),nonterms)
if ∃(wholespan, r) ∈ memo then return r
for s← b to a do

/* the first nonterminal will cover the span (a,s) */
(q′, i′)← nonterms[1] /* nonterms will never be empty */
spanfirst← (q′, i · i′, (a, s))
if ¬PRODUCEI,O(spanfirst) then next s
labelspanlist(())← �
/* cons node for sharing; left child expands to rules used for this

nonterminal, right child expands to rest of nonterminal/span
derivation */

labelandrankspanlist((1))← (spanfirst, 0)
/* first child: expansions of first nonterminal */
rankspanlist(())← 2
spanrest← (in, (s, b),nonterms ↓ (2, |nonterms|+ 1))
/* second child: expansions of rest of nonterminals */
n←VarsToSpanI,O(spanrest)
if n = false then next s
labelandrankspanlist((2))← (n, 0)
P←P ∪ (wholespan, spanlist, 1)
ret←wholespan

memo←memo ∪ {(wholespan,ret)}
return ret

end

CANONICALO((a, b)) ≡ min{(x, y) | O ↓ (x, y) = O ↓ (a, b) ∧ x ≥ 1}

The enumeration of matching rules and alignments of terminals in the rule rhs to
positions in the output substring is best interleaved; the loops are nested for clarity
of presentation only. We use an FSA of subsequences of the output string (skipping
forward to a desired letter in constant time with an index on outgoing transitions), and
a trie of the rules’ outputs (grouping by collapsing rhs variable sequences into a single
“skip” symbol), and intersect them, visiting alignments and sets of rules in the rule
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index. The choice of expansion sites against an input subtree proceeds by exhaustive
backtracking, since we want to enumerate all matching patterns. Each of these sets of
rules is further indexed against the input tree in a kind of leftmost trie.13 Feasible is
redundant in the presence of such indexing.

Static grammar analysis could also show that certain transducer states always (or
never) produce an empty string, or can only produce a certain subset of the terminal al-
phabet. Such proofs would be used to restrict the alignments considered in VarsToSpan.

We have modified the usual derivation tree structure to allow sharing the ways
an output span may align to a rhs substring of multiple consecutive variables; as a
consequence, we must create some non-rule-labeled nodes, labeled by � (with rank 2).
Train collects counts only for rule-labeled nodes, and the inside–outside weight compu-
tations proceed in ignorance of the labels, so we get the same sums and counts as if we
had non-binarized derivation trees. Instead of a consecutive rhs variable span of length
n generating n immediate rule-labeled siblings, it generates a single right-branching
binarized list of length n with each suffix generated from a (shared) nonterminal. As
in LISP, the left child is the first value in the list, and the right child is the (binarized)
rest of the list. As the base case, we have �(n1,n2) as a list of two nonterminals (single
variable runs refer to their single nonterminal directly without any � wrapping; we use
no explicit null list terminator). Just as in CFG parsing, it would be necessary without
binarization to consider exponentially many productions, corresponding to choosing
an n-partition of the span length; the binarized nonterminals in our derivation RTG
effectively share the common suffixes of the partitions.

SDeriv could be restated in terms of parsing with a binarized set of rules, where
only some of the binary nonterminals have associated input trees; however, this would
complicate collecting counts for the original, unbinarized transducer rules.

If there are many cyclical state-change transitions (e.g., q x0 → q′ x0), a nearly
worst-case results for the memoized top-down recursive descent parsing of SDeriv,
because for every reachable alignment, nearly every state would apply (but after prun-
ing, the training proceeds optimally). An alternative bottom-up SDeriv would be better
suited in general to input-epsilon heavy transducers (where there is no tree structure
consumed to guide the top-down choice of rules). The worst-case time and space
bounds would be the same, but (output) lexical constraints would be used earlier.

The weighted derivation tree grammar produced by SDeriv may be used (after re-
moving useless productions with Algorithm 2) exactly as before to perform EM train-
ing with Train. In doing so, we generalize the standard inside–outside training of
probabilistic context-free grammar (PCFG) on raw text (Baker 1979). In Section 12,
we demonstrate this by creating an xTs transducer that transforms a fixed single-node
dummy tree to the strings of some arbitrary CFG, and train it on a corpus in which the
dummy input tree is paired with each training string as its output.

11. Translation Modeling Experiment

It is possible to cast many current probabilistic natural language models as T-type tree
transducers. In this section, we implement the translation model of Yamada and Knight
(2001) and train it using the EM algorithm.

13 To make a trie of complete tree patterns, represent them canonically as strings interleaving paths leftmost
for expansion, and labelandrank that must agree with the concurrent location in the input tree.
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Figure 6 shows a portion of the bilingual English-tree/Japanese-string corpus used
in Yamada and Knight (2001) and here. Figures 7 and 8 show the generative model and
parameters; the parameter values shown were learned via specialized EM re-estimation
formulae described in this article’s appendix. According to the model, an English tree
becomes a Japanese string in four steps.

First, every node is re-ordered, that is, its children are permuted probabilistically.
If there are three children, then there are six possible permutations whose probabilities
add up to 1. The re-ordering depends only on the child label sequence, and not on any
wider or deeper context. Note that the English trees in Figure 6 are already flattened in
pre-processing because the model cannot perform complex re-orderings such as the one
we described in Section 1, S(PRO,VP(V,NP))→ V, PRO, NP.

Figure 6
A portion of a bilingual tree/string training corpus.
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Figure 7
The translation model of Yamada and Knight (2001).

Figure 8
The parameter tables of Yamada and Knight (2001).

Second, at every node, a decision is made about inserting a Japanese function word.
This is a three-way decision at each node—insert to the left, insert to the right, or do not
insert—and it depends on the labels of the node and its parent.

Third, English leaf words are translated probabilistically into Japanese, independent
of context.

Fourth, the internal nodes are removed, leaving only the Japanese string.

416



Graehl, Knight, and May Training Tree Transducers

This model effectively provides a formula for P(Japanese string | English tree) in
terms of individual parameters, and EM training seeks to maximize the product of these
conditional probabilities across the whole tree/string corpus.

We now build a trainable xTs tree-to-string transducer that embodies the same
P(Japanese string | English tree).

It is a four-state transducer. For the main state (and start state) q, meaning “translate
this (sub)tree,” we have three rules:

q x0→ i x0, r x0
q x0→ r x0, i x0
q x0→ r x0

State i means “produce a Japanese function word out of thin air.” We include an i
rule for every Japanese word in the vocabulary:

i x0→ “de”
i x0→ “kuruma”
i x0→ “wa”
. . .

State r means “re-order my children and then recurse.” For internal nodes, we
include a rule for every parent/child sequence and every permutation thereof:

r NN(x0:CD, x1:NN)→ q x0, q x1
r NN(x0:CD, x1:NN)→ q x1, q x0
. . .

The rhs sends the child subtrees back to state q for recursive processing. However,
for English leaf nodes, we instead transition to a different state t, so as to prohibit any
subsequent Japanese function word insertion:

r NN(x0:“car”)→ t x0
r CC(x0:“and”)→ t x0
. . .

State t means “translate this word,” and we have a rule for every pair of co-
occurring English and Japanese words:

t “car”→ “kuruma”
t “car”→ “wa”
t “car”→ *e*
. . .

This follows Yamada and Knight (2001) in also allowing English words to disappear
(the rhs of the last rule is an empty string).

Every rule in the xTs transducer has an associated weight and corresponds to
exactly one of the model parameters.

The transducer just described, which we will subsequently call simple, is unfaithful
in one respect so far: The insert-function-word decision is independent of context,
whereas Yamada and Knight (2001) specifies it is conditioned on the node and parent
labels. We modify the simple transducer into a new exact transducer by replacing the q
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state with a set of states of the form q.parent, indicating the parent symbol of the current
node being processed. The start state then becomes q.TOP, and the q rules are rewritten
to specify the current node. Thus, every parent/child pair in the corpus gets its own set
of insert-function-word rules:

q.TOP x0:VB→ i x0, r x0
q.TOP x0:VB→ r x0, i x0
q.TOP x0:VB→ r x0
q.VB x0:NN→ i x0, r x0
q.VB x0:NN→ r x0, i x0
q.VB x0:NN→ r x0
. . .

The r rules now need to send parent information when they recurse to the q.parent
states:

r NN(x0:CD, x1:NN)→ q.NN x0, q.NN x1
r NN(x0:CD, x1:NN)→ q.NN x1, q.NN x0
. . .

The i and t rules stay the same.
This modification adds to our new transducer model all the contextual information

specified in Yamada and Knight (2001). However, upon closer inspection one can see
that the exact transducer is in fact overspecified in the reordering, or r rules. Yamada
and Knight only conditions reordering on the child sequence, thus, for example, the
reordering of JJ(JJ NN) is not distinct from the reordering of NN(JJ NN). As specified
in Train a separate parameter is estimated for each rule in the transducer. We thus
introduce rule tying to ensure the exact transducer is not misnamed. By designating
a set of transducer rules as tied we indicate that a single count collection and parameter
estimation is performed for the entire set during Train. We denote tied rules by marking
each rule in the same tied class with the symbol @ and a common integer. Thus the JJ(JJ
NN) and NN(JJ NN) reordering rules described previously are modified as follows:

r JJ(x0:JJ, x1:NN)→ q.JJ x0, q.JJ x1 @ 1
r JJ(x0:JJ, x1:NN)→ q.JJ x1, q.JJ x0 @ 2
r NN(x0:JJ, x1:NN)→ q.NN x0, q.NN x1 @ 1
r NN(x0:JJ, x1:NN)→ q.NN x1, q.NN x0 @ 2

All reordering rules with the same input and output variable sequence are in the
same tied class, and thus receive the same probability, independent of their parent
symbols. We consider the four-state transducer initially specified as our simple model,
and the modification that introduces parent-dependent q states and tied reordering
rules as the exact model, since it is a precise xTs transducer formulation of the model
of Yamada and Knight (2001).

As a means of providing empirical evidence of the utility of this approach, we
built both the simple and exact transducers and trained them using the EM algorithm
described in Section 7. We next compare the alignments and transition probabilities
achieved by generic tree transducer operations with the model-specific implementation
of Yamada and Knight (2001).

We obtained the corpus used as training data in Yamada and Knight (2001). This
corpus is a set of 2,060 Japanese/English sentence pairs from a dictionary, preprocessed
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Table 2
A comparison of the three transducer models used to simulate the model of Yamada and
Knight (2001).

model states initial rules rules after training time % link match % sent. match
training (hours)

simple 4 98,033 12,413 16.95 87.42 52.66
exact 28 98,513 12,689 17.42 96.58 81.46
perfect 29 186,649 24,492 53.19 99.85 99.47

as described in Yamada and Knight. There are on average 6.9 English words per sen-
tence and sentences range in size from 2 to 20 words. We built the simple and exact
unweighted transducers described above; Table 2 summarizes their initial sizes. The
exact model has 24 more states than the simple; this is due to the parent-dependent
modification to q. The 480 additional rules are due to insertion rules dependent on
parent and child information.

We then ran our training algorithm on the unweighted transducers and the training
corpus. Because the derivation tree grammars produced by SDeriv can be large and
time-intensive to compute, we calculated them once prior to training, saved them
to disk, and then read them at each iteration of the training algorithm.14 Following
Yamada and Knight (2001), we chose a normalization partition (Z in Train) such that
we obtain the probabilities of all the rules given their complete left hand side,15 and
set the Dirichlet prior counts uniformly to 0. We ran 20 iterations of the EM algorithm
using Train. The time to construct derivation forests and run 20 iterations of EM for
the various models is in Table 2. Note also the size of the transducers after training in
Table 2; a rule is considered to be no longer in the transducer if it is estimated to have
conditional probability 0.0001 or less.

Because we are trying to duplicate the training experiment of Yamada and Knight
(2001), we wish to compare the word-to-word alignments discovered by that work to
those discovered by ours. We recovered alignments from our trained transducers as
follows: For each tree/string pair we obtained the most likely sequence of rules that
derives the output string from an input tree, the Viterbi derivation. Figure 9 shows the
Viterbi derivation tree and rules for an example sentence. By following the sequence of
applied rules we can also determine which English words translate to which Japanese
words, and thus construct the Viterbi word alignment. We obtained the full set of align-
ments induced in Yamada and Knight and compared them to the alignments learned
from our transducers.

In Table 2 we report link match accuracy16 as well as sentence match accuracy.
The simple transducer is clearly only a rough approximation of the model of Yamada
and Knight (2001). The exact model is much closer, but the low percentage of exact
sentence matches is a concern. When comparing the parameter table values reported
by Yamada and Knight with our rule weights we see that the two systems learned

14 In all models the size on disk in native Java binary object format was about 2.7 GB.
15 Zr(�c ) ≡

∑
r′=(qr ,λ,e,f )∈R c(r

′ ),∀r = (qr, λ, g, h) ∈ R.
16 As this model induces 1-to-1 word alignments, we report accuracy as the number of links matching those

reported by Yamada and Knight (2001) as a percentage of the total number of links.
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Figure 9
A Viterbi derivation tree and the referenced rules.

different probability distributions in multiple instances. A sample of these parameter
value differences can be seen in Figure 10.

In an effort to determine the reason for the discrepancy in weights between the
parameter values learned in our exact transducer representation of Yamada and Knight
(2001), we contacted the authors17 and learned that, unreported in the paper, the original
code contained a constraint that specifically bars an unaligned foreign word insertion
immediately prior to a NULL English word translation. We incorporate this change to
our model by simply modifying our transducer, rather than by changing our program-
ming code. The new transducer, which we call perfect, is a modification of the exact
transducer as follows.

We introduce an additional state s, denoting a translation taking place immediately
after an unaligned foreign function word insertion. We then introduce the following
additional rules.

For every rule that inserts a foreign function word, add an additional rule denoting
an insertion immediately before a translation, and tie these rules together, for example:

q.VB x0:NN→ i x0, r x0 @ 23
q.VB x0:NN→ i x0, s x0 @ 23
q.VB x0:NN→ r x0, i x0 @ 24
q.VB x0:NN→ s x0, i x0 @ 24
. . .

To allow subsequent translation, “transition” rules for state s analogous to the
transition rules described previously must also be added, for example:

s NN(x0:“car”)→ s x0
s CC(x0:“and”)→ s x0
. . .

17 We are grateful to Kenji Yamada for providing full parameter tables and Viterbi alignments from the
original source.
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Figure 10
Rule probabilities corresponding to the parameter tables of Yamada and Knight (2001).

Finally, for each non-null translation rule, add an identical translation rule starting
with s instead of t, and tie these rules, for example:

t “car”→ “kuruma” @ 54
t “car”→ “wa” @ 55
t “car”→ *e*
s “car”→ “kuruma” @ 54
s “car”→ “wa” @ 55
. . .

Note that there is no corresponding null translation rule from state s; this is in
accordance with the insertion/NULL translation restriction.

As can be seen in Table 2 the Viterbi alignments learned from this “perfect”
transducer are virtually identical to those reported in Yamada and Knight (2001). No
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rule probability in the learned transducer differs from its corresponding parameter
value in the original table by more than 0.000066. The 11 sentences with different
alignments, which account for 0.53% of the corpus, were due to two derivations
having the same probability; this was true in Yamada and Knight (2001) as well,
and the choice between equal-scoring derivations is arbitrary. Transducer rules that
correspond to the parameter tables presented in Figure 8 and a comparison of their
learned weights over the three models with the weight learned in Yamada and Knight
are in Figure 10. Note that the final perfect model matches the original parameter
tables perfectly, indicating we can reproduce complicated models with our transducer
formalism.

There are several benefits to this xTs formulation. First, it makes the model very
clear, in the same way that Knight and Al-Onaizan (1998) and Kumar and Byrne (2003)
elucidate other machine translation models in easily grasped FST terms. Second, the
model can be trained with generic, off-the-shelf tools—versus the alternative of working
out model-specific re-estimation formulae and implementing custom training software,
whose debugging is a significant engineering challenge. Third, we can easily extend the
model in interesting ways. For example, we can add rules for multi-level and lexical
re-ordering:

r NP(x0:NP, PP(IN(“of”), x1:NP))→ q x1, “no”, q x0

We can eschew pre-processing that flattens trees prior to training, and instead
incorporate flattening rules into the explicit model.

We can add rules for phrasal translations:

r NP(JJ(“big”), NN(“cars”))→ “ooki”, “kuruma”

This can include non-constituent phrasal translations:

r S(NP(PRO(“there”)), VP(VB(“are”)), x0:NP)→ q x0, “ga”, “arimasu”

Such non-constituent phrase pairs are commonly used in statistical machine translation
(Och, Tillmann, and Ney 1999; Marcu and Wong 2002) and are vital to accuracy (Koehn,
Och, and Marcu 2003). We can also eliminate many epsilon word-translation rules in
favor of more syntactically-controlled ones, for example:

r NP(DT(“the”), x0:NN)→ q x0

Removing epsilons serves to reduce practical complexity in training and especially in
decoding (Yamada and Knight 2002).

We can make many such changes without modifying the training procedure, as long
as we stick to the tree automata.

The implementation of EM training we describe here is part of Tiburon, a generic
weighted tree automata toolkit described in May and Knight (2006) and available at
http://www.isi.edu/licensed-sw/tiburon/.
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12. PCFG Modeling Experiment

In this section, we demonstrate another application of the xTs training algorithm. We
show its generality by applying it to the standard task of training a probabilistic context-
free grammar (PCFG) on string examples. Consider the following grammar:

S→ NP VP
NP→ DT N
NP→ NP PP
PP→ P NP
VP→ V NP
VP→ V NP PP

DT→ the N→ the V→ the P→ the
DT→ window N→ window V→ window P→ window
DT→ father N→ father V→ father P→ father
DT→ mother N→ mother V→ mother P→ mother
DT→ saw N→ saw V→ saw P→ saw
DT→ sees N→ sees V→ sees P→ sees
DT→ of N→ of V→ of P→ of
DT→ through N→ through V→ through P→ through

Also consider the following observed string data:

the father saw the window
the father saw the mother through the window
the mother sees the father of the mother

We would like to assign probabilities to the grammar rules such that the probability of
the string data is maximized (Baker 1979; Lari and Young 1990). We can exploit the xTs
training algorithm by pretending that each string was probabilistically transduced from
a tree consisting of the single node ∅. All we require is to transform the grammar into
an xTs transducer:

Start state: qs
qs x0→ qnp x0, qvp x0
qnp x0→0.99 qdt x0, qn x0
qnp x0→0.01 qnp x0, qpp x0
qpp x0→ qp x0, qnp x0
qvp x0→0.99 qv x0, qnp x0
qvp x0→0.01 qv x0, qnp x0, qpp x0

qdt ∅ → the qn ∅ → the qv ∅ → the qp ∅ → the
qdt ∅ → window qn ∅ → window qv ∅ → window qp ∅ → window
qdt ∅ → father qn ∅ → father qv ∅ → father qp ∅ → father
qdt ∅ → mother qn ∅ → mother qv ∅ → mother qp ∅ → mother
qdt ∅ → saw qn ∅ → saw qv ∅ → saw qp ∅ → saw
qdt ∅ → sees qn ∅ → sees qv ∅ → sees qp ∅ → sees
qdt ∅ → of qn ∅ → of qv ∅ → of qp ∅ → of
qdt ∅ → through qn ∅ → through qv ∅ → through qp ∅ → through
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We also transform the observed string data into tree/string pairs:

∅ → the father saw the window
∅ → the father saw the mother through the window
∅ → the mother sees the father of the mother

After running the xTs training algorithm, we obtain maximum likelihood values for the
rules. For example, after one iteration, we find the following values for rules that realize
verbs:

qv ∅ →0.11 of
qv ∅ →0.11 through
qv ∅ →0.22 sees
qv ∅ →0.56 saw

After more iterations, values converge to:

qv ∅ →0.33 sees
qv ∅ →0.67 saw

Viterbi parses for the strings can also be obtained from the derivations forests computed
by the SDeriv procedure. We note that our use of xTs training relies on copying.18

13. Related and Future Work

Concrete xLNT transducers are similar to (weighted) Synchronous TSG (STSG). STSG,
like TSG, conflate tree labels with states, and so cannot reproduce all the relations in
L(xLNT) without a subsequent relabeling step, although in some versions the root labels
of the STSG rules’ input and output trees are allowed to differ. Regular lookahead19 for
deleted input subtrees could be added explicitly to xT. Eisner (2003) briefly discusses
training for STSG. For bounded trees, xTs can be represented as an FST (Bangalore and
Riccardi 2002).

Our training algorithm is a generalization of forward–backward EM training
for finite-state (string) transducers, which is in turn a generalization of the origi-
nal forward–backward algorithm for Hidden Markov Models. Eisner (2002) describes
string-based training under different semirings, and Carmel (Graehl 1997) imple-
ments FST string-to-string training. In our tree-based training algorithm, inside–outside
weights replace forward–backward, and paths in trees replace positions in strings. Ex-
plicit construction and pruning of derivation trees saves time over many EM iterations,
and could accelerate string-to-string training as well.

Yamada and Knight (2001) give a training algorithm for a specific tree-to-string
machine translation model. Gildea (2003) introduces a variation of tree-to-tree mapping
that allows for cloning (copying a subtree into an arbitrary position elsewhere), in order

18 Curiously, these rules can have “x0” in place of “∅”, because the training routine also supports deleting
transducers. Such a transducer would transform any input tree to the output PCFG.

19 Tree patterns λ of arbitrary regular tree languages, as described in Engelfriet (1977).
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to better robustly model the substantial tree transformations found in human language
translation data.

Using a similar approach to Deriv, exploiting the independence (except on state) of
input-subtree/output-subtree mappings, we can build wRTG for the xT derivation trees
matching an observed input tree (forward application), or matching an observed output
tree (backward application).20 For backward application through concrete transducers,
each derivation tree implies a unique input tree, except where deletion occurs (the
deleted input subtree could have been anything). For copying transducers, backward
application requires wRTG intersection in order to ensure that only input-subtree hy-
potheses possible for all their derived output subtrees are allowed. For noncopying
xTs transducers with complete tree patterns, backward application is just exhaustive
context-free grammar parsing, generating a wRTG production from the left-hand-side
of each xTs rule instance applied in parsing. Training and backward application algo-
rithms for xTs can be extended in the usual way to parse given finite-state output lattices
instead of single strings.21

14. Conclusion

We have motivated the use of tree transducers for natural language processing, and
presented algorithms for training them. The tree-input/tree-output algorithm runs in
O(Gn2) time and space, whereG is a grammar constant, n is the total size of the tree pair,
and the tree-input/string-output algorithm runs in O(Gnm3) time and space, where n is
the size of the input tree and m is the size of the output string. Training works in both
cases by building the derivation forest for each example, pruning it, and then (until
convergence) collecting fractional counts for rules from those forests and normalizing.
We have also presented an implementation and experimental results.
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