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Most semantic role labeling (SRL) research has been focused on training and evaluating on
the same corpus. This strategy, although appropriate for initiating research, can lead to over-
training to the particular corpus. This article describes the operation of ASSERT, a state-of-the
art SRL system, and analyzes the robustness of the system when trained on one genre of data
and used to label a different genre. As a starting point, results are first presented for training
and testing the system on the PropBank corpus, which is annotated Wall Street Journal (WSJ)
data. Experiments are then presented to evaluate the portability of the system to another source of
data. These experiments are based on comparisons of performance using PropBanked WSJ data
and PropBanked Brown Corpus data. The results indicate that whereas syntactic parses and
argument identification transfer relatively well to a new corpus, argument classification does
not. An analysis of the reasons for this is presented and these generally point to the nature of the
more lexical/semantic features dominating the classification task where more general structural
features are dominant in the argument identification task.

1. Introduction

Automatic, accurate, and wide-coverage techniques that can annotate naturally oc-
curring text with semantic structure can play a key role in NLP applications such as
information extraction (Harabagiu, Bejan, and Morarescu 2005), question answering
(Narayanan and Harabagiu 2004), and summarization. Semantic role labeling (SRL) is
one method for producing such semantic structure. When presented with a sentence,
a semantic role labeler should, for each predicate in the sentence, first identify and
then label its semantic arguments. This process entails identifying groups of words
in a sentence that represent these semantic arguments and assigning specific labels to
them. In the bulk of recent work, this problem has been cast as a problem in supervised
machine learning. Using these techniques with hand-corrected syntactic parses, it has
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been possible to achieve accuracies within the range of human inter-annotator agree-
ment. More recent approaches have involved using improved features such as n-best
parses (Koomen et al. 2005; Toutanova, Haghighi, and Manning 2005); exploiting argu-
ment interdependence (Jiang, Li, and Ng 2005); using information from fundamentally
different, and complementary syntactic, views (Pradhan, Ward et al. 2005); combining
hypotheses from different labeling systems using inference (Màrquez et al. 2005); as well
as applying novel learning paradigms (Punyakanok et al. 2005; Toutanova, Haghighi,
and Manning 2005; Moschitti 2006) that try to capture more sequence and contextual
information. Some have also tried to jointly decode the syntactic and semantic structures
(Yi and Palmer 2005; Musillo and Merlo 2006). This problem has also been the subject
of two CoNLL shared tasks (Carreras and Màrquez 2004; Carreras and Màrquez 2005).
Although all of these systems perform quite well on the standard test data, they show
significant performance degradation when applied to test data drawn from a genre
different from the data on which the system was trained. The focus of this article is
to present results from an examination into the primary causes of the lack of portability
across genres of data.

To set the stage for these experiments we first describe the operation of ASSERT, our
state-of-the art SRL system. Results are presented for training and testing the system on
the PropBank corpus, which is annotatedWall Street Journal (WSJ) data.

Experiments are then presented to assess the portability of the system to another
genre of data. These experiments are based on comparisons of performance using
PropBanked WSJ data and PropBanked Brown corpus data. The results indicate that
whereas syntactic parses and identification of the argument bearing nodes transfer
relatively well to a new corpus, role classification does not. Analysis of the reasons for
this generally point to the nature of the more lexical/semantic features dominating the
classification task, as opposed to the more structural features that are relied upon for
identifying which constituents are associated with arguments.

2. Semantic Annotation and Corpora

In this article, we report on the task of reproducing the semantic labeling scheme used
by the PropBank corpus (Palmer, Gildea, and Kingsbury 2005). PropBank is a 300k-word
corpus in which predicate argument relations are marked for almost all occurrences
of non-copula verbs in the WSJ part of the Penn Treebank (Marcus, Santorini, and
Marcinkiewicz 1993). PropBank uses predicate independent labels that are sequential
from ARG0 to ARG5, where ARG0 is the PROTO-AGENT (usually the subject of a tran-
sitive verb) and ARG1 is the PROTO-PATIENT (usually its direct object). In addition to
these core arguments, additional adjunctive arguments, referred to as ARGMs, are also
marked. Some examples are ARGM-LOC, for locatives, and ARGM-TMP, for temporals.
Table 1 shows the argument labels associated with the predicate operate in PropBank.

Following is an example structure extracted from the PropBank corpus. The syntax
tree representation along with the argument labels is shown in Figure 1.

[ARG0 It] [predicate operates] [ARG1 stores] [ARGM−LOC mostly in Iowa and Nebraska].

The PropBank annotation scheme assumes that a semantic argument of a predicate
aligns with one or more nodes in the hand-corrected Treebank parses. Although most
frequently the arguments are identified by one node in the tree, there can be cases where
the arguments are discontinuous and more than one node is required to identify parts
of the arguments.
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Table 1
Argument labels associated with the predicate operate (sense: work) in the PropBank corpus.

Tag Description

ARG0 Agent, operator
ARG1 Thing operated
ARG2 Explicit patient (thing operated on)
ARG3 Explicit argument
ARG4 Explicit instrument

Treebank trees can also have trace nodes which refer to another node in the tree, but
do not have any words associated with them. These can also be marked as arguments.
As traces are typically not reproduced by current automatic parsers, we decided not
to consider them in our experiments—whether or not they represent arguments of a
predicate. None of the previous work has attempted to recover such trace arguments.
PropBank also contains arguments that are coreferential.

We treat discontinuous and coreferential arguments in accordance to the CoNLL
shared task on semantic role labeling. The first part of a discontinuous argument is
labeled as it is, and the second part of the argument is labeled with a prefix “C-”
appended to it. All coreferential arguments are labeled with a prefix “R-” appended.

We follow the standard convention of using Section 02 to Section 21 as the training
set, Section 00 as the development set, and Section 23 as the test set. The training set
comprises about 90,000 predicates instantiating about 250,000 arguments and the test
set comprises about 5,000 predicates instantiating about 12,000 arguments.

3. Task Description

In ASSERT, the task of semantic role labeling is implemented by assigning role labels to
constituents of a syntactic parse. Parts of the overall process can be analyzed as three
different tasks as introduced by Gildea and Jurafsky (2002):

1. Argument Identification—This is the process of identifying parsed
constituents in the sentence that represent semantic arguments of

Figure 1
Syntax tree for a sentence illustrating the PropBank tags.
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Figure 2
Syntax tree for a sentence illustrating the PropBank arguments.

a given predicate. Each node in a parse tree can be classified (with
respect to a given predicate) as either one that represents a semantic
argument (i.e., a NON-NULL node) or one that does not represent
any semantic argument (i.e., a NULL node).

2. Argument Classification—Given constituents known to represent
arguments of a predicate, this process assigns the appropriate
argument labels to them.

3. Argument Identification and Classification—A combination of the two tasks.

For example, in the tree shown in Figure 2, the node IN that dominates for is a
NULL node because it does not correspond to a semantic argument. The node NP
that dominates about 20 minutes is a NON-NULL node, because it does correspond to
a semantic argument—ARGM-TMP.

4. ASSERT (Automatic Statistical SEmantic Role Tagger)

4.1 System Architecture

ASSERT1 produces a separate set of semantic role labels for each candidate predicate in
a sentence. Because PropBank only annotates arguments for non-copula/non-auxiliary
verbs, those are also the predicates considered by ASSERT. ASSERT performs constituent-
based role assignment. The basic inputs are a sentence and a syntactic parse of the
sentence. For each constituent in the parse tree, the system extracts a set of features
and uses a classifier to assign a label to the constituent. The set of labels used are the
PropBank argument labels plus NULL, which means no argument is assigned to that
constituent for the predicate under consideration.

Support vector machines (SVMs) (Burges 1998; Vapnik 1998) have been shown to
perform well on text classification tasks, where data is represented in a high dimen-
sional space using sparse feature vectors (Joachims 1998; Kudo and Matsumoto 2000;
Lodhi et al. 2002). We formulate the problem as a multi-class classification problem
using an SVM classifier. We employ a ONE vs ALL (OVA) approach to train n classifiers
for a multi-class problem. The classifiers are trained to discriminate between examples

1 www.cemantix.org/assert.
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of each class, and those belonging to all other classes combined. During testing, the
classifier scores on an example are combined to predict its class label.

ASSERT was developed using TinySVM2 along with YamCha3 (Kudo and
Matsumoto 2000, 2001) as the SVM training and classification software. The system
uses a polynomial kernel with degree 2; the cost per unit violation of the margin, C = 1;
and, tolerance of the termination criterion, e = 0.001. SVMs output distances from the
classification hyperplane, not probabilities. These distances may not be comparable
across classifiers, especially if different features are used to train each binary classifier.
These raw SVM scores are converted to probabilities by fitting to a sigmoid function as
done by Platt (2000).

The architecture just described has the drawback that each argument classification
is made independently, without considering other arguments assigned to the same
predicate. This ignores a potentially important source of information: that a predicate is
likely to instantiate a certain set of arguments. To represent this information, a backed-
off trigram model is trained for the argument sequences. In this model, the predicate is
considered as an argument and is part of the sequence. This model represents not only
what arguments a predicate is likely to take, but also the probability of a given sequence
of arguments. During the classification process the system generates an argument
lattice using the n-best hypotheses for each node in the syntax tree. A Viterbi search
through the lattice uses the probabilities assigned by the sigmoid as the observation
probabilities, along with the argument sequence language model probabilities, to find
the maximum likelihood path such that each node is either assigned a value belonging
to the PropBank arguments, or NULL. The search is also constrained so that no two
nodes that overlap are both assigned NON-NULL labels.

4.2 Features

The feature set used in ASSERT is a combination of features described in Gildea and
Jurafsky (2002) as well as those introduced in Pradhan et al. (2004), Surdeanu et al.
(2003), and the syntactic-frame feature proposed in (Xue and Palmer 2004). Following is
the list of features used.

4.2.1 Predicate. This is the predicate whose arguments are being identified. The surface
form as well as the lemma are added as features.

4.2.2 Path. The syntactic path through the parse tree from the parse constituent to the
predicate being classified.

For example, in Figure 3, the path from ARG0 (The lawyers) to the predicate went is
represented with the string NP↑S↓VP↓VBD. ↑ and ↓ represent upward and downward
movement in the tree, respectively.

4.2.3 Phrase Type. Syntactic category (NP, PP, etc.) of the constituent.

4.2.4 Position.Whether the constituent is before or after the predicate.

2 www.chasen.org/~taku/software/TinySVM/.

3 www.chasen.org/~taku/software/YamCha/.
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Figure 3
Illustration of path NP↑S↓VP↓VBD.

4.2.5 Voice. Whether the predicate is realized as an active or passive construction. A
set of hand-written tgrep expressions operating on the syntax tree is used to identify
passives.

4.2.6 SubCategorization. This is the phrase structure rule expanding the predicate’s parent
node in the parse tree. For example, in Figure 3, the subcategorization for the predicate
“went” is VP→VBD-PP-NP.

4.2.7 Predicate Cluster. The distance function used for clustering is based on the intuition
that verbs with similar semantics will tend to have similar direct objects. For example,
verbs such as eat, devour, and savor will tend to all occur with direct objects describing
food. The clustering algorithm uses a database of verb–direct-object relations extracted
by Lin (1998). The verbs were clustered into 64 classes using the probabilistic co-
occurrence model of Hofmann and Puzicha (1998). We then use the verb class of the
current predicate as a feature.

4.2.8 Head Word. Syntactic head of the constituent.

4.2.9 Head Word POS. Part of speech of the head word.

4.2.10 Named Entities in Constituents. Binary features for seven named entities
(PERSON, ORGANIZATION, LOCATION, PERCENT, MONEY, TIME, DATE) tagged by
IdentiFinder (Bikel, Schwartz, and Weischedel 1999).

4.2.11 Path Generalizations.

1. Partial Path—Path from the constituent to the lowest common ancestor
of the predicate and the constituent.

2. Clause-based path variations—Position of the clause node (S, SBAR)
seems to be an important feature in argument identification (Hacioglu
et al. 2004). Therefore we experimented with four clause-based path
feature variations.

(a) Replacing all the nodes in a path other than clause nodes with an
asterisk. For example, the path NP↑S↑VP↑SBAR↑NP↑VP↓VBD
becomes NP↑S↑*S↑*↑*↓VBD.
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(b) Retaining only the clause nodes in the path, which for the given
example would produce NP↑S↑S↓VBD.

(c) Adding a binary feature that indicates whether the constituent is in
the same clause as the predicate.

(d) Collapsing the nodes between S nodes, which gives
NP↑S↑NP↑VP↓VBD.

3. Path n-grams—This feature decomposes a path into a series of trigrams.
For example, the path NP↑S↑VP↑SBAR↑NP↑VP↓VBD becomes: NP↑S↑VP,
S↑VP↑SBAR, VP↑SBAR↑NP, SBAR↑NP↑VP, and so on. Shorter paths were
padded with nulls.

4. Single character phrase tags—Each phrase category is clustered to a
category defined by the first character of the phrase label.

4.2.12 Predicate Context. We added the predicate context to capture predicate sense
variations. Two words before and two words after were added as features. The POS
of the words were also added as features.

4.2.13 Punctuation. Punctuation plays an particularly important role for some adjunctive
arguments, so punctuation on the left and right of the constituent are included as
features. The absence of punctuation in either location was indicated with a NULL

feature value.

4.2.14 Head Word of PP. Many adjunctive arguments, such as temporals and locatives,
occur as prepositional phrases in a sentence, and it is often the case that the head words
of those phrases, which are prepositions, are not very discriminative; for example, in
the city and in a few minutes both share the same head word in and neither contain a
named entity, but the former is ARGM-LOC, whereas the latter is ARGM-TMP. The head
word of the first noun phrase inside the prepositional phrase is used for this feature.
Preposition information is represented by appending it to the phrase type, for example,
“PP-in” instead of “PP.”

4.2.15 First and Last Word/POS in Constituent. The first and last words in a constituent
along with their parts of speech.

4.2.16 Ordinal Constituent Position. In order to avoid false positives where constituents
far away from the predicate are spuriously identified as arguments, we added this
feature which is a concatenation of the constituent type and its ordinal position from
the predicate.

4.2.17 Constituent Tree Distance. This is a more fine-grained way of specifying the already
present position feature. This is the number of constituents that are encountered in the
path from the predicate to the constituent under consideration.

4.2.18 Constituent Relative Features. These are nine features representing the phrase type,
head word, and head word part of speech of the parent, and left and right siblings of
the constituent.

4.2.19 Temporal Cue Words. There are several temporal cue words that are not captured
by the named entity tagger and were added as binary features indicating their presence.
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The BOW toolkit was used to identify words and bigrams that had highest average
mutual information with the ARGM-TMP argument class.

4.2.20 Syntactic Frame. Sometimes there are multiple children under a constituent having
the same phrase type, and one or both of them represent arguments of the predicate. In
such situations, the path feature is not very good at discriminating between them, and
the position feature is also not very useful. To overcome this limitation, Xue and Palmer
(2004) proposed a feature which they call the syntactic frame. For example, if the sub-
categorization for the predicate is VP→VBD-NP-NP, then the syntactic frame feature
for the first NP in the sequence would be, “vbd NP np,” and for the second it would be
“vbd np NP.”

4.3 Performance

Table 2 illustrates the performance of the system using Treebank parses and using parses
produced by a Charniak parser (Automatic). Precision (P), Recall (R), and F-scores are
given for the identification and combined tasks, and Classification Accuracy (A) for the
classification task. Classification performance using Charniak parses is only 1% absolute
worse than when using Treebank parses. On the other hand, argument identification
performance using Charniak parses is 10.9% absolute worse. About half of the ID errors
are due to missing constituents in the Charniak parse. Techniques to address the issue
of constituents missing from the syntactic parse tree are reported in Pradhan, Ward
et al. (2005).

4.4 Feature Salience

In Pradhan, Hacioglu et al. (2005) we reported on a series of experiments to show the
relative importance of features to the Identification task and the Classification task.
The data show that different features are more salient for each of the two tasks. For
the Identification task, the most salient features are the Path and Partial Path. The
Predicate was not particularly salient. For Classification, the most salient features are
Head Word, First Word, and Last Word of a constituent as well as the Predicate itself.
For Classification, the Path and Phrase Type features were not very salient.

A reasonable conclusion is that structural features dominate the Identification task,
whereas more specific lexical or semantic features are important for Classification. As

Table 2
Performance of ASSERT on WSJ test set (Section 23) using correct Treebank parses as well as
Charniak parses.

Parse Task P (%) R (%) F A (%)

Treebank Id. 97.5 96.1 96.8
Class. – – – 93.0
Id. + Class. 91.8 90.5 91.2

Automatic Id. 87.8 84.1 85.9
Class. – – – 92.0
Id. + Class. 81.7 78.4 80.0
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we’ll see later, this pattern has critical implications for the portability of these features
across genres.

5. Robustness to Genre of Data

Most work on SRL systems has been focused on improving the labeling performance
on a test set belonging to the same genre of text as the training set. Both the Treebank on
which the syntactic parser is trained, and the PropBank on which the SRL systems are
trained represent articles from the year 1989 of theWall Street Journal. Improvements to
the system may reflect tuning to the specific data set rather than real progress. For this
technology to be widely accepted it is critical that it perform reasonably well on text
with styles different from the training data. The availability of PropBank annotation
for another corpus of a very different style than WSJ makes it possible to evaluate
the portability of SRL techniques, and to understand some of the factors affecting
performance.

5.1 The Brown Corpus

The Brown Corpus is a standard corpus of American English that consists of about one
million words of English text printed in the calendar year 1961 (Kučera and Francis
1967). The corpus contains about 500 samples of 2,000+ words each. The motivation
for creating this corpus was to create a heterogeneous sample of English text useful for
comparative language studies. Table 3 lists the sections in the Brown corpus.

5.2 Semantic Annotation

Release 3 of the Penn Treebank contains hand-corrected syntactic trees from a subset
of the Brown Corpus (sections F, G, K, L, M, N, P, and R). Sections belonging to the
newswire genre were not included because a considerable amount of similar material
was already available from the WSJ portion of the Treebank. Palmer, Gildea, and
Kingsbury (2005) annotated a significant portion of the Treebanked Brown corpus

Table 3
List of sections in the Brown corpus.

A. Press reportage
B. Press editorial
C. Press reviews (theater, books, music, and dance)
D. Religion
E. Skills and hobbies
F. Popular lore
G. Belles lettres, biography, memoirs, etc.
H. Miscellaneous
J. Learned
K. General fiction
L. Mystery and detective fiction
M. Science fiction
N. Adventure and Western fiction
P. Romance and love story
R. Humor
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with PropBank roles. The PropBanking philosophy is the same as described earlier.
In all, about 17,500 predicates are tagged with their semantic arguments. For these
experiments we use the release of the Brown PropBank dated September 2005.

Table 4 shows the number of predicates that have been tagged for each section:

6. Robustness Experiments

In this section, we present a series of experiments comparing the performance of ASSERT
on the WSJ corpus to performance on the Brown corpus. The intent is to understand
how well the algorithms and features transfer to other sources and to understand the
nature of any problems.

6.1 Cross-Genre Testing

The first experiment evaluates the performance of the system when it is trained on
annotated data from one genre of text (WSJ) and is used to label a test set from a different
genre (the Brown corpus). The ASSERT system described earlier, trained on WSJ Sec-
tions 02–21, was used to label arguments for the PropBanked portion of the Brown
corpus. As before, the Charniak parser was used to generate the syntax parse trees.

Table 5 shows the F-score for Identification and combined Identification and Classi-
fication for each of the eight different text genres as well as the overall performance
on Brown. As can be seen, there is a significant degradation across all the various
sections of Brown. In addition, although there is a noticeable drop in performance for
the Identification task, the bulk of the degradation comes in the combined task.

The following are among the likely factors contributing to this performance
degradation:

1. Syntactic parsing errors—The semantic role labeler is completely
dependent on the quality of the syntactic parses; missing, mislabeled,
and misplaced constituents will all lead to errors. Because the syntactic
parser used to generate the parse trees is heavily lexicalized, the genre
difference will have an impact on the accuracy of the parses, and the
features extracted from them.

2. The Brown corpus may in fact be fundamentally more difficult than the
WSJ. There are many potential sources for this kind of difficulty. Among

Table 4
Number of predicates that have been tagged in the PropBanked portion of the Brown corpus.

Section Total Propositions Total Lemmas

F 926 321
G 777 302
K 8,231 1,476
L 5,546 1,118
M 167 107
N 863 269
P 788 252
R 224 140
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Table 5
Performance on the entire PropBanked Brown corpus when ASSERT is trained on WSJ.

Train Test Id. F Id. + Class F

WSJ WSJ (Section 23) 85.9 80.0

WSJ Brown (Popular lore) 77.2 64.9
WSJ Brown (Biography, memoirs) 77.1 61.1
WSJ Brown (General fiction) 78.9 64.9
WSJ Brown (Detective fiction) 82.9 67.1
WSJ Brown (Science fiction) 83.8 64.5
WSJ Brown (Adventure) 82.5 65.5
WSJ Brown (Romance and love story) 81.2 63.9
WSJ Brown (Humor) 78.8 62.5

WSJ Brown (All) 81.2 63.9

Table 6
Deleted/missing argument-bearing constituents in Charniak parses of the WSJ test set
(Section 23) and the entire PropBanked Brown corpus.

Total Misses %

WSJ (Section 23) 13,612 851 6.2

Brown (Popular lore) 2,280 219 9.6
Brown (Biography, memoirs) 2,180 209 9.6
Brown (General fiction) 21,611 1,770 8.2
Brown (Detective fiction) 14,740 1,105 7.5
Brown (Science fiction) 405 23 5.7
Brown (Adventure) 2,144 169 7.9
Brown (Romance and love story) 1,928 136 7.1
Brown (Humor) 592 61 10.3

Brown (All) 45,880 3,692 8.1

the most obvious sources are a greater diversity in the range of use of
predicates and headwords in the Brown domain. That is, the lexical
features may be more varied in terms of predicate senses and raw
number of predicates. More consistent usage of predicates and
headwords in the WSJ may allow very specific features to be trained
in WSJ that will not be as well trained or as salient in Brown.

The following discussion explores each of these possibilities in turn.
Table 6 shows the percentage of argument-bearing nodes deleted from the syntactic

parse leading to an Identification error. The syntactic parser deletes 6.2% of the argu-
ment bearing nodes in the tree when it is trained and tested on WSJ. When tested on
Brown, this number increases to 8.1%, a relative increase of 30%. This effect goes some
way toward explaining the decrease in Identification performance, but does not explain
the large degradation in combined task performance.

The effect of errors from the syntactic parse can be removed by using the correct
syntactic trees from the Treebanks for both corpora. This permits an analysis of other
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factors affecting the performance difference. For this experiment, we evaluated per-
formance for all combinations of training and testing on WSJ and Brown. A test set
for the Brown corpus was generated by selecting every tenth sentence in the corpus.
The development set used by Bacchiani et al. (2006) was withheld for future parameter
tuning. No parameter tuning was done for these experiments. The parameters used
for the data reported in Table 2 were used for all subsequent tests reported in this
article. This procedure results in a training set for Brown that contains approximately
14k predicates. In order to have training sets comparable in size for the two corpora,
stratified sampling was used to create a WSJ training set of the same size as the Brown
training set. Section 23 of WSJ is still used as the test set for that corpus.

Table 7 shows the results of this experiment. Rows 2 and 4 show the conditions
when the system is trained on the 14k predicate WSJ training. Testing on Brown vs. WSJ
results in a modest reduction in F-score from 95.3 to 93.0 for argument identification.
Although there is some reduction in Identification performance in the absence of errors
in the syntactic parse tree, the effect is not large. However, argument classification
shows a large drop in accuracy from 86.1% to 72.9%. These data reiterate the point that
syntactic parse errors are not the major factor accounting for the reduction in performance
for Brown.

The next point to note is the effect of varying the amount of training data for WSJ
for testing results on WSJ and Brown. The first row of Table 7 shows the performance
when ASSERT is trained on the full WSJ training set of Sections 2–21 (90k predicates).
The second row shows performance when it is trained on the reduced set of 14k pred-
icates. Whereas the F1 score for Identification dropped by 1.5 percentage points (from
96.8% to 95.3%) the Classification rate dropped by 6.9% percent absolute. Classification
seemingly requires considerable more data before its performance begins to asymptote.

Table 7
Performance when ASSERT is trained using correct Treebank parses, and is used to classify test
set from either the same genre or another. For each data set, the number of examples used for
training are shown in parentheses.

SRL Train SRL Test Task P (%) R (%) F A (%)

WSJ WSJ Id. 97.5 96.1 96.8
(90k) (5k) Class. 93.0

Id. + Class. 91.8 90.5 91.2

WSJ WSJ Id. 96.3 94.4 95.3
(14k) (5k) Class. 86.1

Id. + Class. 84.4 79.8 82.0

BROWN BROWN Id. 95.7 94.9 95.2
(14k) (1.6k) Class. 80.1

Id. + Class. 79.9 77.0 78.4

WSJ BROWN Id. 94.6 91.5 93.0
(14k) (1.6k) Class. 72.9

Id. + Class. 72.1 67.2 69.6

BROWN WSJ Id. 94.9 93.8 94.3
(14k) (5k) Class. 78.3

Id. + Class. 76.6 73.3 74.9
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Finally, row 3 shows the performance for training and testing on Brown. The
performance of argument Identification is essentially the same as when training and
testing on WSJ. However, argument Classification is 6 percentage points worse (80.1%
vs. 86.1%) when training and testing on Brown than when training and testing on WSJ.
This pattern is consistent with our third hypothesis given previously: Brown may be an
intrinsically harder corpus for this task.

Some possible causes for this difficulty are:

1. More unique predicates or head words than are seen in the WSJ set, so
there is less training data for each;

2. More predicate sense ambiguity in Brown;

3. Less consistent relations between predicates and head words;

4. A greater preponderance of difficult semantic roles in Brown;

5. Relatively fewer examples of predictive features such as named entities.

The remainder of this section explores each of these possibilities in turn.
In order to test the importance of predicate sense in this process, we added oracle

predicate sense information as a feature in ASSERT. Because only about 60% of the
PropBanked Brown corpus was tagged with predicate sense information, these results
are not directly comparable to the one reported in the earlier tables. In this case, both the
Brown training and test sets are subsets of the earlier ones, with about 10k predicates
in training and 1k in testing. For comparison, we used the same size WSJ training
data. Table 8 shows the performance when trained on WSJ and Brown, and tested on
Brown, with andwithout predicate sense information, and for both Treebank parses and
Charniak parses. We find that there is a small increase in the combined identification
and classification performance when trained on Brown and tested on Brown.

One reason for this could simply be the raw number of instances that are seen in
the training data. Because we know that Predicate and Head Word are two particularly
salient features for classification, the percentages of a combination of these features in
the Brown test set that are seen in both the training sets should be informative. This
information is shown in Table 9. In order to get a cross-corpus statistic, we also present
the same numbers on the WSJ test set.

Table 8
Performance on Brown test, using Brown and WSJ training sets, with and without oracle
predicate sense information when using Treebank parses.

Id. Id. + Class.

Train Predicate Sense P % R % F P % R % F

Brown
(10k) × 95.6 95.4 95.5 78.6 76.2 77.4√

95.7 95.7 95.7 81.1 77.1 79.0

WSJ
(10k) × 93.4 91.7 92.5 71.1 65.8 68.4√

93.3 91.8 92.5 71.3 66.1 68.6
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Table 9
Features seen in training for various test sets.

Test→ WSJ Brown

Features T seen t seen T seen t seen
Corpora ↓ (%) (%) (%) (%)

WSJ Predicate Lemma (P) 76 94 65 80
Predicate Sense (S) 79 93 64 78
Head Word (HW) 61 87 49 76
P+HW 19 31 13 17

Brown Predicate Lemma (P) 64 85 86 94
Predicate Sense (S) 29 35 91 96
Head Word (HW) 37 63 68 87
P+HW 10 17 27 33

T = types; t = tokens.

It can be seen that for both theWSJ and Brown corpus test sets, the number of predi-
cate lemmas as well as the particular senses seen in the respective test sets is quite high.
However, a cross comparison shows that there is about a 15% drop in coverage from
WSJ/WSJ to WSJ/Brown. It is also interesting to note that for WSJ, the drop in coverage
for predicate lemmas is almost the same as that for individual predicate senses. This fur-
ther confirms the hypothesis thatWSJ has a more homogeneous collection of predicates.

When we compare the drop in coverage for Brown/Brown vs. WSJ/Brown, we find
about the same drop in coverage for predicate lemmas, but a much more significant
drop for the senses. This variation in senses in Brown is probably the reason that adding
sense information helps more for the Brown test set. In the WSJ case, the addition of
word sense as a feature does not add much information, and so the numbers are not
much different than for the baseline. Similarly, we can see that percentage of headwords
seen across the two genres also drop significantly, and they are much lower to begin
with. Finding the coverage for the predicate lemma and head word combination is still
worse, and this is not even considering the sense. Therefore, data sparseness is another
potential reason that the importance of the predicate sense feature does not reflect in the
performance numbers.

As noted earlier, another possible source of difficulty for Brown may be the distri-
bution of PropBank arguments in this corpus. Table 10 shows the classification perfor-
mance for each argument, for each of the four configurations (train on Brown orWSJ and
test on WSJ or Brown). Among the two most frequent arguments—ARG0 and ARG1—
ARG1 seems to be affected the most. When the training and test sets are from the same
genre, the performance on ARG0 is slightly worse on the Brown test set. ARG1 on the
other hand is about 5% worse on both precision and recall, when trained and tested on
Brown. For core-arguments ARG2–5 which are highly predicate sense dependent, there
is a much larger performance drop.

Finally, another possible reason for the drop in performance is the distribution of
named entities in the corpus. Table 11 shows the frequency of occurrence of name
entities in 10k WSJ and Brown training sets. It can be seen that number of organizations
talked about in Brown is much smaller than in WSJ, and there are more person names.
Also, monetary amounts which frequently fill the ARG3 and ARG4 slots are also much
more infrequent in Brown, and so is the incidence of percentages. This would definitely
have some impact on the usability of these features in the learned models.

302



Pradhan, Ward, and Martin Towards Robust Semantic Role Labeling

7. Effect of Improved Syntactic Parses

Practical natural language processing systems will always use errorful automatic
parses, and so it would be interesting to find out how much syntactic parser errors hin-
der performance on the task of semantic role labeling. Fortunately, recent improvements
to the Charniak parser provided an opportunity to test this hypothesis. We use the latest
version of the Charniak parser that does n-best re-ranking (Charniak and Johnson 2005)
and the model that is self-trained using the North American News corpus (NANC).
This version adaptsmuch better to the Brown corpus (McClosky, Charniak, and Johnson

Table 10
Classification accuracy for each argument type in the WSJ (W) and Brown (B) test sets.

W×W B×B B×W W×B

Number in Number in P R P R P R P R
Argument WSJ Test Brown Test (%) (%) (%) (%) (%) (%) (%) (%)

ARG0 3,149 1,122 91.1 96.8 90.4 92.8 83.4 92.2 87.4 93.3
ARG1 4,264 1,375 90.2 92.0 85.0 88.5 78.7 79.7 83.4 89.0
ARG2 796 312 73.3 66.6 65.9 60.6 49.7 56.4 59.5 48.1
ARG3 128 25 74.3 40.6 71.4 20.0 30.8 16.0 28.6 4.7
ARG4 72 20 89.1 68.1 57.1 60.0 16.7 5.0 61.1 15.3
C-ARG0 2 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-ARG1 165 34 91.5 64.8 80.0 35.3 64.7 32.4 82.1 19.4
R-ARG0 189 45 83.1 93.7 82.7 95.6 62.5 88.9 76.8 77.2
R-ARG1 122 44 77.8 63.1 91.7 75.0 64.5 45.5 54.5 59.8
ARGM-ADV 435 290 78.0 66.0 67.6 64.8 74.7 44.8 49.9 71.0
ARGM-CAU 65 15 82.5 72.3 80.0 53.3 62.5 66.7 86.0 56.9
ARGM-DIR 72 114 57.1 50.0 71.0 62.3 46.6 36.0 39.7 43.1
ARGM-DIS 270 65 87.6 86.7 81.0 72.3 54.1 70.8 89.6 64.1
ARGM-EXT 31 10 83.3 48.4 0.0 0.0 0.0 0.0 33.3 3.2
ARGM-LOC 317 147 73.8 80.8 60.8 70.7 52.6 48.3 60.6 65.6
ARGM-MNR 305 144 56.1 59.0 64.5 63.2 42.6 55.6 51.4 48.9
ARGM-MOD 454 129 99.6 100.0 100.0 100.0 100.0 99.2 99.6 100.0
ARGM-NEG 201 85 100.0 99.5 97.7 98.8 100.0 85.9 94.8 99.5
ARGM-PNC 99 43 60.4 58.6 66.7 55.8 54.8 39.5 52.8 57.6
ARGM-PRD 5 8 0.0 0.0 33.3 12.5 0.0 0.0 0.0 0.0
ARGM-TMP 978 280 85.4 90.4 84.8 85.4 71.3 83.6 82.2 76.0

W×B = ASSERT trained on B and used to classify W test set.

Table 11
Distribution of the named entities in a 10k data fromWSJ and Brown corpora.

Name Entity WSJ Brown

PERSON 1,274 2,037
ORGANIZATION 2,373 455
LOCATION 1,206 555
MONEY 831 32
DATE 710 136
PERCENT 457 5
TIME 9 21
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Table 12
Performance for different versions of the Charniak parser used in the experiments.

Train Test F

WSJ WSJ 91.0
WSJ Brown 85.2
Brown Brown 88.4
WSJ+NANC Brown 87.9

2006a, 2006b). We also use another model that is trained on the Brown corpus itself. The
performance of these parsers is shown in Table 12.

We describe the results of the following five experiments:

1. ASSERT is trained on features extracted from automatically generated
parses of the PropBanked WSJ sentences. The syntactic parser (Charniak
parser) is itself trained on the WSJ training sections of the Treebank. This
is used to classify Section 23 of WSJ.

2. ASSERT is trained on features extracted from automatically generated
parses of the PropBanked WSJ sentences. The syntactic parser (Charniak
parser) is itself trained on the WSJ training sections of the Treebank. This
is used to classify the Brown test set.

3. ASSERT is trained on features extracted from automatically generated
parses of the PropBanked Brown corpus sentences. The syntactic parser
is trained using the WSJ portion of the Treebank. This is used to classify
the Brown test set.

4. ASSERT is trained on features extracted from automatically generated
parses of the PropBanked Brown corpus sentences. The syntactic parser
is trained using the Brown training portion of the Treebank. This is used
to classify the Brown test set.

5. ASSERT is trained on features extracted from automatically generated
parses of the PropBanked Brown corpus sentences. The syntactic parser
is the version that is self-trained using 2,500,000 sentences from NANC,
and where the starting version is trained only on WSJ data (McClosky,
Charniak, and Johnson 2006b). This is used to classify the Brown test set.

The same training and test sets used for the systems in Table 7 are used in this
experiment. Table 13 shows the results. For simplicity of discussion we have labeled the
five conditions as A, B, C, D, and E. Comparing conditions B and C shows that when the
features used to train ASSERT are extracted using a syntactic parser that is trained onWSJ
it performs at almost the same level on the task of identification, regardless of whether
it is trained on the PropBanked Brown corpus or the PropBanked WSJ corpus. This,
however, is about 5–6 F-score points lower than when all the three (the syntactic parser
training set, ASSERT training set, and ASSERT test set) are from the same genre—WSJ or
Brown, as seen in A and D. For the combined task, the gap between the performance
for conditions B and C is about 10 F-score points apart (59.1 vs. 69.8). Looking at the
argument classification accuracies, we see that using ASSERT trained on WSJ to test
Brown sentences results in a 12-point drop in F-score. Using ASSERT trained on Brown
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Table 13
Performance on WSJ and Brown test sets when ASSERT is trained on features extracted from
automatically generated syntactic parses.

Setup Parser Train SRL Train SRL Test Task P (%) R (%) F A (%)

A. WSJ WSJ WSJ Id. 87.3 84.8 86.0
(40k – sec:00–21) (14k) (5k) Class. 84.1

Id. + Class. 77.5 69.7 73.4

B. WSJ WSJ Brown Id. 81.7 78.3 79.9
(40k – sec:00–21) (14k) (1.6k) Class. 72.1

Id. + Class. 63.7 55.1 59.1

C. WSJ Brown Brown Id. 81.7 78.3 80.0
(40k – sec:00–21) (14k) (1.6k) Class. 79.2

Id. + Class. 78.2 63.2 69.8

D. Brown Brown Brown Id. 87.6 82.3 84.8
(20k) (14k) (1.6k) Class. 78.9

Id. + Class. 77.4 62.1 68.9

E. WSJ+NANC Brown Brown Id. 87.7 82.5 85.0
(2,500k) (14k) (1.6k) Class. 79.9

Id. + Class. 77.2 64.4 70.0

H. WSJ+NANC Brown WSJ Id. 88.2 78.2 82.8
(2,500k) (14k) (5k) Class. 76.9

Id. + Class. 75.4 51.6 61.2

using the WSJ-trained syntactic parser reduces accuracy by about 5 F-score points.
When ASSERT is trained on Brown using a syntactic parser also trained on Brown, we
get a quite similar classification performance, which is again about 5 points lower than
what we get using all WSJ data. Finally, looking at conditions C and D we find that
the difference in performance on the combined task of identification and classification
using the Brown corpus for training ASSERT is very close (69.8 vs. 68.9) even though
the syntactic parser used in C has a performance that is about 3.2 points worse than
that used in D. This indicates that better parse structure is less important than lexical
semantic coverage for obtaining better performance on the Brown corpus.

8. Adapting to a New Genre

One possible way to ameliorate the effects of domain specificity is to incrementally
add small amounts of data from a new domain to the already available out-of-domain
training data. In the following experiments we explore this possibility by slowly adding
data from the Brown corpus to a fixed amount of WSJ data.

One section of the Brown corpus—section K—has about 8,200 predicates anno-
tated. Therefore, we will take six different scenarios—two in which we will use correct
Treebank parses, and the four others in which we will use automatically generated
parses using the variations used before. All training sets start with the same number
of examples as that of the Brown training set. The part of this section used as a test set
for the CoNLL 2005 shared task was used as the test set for these experiments. This test
set contains 804 predicates in 426 sentences of Brown section K.

305



Computational Linguistics Volume 34, Number 2

Table 14 shows the results. In all six settings, the performance on the task of
identification and classification improves gradually until about 5,625 examples of sec-
tion K, which is about 75% of the total added, above which it adds very little. Even
when the syntactic parser is trained on WSJ and the SRL is trained on WSJ, adding
7,500 instances of this new genre achieves almost the same performance as when all
three are from the same genre (67.2 vs. 69.9). For the task of argument identification, the
incremental addition of data from the new genre shows only minimal improvement.
The system that uses a self-trained syntactic parser performs slightly better than other

Table 14
Effect of incrementally adding data from a new genre.

Id. Id. + Class

Parser Train SRL Train P (%) R (%) F P (%) R (%) F

WSJ WSJ (14k) (Treebank parses)
(Treebank +0 examples from K 96.2 91.9 94.0 74.1 66.5 70.1
parses) +1,875 examples from K 96.1 92.9 94.5 77.6 71.3 74.3

+3,750 examples from K 96.3 94.2 95.1 79.1 74.1 76.5
+5,625 examples from K 96.4 94.8 95.6 80.4 76.1 78.1
+7,500 examples from K 96.4 95.2 95.8 80.2 76.1 78.1

Brown Brown (14k) (Treebank parses)
(Treebank +0 examples from K 96.1 94.2 95.1 77.1 73.0 75.0
parses) +1,875 examples from K 96.1 95.4 95.7 78.8 75.1 76.9

+3,750 examples from K 96.3 94.6 95.3 80.4 76.9 78.6
+5,625 examples from K 96.2 94.8 95.5 80.4 77.2 78.7
+7,500 examples from K 96.3 95.1 95.7 81.2 78.1 79.6

WSJ WSJ (14k)
(40k) +0 examples from K 83.1 78.8 80.9 65.2 55.7 60.1

+1,875 examples from K 83.4 79.3 81.3 68.9 57.5 62.7
+3,750 examples from K 83.9 79.1 81.4 71.8 59.3 64.9
+5,625 examples from K 84.5 79.5 81.9 74.3 61.3 67.2
+7,500 examples from K 84.8 79.4 82.0 74.8 61.0 67.2

WSJ Brown (14k)
(40k) +0 examples from K 85.7 77.2 81.2 74.4 57.0 64.5

+1,875 examples from K 85.7 77.6 81.4 75.1 58.7 65.9
+3,750 examples from K 85.6 78.1 81.7 76.1 59.6 66.9
+5,625 examples from K 85.7 78.5 81.9 76.9 60.5 67.7
+7,500 examples from K 85.9 78.1 81.7 76.8 59.8 67.2

Brown Brown (14k)
(20k) +0 examples from K 87.6 80.6 83.9 76.0 59.2 66.5

+1,875 examples from K 87.4 81.2 84.1 76.1 60.0 67.1
+3,750 examples from K 87.5 81.6 84.4 77.7 62.4 69.2
+5,625 examples from K 87.5 82.0 84.6 78.2 63.5 70.1
+7,500 examples from K 87.3 82.1 84.6 78.2 63.2 69.9

WSJ+NANC Brown (14k)
(2,500k) +0 examples from K 89.1 81.7 85.2 74.4 60.1 66.5

+1,875 examples from K 88.6 82.2 85.2 76.2 62.3 68.5
+3,750 examples from K 88.3 82.6 85.3 76.8 63.6 69.6
+5,625 examples from K 88.3 82.4 85.2 77.7 63.8 70.0
+7,500 examples from K 88.9 82.9 85.8 78.2 64.9 70.9
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versions that use automatically generated syntactic parses. The improvement on the
identification performance is almost exclusively due to recall. The precision numbers
are almost unaffected, except when the labeler is trained on WSJ PropBank data.

9. Conclusions

In this article, we have presented results from a state-of-the-art Semantic Role Labeling
system trained on PropBankWSJ data and then used to label test sets from both theWSJ
corpus and the Brown corpus. The system’s performance on the Brown test set exhibited
a large drop compared to the WSJ test set. An analysis of these results revealed that the
subtask of Identification, determining which constituents of a syntax tree are arguments
of a predicate, is responsible for only a relatively small part of the drop in performance.
The Classification task, assigning labels to constituents known to be arguments, is where
the major performance loss occurs.

Several possible factors were examined to determine their effect on this perfor-
mance difference:

� The syntactic parser was trained on WSJ. It was shown that errors in the
syntactic parse are not a large factor in the overall performance difference.
The syntactic parser does not show a large degradation in performance
when run on Brown. Even more telling, there is still a large drop in
performance when training and testing using Treebank parses.

When the system was trained and tested on Brown, the performance was still
significantly worse than training and testing on WSJ, even when the amount of training
data is controlled for. Training and testing on Brown showed performance intermediate
between training and testing on WSJ and training on WSJ and testing on Brown. This
leads to our final hypothesis.

� The Brown corpus is in some sense fundamentally more difficult for this
problem. The most obvious reason for this is that it represents a more
heterogeneous source than the WSJ. Among the likely manifestations of
this is that predicates tend to have a single dominating sense in WSJ and
are more polysemous in Brown. Data was presented using gold-standard
word sense information for the predicates for training and testing Brown.
Adding predicate sense information has a large effect for some predicates,
but over the whole Brown test set has only a small effect. Fewer predicates
and headwords could allow very specific modeling of high frequency
predicates, and predicate–headword relations do have a large effect on
overall performance.

The initial experiment is a case of training on homogeneous data and testing on
different data. The more homogeneous training data allows the system to rely heavily
on specific features and relations in the data. It is usually the case that training on a
more heterogeneous data set does not give quite as high performance on test data from
the same corpus as more homogeneous data, but the heterogeneous data ports better to
other corpora. This is seen when training on Brown compared to WSJ. The observation
that the Identification task ports well while the classification task does not is consistent
with this explanation. For the Identification task, structural features such as path and
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partial path tend to be the most salient while the Classification task relies more heavily
on lexical/semantic features such as specific predicate-head word combinations.

The question now is what to do about this. Two possibilities are:

� Less homogeneous corpora—Rather than using many examples drawn
from one source, fewer examples could be drawn from many sources. This
would reduce the likelihood of learning idiosyncratic senses and argument
structures for predicates.

� Less specific features—Features, and the values they take on, should be
designed to reduce the likelihood of learning idiosyncratic aspects of the
training domain. Examples of this might include the use of more general
named entity classes, and the use of abstractions over specific headwords
and predicates rather than the words themselves.

Both of these manipulations would, in all likelihood, reduce performance on both
the training data and on test sets of the same genre as the training data. But they
would be more likely to lead to better generalization across genres. Training on very
homogeneous training sets and testing on similar test sets gives amisleading impression
of the performance of a system.
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