
Wide-Coverage Deep Statistical Parsing
Using Automatic Dependency
Structure Annotation

Aoife Cahill∗

Dublin City University

Michael Burke∗∗,†

Dublin City University
IBM Center for Advanced Studies

Ruth O’Donovan∗∗

Dublin City University

Stefan Riezler‡

Palo Alto Research Center

Josef van Genabith∗∗,†

Dublin City University
IBM Center for Advanced Studies

Andy Way∗∗,†

Dublin City University
IBM Center for Advanced Studies

A number of researchers have recently conducted experiments comparing “deep” hand-crafted
wide-coverage with “shallow” treebank- and machine-learning-based parsers at the level of
dependencies, using simple and automatic methods to convert tree output generated by the
shallow parsers into dependencies. In this article, we revisit such experiments, this time using
sophisticated automatic LFG f-structure annotation methodologies with surprising results. We
compare various PCFG and history-based parsers to find a baseline parsing system that fits
best into our automatic dependency structure annotation technique. This combined system of
syntactic parser and dependency structure annotation is compared to two hand-crafted, deep
constraint-based parsers, RASP and XLE. We evaluate using dependency-based gold standards

∗ Now at the Institut für Maschinelle Sprachverarbeitung, Universität Stuttgart, Germany. E-mail: aoife.
cahill@ims.uni-stuttgart.de.

∗∗ National Centre for Language Technology, Dublin City University, Dublin 9, Ireland.
† IBM Dublin Center for Advanced Studies (CAS), Dublin 15, Ireland.
‡ Now at Google Inc., Mountain View, CA.

Submission received: 24 August 2005; revised submission received: 20 March 2007; accepted for publication:
2 June 2007.

© 2008 Association for Computational Linguistics

Computational Linguistics Volume 34, Number 1

and use the Approximate Randomization Test to test the statistical significance of the results.
Our experiments show that machine-learning-based shallow grammars augmented with so-
phisticated automatic dependency annotation technology outperform hand-crafted, deep, wide-
coverage constraint grammars. Currently our best system achieves an f-score of 82.73% against
the PARC 700 Dependency Bank, a statistically significant improvement of 2.18% over the
most recent results of 80.55% for the hand-crafted LFG grammar and XLE parsing system
and an f-score of 80.23% against the CBS 500 Dependency Bank, a statistically significant
3.66% improvement over the 76.57% achieved by the hand-crafted RASP grammar and parsing
system.

1. Introduction

Wide-coverage parsers are often evaluated against gold-standard CFG trees (e.g.,
Penn-II WSJ Section 23 trees) reporting traditional PARSEVALmetrics (Black et al. 1991)
of labeled and unlabeled bracketing precision, recall and f-score measures, number of
crossing brackets, complete matches, and so forth. Although tree-based parser evalua-
tion provides valuable insights into the performance of grammars and parsing systems,
it is subject to a number of (related) drawbacks:

1. Bracketed trees do not always provide NLP applications with enough
information to carry out the required tasks: Many applications involve
a deeper analysis of the input in the form of semantically motivated
information such as deep dependency relations, predicate–argument
structures, or simple logical forms.

2. A number of alternative, but equally valid tree representations can
potentially be given for the same input. To give just a few examples: In
English, VPs containing modals and auxiliaries can be analyzed using
(predominantly) binary branching rules (Penn-II [Marcus et al. 1994]), or
employ flatter analyses where modals and auxiliaries are sisters of the
main verb (AP treebank [Leech and Garside 1991]), or indeed do without
a designated VP constituent at all (SUSANNE [Sampson 1995]). Treebank
bracketing guidelines can use “traditional” CFG categories such as S, NP,
and so on (Penn-II) or a maximal projection-inspired analysis with IPs
and DPs (Chinese Penn Treebank [Xue et al. 2004]).

3. Because a tree-based gold standard for parser evaluation must adopt a
particular style of linguistic analysis (reflected in the geometry and
nomenclature of the nodes in the trees), evaluation of statistical parsers
and grammars that are derived from particular treebank resources (as
well as hand-crafted grammars/parsers) can suffer unduly if the gold
standard deviates systematically from the (possibly) equally valid style
of linguistic analysis provided by the parser.

Problems such as these have motivated research on more abstract, dependency-
based parser evaluation (e.g., Lin 1995; Carroll, Briscoe, and Sanfilippo 1998; Carroll
et al. 2002; Clark and Hockenmaier 2002; King et al. 2003; Preiss 2003; Kaplan et al.
2004; Miyao and Tsujii 2004). Dependency-based linguistic representations are ap-
proximations of abstract predicate-argument-adjunct (or more basic head-dependent)

82

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

structures, providing a more normalized representation abstracting away from the
particulars of surface realization or CFG-tree representation, which enables meaningful
cross-parser evaluation.

A related contrast holds between shallow and deep grammars and parsers.1 In
addition to defining a language (as a set of strings), deep grammars relate strings to in-
formation/meaning, often in the form of predicate–argument structure, dependency re-
lations,2 or logical forms. By contrast, a shallow grammar simply defines a language and
may associate syntactic (e.g., CFG tree) representations with strings. Natural languages
do not always interpret linguistic material locally where the material is encountered
in the string (or tree). In order to obtain accurate and complete predicate–argument,
dependency, or logical form representations, a hallmark of deep grammars is that they
usually involve a long-distance dependency (LDD) resolution mechanism.

Traditionally, deep grammars are hand-crafted (cf. the ALVEY Natural Language
Tools [Briscoe et al. 1987], the Core Language Engine [Alshawi and Pulman 1992], the
Alpino Dutch dependency parser [Bouma, van Noord, andMalouf 2000], the Xerox Lin-
guistic Environment [Butt et al. 2002], the RASP dependency parser [Carroll and Briscoe
2002] and the LinGO English Resource Grammar [Flickinger 2000; Baldwin et al. 2004]).
Wide-coverage, deep-grammar development, particularly in rich formalisms such as
LFG (Kaplan and Bresnan 1982; Bresnan 2001; Dalrymple 2001) and HPSG (Pollard
and Sag 1994), is knowledge-intensive, time-consuming and expensive, constituting
an instance of the (in-)famous “knowledge acquisition bottleneck” familiar from other
areas in traditional, rule-based AI and NLP. Very few hand-crafted deep grammars
(Briscoe and Carroll 1993; Bouma, van Noord, and Malouf 2000; Riezler et al. 2002)
have, in fact, been successfully scaled to unrestricted input.

The last 15 years have seen extensive efforts on treebank-based automatic gram-
mar acquisition using a variety of machine-learning techniques (e.g., Gaizauskas 1995;
Charniak 1996; Collins 1999; Johnson 1999; Charniak 2000; Bikel 2002; Bod 2003; Klein
and Manning 2003). These grammars are wide-coverage and robust and in contrast
to manual grammar development, machine-learning-based grammar acquisition in-
curs relatively low development cost. With few notable exceptions,3 however, these
treebank-induced wide-coverage grammars are shallow: They usually do not attempt
to resolve LDDs nor do they associate strings with meaning representations.

Over the last few years, addressing the knowledge acquisition bottleneck in deep
constraint-based grammar development, a growing body of research has emerged to au-
tomatically acquire wide-coverage deep grammars from treebank resources (TAG [Xia
1999], CCG [Hockenmaier and Steedman 2002], HPSG [Miyao, Ninomiya, and Tsujii
2003], LFG [Cahill et al. 2002b, 2004]). To a first approximation, these approaches can
be classified as “conversion”- or “annotation”-based. TAG-based approaches convert

1 Our use of the terms “shallow” and “deep” parsers/grammars follows Kaplan et al. (2004) where
a “shallow parser” does not relate strings to meaning representations. This deviates from a more
common use of the terms where, for example, a “shallow parser” refers to (often finite-state-based)
parsers (or chunkers) that may produce partial bracketings of input strings.

2 By dependency relations we mean deep, fine-grained, labeled dependencies that encode long-distance
dependencies and passive information, for example. These differ from the types of unlabeled
dependency relations in other work such as (McDonald and Pereira 2006).

3 Both Collins Model 3 (1999) and Johnson (2002) output CFG tree representations with traces. Collins
Model 3 performs LDD resolution for wh-relative clause constructions, Johnson (2002) for a wide range
of LDD phenomena in a post-processing approach based on Penn-II tree fragments linking displaced
material with where it is to be interpreted semantically. The work of Dienes and Dubey (2003) and
Levy and Manning (2004) is similar to that of Johnson (2002), recovering empty categories on top of
CFG-based parsers. None of them map strings into dependencies.

83

Computational Linguistics Volume 34, Number 1

treebank trees into (lexicalized) elementary or adjunct trees. CCG-based approaches
convert trees into CCG derivations fromwhich CCG categories can be extracted. HPSG-
and LFG-based grammar induction methods automatically annotate treebank trees
with (typed) attribute-value structure information for the extraction of constraint-based
grammars and lexical resources.

Two recent papers (Preiss 2003; Kaplan et al. 2004) have started tying together
the research strands just sketched: They use dependency-based parser evaluation to
compare wide-coverage parsing systems using hand-crafted, deep, constraint-based
grammars with systems based on a simple version of treebank-based deep grammar
acquisition technology in the conversion paradigm. In the experiments, tree output
generated by Collins’s Model 1, 2, and 3 (1999) and Charniak’s (2000) parsers, for
example, are automatically translated into dependency structures and evaluated against
gold-standard dependency banks.

Preiss (2003) uses the grammatical relations and the CBS 500 Dependency Bank
described in Carroll, Briscoe, and Sanfilippo (1998) to compare a number of parsing
systems (Briscoe and Carroll 1993; Collins’s 1997 models 1 and 2; and Charniak 2000)
using a simple version of the conversion-based deep grammar acquisition process (i.e.,
reading off grammatical relations fromCFG parse trees produced by the treebank-based
shallow parsers). The article also reports on a task-based evaluation experiment to rank
the parsers using the grammatical relations as input to an anaphora resolution system.
Preiss concluded that parser ranking using grammatical relations reflected the absolute
ranking (between treebank-induced parsers) using traditional tree-based metrics, but
that the difference between the performance of the parsing algorithms narrowed when
they carried out the anaphora resolution task. Her results show that the hand-crafted
deep unification parser (Briscoe and Carroll 1993) outperforms the machine-learned
parsers (Collins 1997; Charniak 2000) on the f-score derived from weighted precision
and recall on grammatical relations.4 Kaplan et al. (2004) compare their deep, hand-
crafted, LFG-based XLE parsing system (Riezler et al. 2002) with Collins’s (1999) model
3 using a simple conversion-based approach, capturing dependencies from the tree
output of the machine-learned parser, and evaluating both parsers against the PARC
700 Dependency Bank (King et al. 2003). They conclude that the hand-crafted, deep
grammar outperforms the state-of-the-art treebank-based shallow parser on the level of
dependency representation, at the price of a small decrease in parsing speed.

Both Preiss (2003) and Kaplan et al. (2004) emphasize that they use rather basic
versions of the conversion-based deep grammar acquisition technology outlined herein.
In this article we revisit the experiments carried out by Preiss and Kaplan et al., this time
using the sophisticated and fine-grained treebank- and annotation-based, deep, probabilis-
tic LFG grammar acquisitionmethodology developed in Cahill et al. (2002b), Cahill et al.
(2004), O’Donovan et al. (2004), and Burke (2006) with a number of surprising results:

1. Evaluating against the PARC 700 Dependency Bank (King et al. 2003)
using a retrained version of Bikel’s (2002) parser, the best automatically
induced, deep LFG resources achieve an f-score of 82.73%. This is an
improvement of 3.13 percentage points over the previously best published
results established by Kaplan et al. (2004) who use a hand-crafted,
wide-coverage, deep LFG and the XLE parsing system. This is also a

4 The numbers given are difficult to compare as the results for the Briscoe and Carroll (1993) parser were
captured for a richer set of grammatical relations than those for Collins (1997) and Charniak (2000).

84

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

statistically significant improvement of 2.18 percentage points over the
most recent improved results presented in this article for the XLE system.

2. Evaluating against the Carroll, Briscoe, and Sanfilippo (1998) CBS 500
gold-standard dependency bank using a retrained version of Bikel’s (2002)
parser, the best Penn-II treebank-based, automatically acquired, deep LFG
resources achieve an f-score of 80.23%. This is a statistically significant
improvement of 3.66 percentage points over Carroll and Briscoe (2002),
who use a hand-crafted, wide-coverage, deep, unification grammar and
the RASP parsing system.

Evaluation results on a reannotated version (Briscoe and Carroll 2006) of the PARC
700 Dependency Bank were recently published in Clark and Curran (2007), reporting
f-scores of 81.9% for the CCG parser, and 76.3% for RASP. As Briscoe and Carroll
(2006) point out, these evaluations are not directly comparable with the Kaplan et al.
(2004) style evaluation against the original PARC 700 Dependency Bank, because the
annotation schemes are different.

The article is structured as follows: In Section 2, we outline the automatic LFG
f-structure annotation algorithm and the pipeline parsing architecture of Cahill et al.
(2002b), Cahill et al. (2004), and Burke (2006). In Section 3, we present our experiment
design. In Section 4, using the DCU 105 Dependency Bank as our development set, we
evaluate a number of treebank-induced LFG parsing systems against the automatically
generated Penn-II WSJ Section 22 Dependency Bank test set. We use the Approximate
Randomization Test (Noreen 1989) to test for statistical significance and choose the best
parsing system for the evaluations against the wide-coverage, hand-crafted RASP and
LFG grammars of Carroll and Briscoe (2002) and Kaplan et al. (2004) using the CBS
500 and PARC 700 Dependency Banks in Section 5. In Section 6, we discuss results and
issues raised by our methodology, outline related and future research and conclude in
Section 7.

2. Methodology

In this section, we briefly outline LFG and present our automatic f-structure annotation
algorithm and parsing architecture. The parsing architecture enables us to integrate
PCFG- and history-based parsers, which allows us to compare these parsers at the level
of dependency structures, rather than just trees.

2.1 Lexical Functional Grammar

Lexical Functional Grammar (LFG) (Kaplan and Bresnan 1982; Bresnan 2001; Dalrymple
2001) is a constraint-based theory of grammar. It (minimally) posits two levels of
representation, c(onstituent)-structure and f(unctional)-structure. C-structure is rep-
resented by context-free phrase-structure trees, and captures surface grammatical
configurations such as word order. The nodes in the trees are annotated with functional
equations (attribute-value structure constraints, for example (↑OBJ)=↓) which are
resolved (in the case of well-formed strings) to produce an f-structure. F-structures
are recursive attribute-value matrices, representing abstract syntactic functions, which

85

Computational Linguistics Volume 34, Number 1

Figure 1
C- and f-structures for the sentence U.N. signs treaty.

approximate to basic predicate-argument-adjunct structures or dependency relations.5

Figure 1 shows the c- and f-structures for the string U.N. signs treaty. Each node in the
c-structure is annotated with f-structure equations, for example (↑ SUBJ)= ↓. The
uparrows (↑) point to the f-structure associated with the mother node, downarrows
(↓) to that of the local node. In a complete parse tree, these ↑ and ↓ meta variables are
instantiated to unique tree node identifiers and a set of constraints (a set of terms in an
equality logic) is generated which (if satisfiable) generates an f-structure.

2.2 Automatic F-Structure Annotation Algorithm

Deep grammars can be induced from treebank resources if the treebank encodes
enough information to support the derivation of deep grammatical information, such
as predicate–argument structures, deep dependency relations, or logical forms. Many
second generation treebanks such as Penn-II provide information to support the compi-
lation of meaning representations, for example in the form of traces relating displaced
linguistic material to where it should be interpreted semantically. The f-structure anno-
tation algorithm exploits configurational and categorial information, as well as traces
and the Penn-II functional tag annotations (Table 1) to automatically associate Penn-II
CFG trees with LFG f-structure information.

Given a tree, such as the Penn-II-style tree in Figure 2, the algorithm will traverse
the tree and deterministically add f-structure equations to the phrasal and leaf nodes
of the tree, resulting in an f-structure annotated version of the tree. The annotations are
then collected and passed on to a constraint solver which generates an f-structure (if the
constraints are satisfiable). We use a simple graph-unification-based constraint solver
(Eisele and Dörre 1986), extended to handle path, set-valued, disjunctive, and existential
constraints. Given parser output without Penn-II style annotations and traces, the same
algorithm is used to assign annotations to each node in the tree, whereas a separate
module is applied at the level of f-structure to resolve any long-distance dependencies
(see Section 2.3).

5 van Genabith and Crouch (1996, 1997) provide translations between f-structures, Quasi-Logical Forms
(QLFs), and Underspecified Discourse Representation Structures (UDRSs).

86

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Table 1
A complete list of the Penn-II functional labels.

Tag Description

Form/function discrepancies

-ADV clausal and NP adverbials
-NOM non NPs that function as NPs

Grammatical role

-DTV dative
-LGS logical subjects in passives
-PRD non VP predicates
-PUT locative complement of put
-SBJ surface subject
-TPC topicalized and fronted constituents
-VOC vocatives

Adverbials

-BNF benefactive
-DIR direction and trajectory
-EXT extent
-LOC location
-MNR manner
-PRP purpose and reason
-TMP temporal phrases

Miscellaneous

-CLR closely related to verb
-CLF true clefts
-HLN headlines and datelines
-TTL titles

The f-structure annotation algorithm is described in detail in Cahill et al. (2002a),
McCarthy (2003), Cahill et al. (2004), and Burke (2006). In brief, the algorithm is modular
with four components (Figure 3), taking Penn-II trees as input and automatically adding
LFG f-structure equations to each node in the tree.

Lexical Information. Lexical information is generated automatically by macros for each
of the POS classes in Penn-II. To give a simple example, third-person plural noun
Penn-II POS-word sequences of the form NNS word are automatically associated with
the equations (↑PRED) = word′, (↑NUM) = pl and (↑PERS) = 3rd, where word′ is the
lemmatized word.

Left–Right Context Annotation. The Left–Right context annotation component identifies
the heads of Penn-II trees using a modified version of the head finding rules of
Magerman (1994). This partitions each local subtree (of depth one) into a local head, a
left context (left sisters), and a right context (right sisters). The contexts together with
information about the local mother and daughter categories and (if present) Penn-II

87

Computational Linguistics Volume 34, Number 1

Figure 2
Trees for the sentence U.N. signs treaty, the headline said before and after automatic f-structure
annotation, with the f-structure automatically produced.

Figure 3
F-structure annotation algorithm modules.

88

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Table 2
Sample from an NP Annotation matrix.

Left context Head Right context

DT: (↑SPEC DET)=↓ NN, NNS, NNP, NNPS, NP: RRC, SBAR: (↑RELMOD)=↓
CD: (↑SPEC QUANT)=↓ ↑=↓ PP: ↓∈(↑ADJUNCT)
ADJP, JJ, NN, NNP: ↓∈(↑ADJUNCT) NP: ↓∈(↑APP)

functional tag labels (Table 1) are used by the f-structure annotation algorithm. For each
Penn-II mother (i.e., phrasal) category an Annotation matrix expresses generalizations
about how to annotate immediate daughters dominated by the mother category relative
to their location in relation to the local head. To give a (much simplified) example,
the head finding rules for NPs state that the rightmost nominal (NN, NNS, NNP, . . .)
not preceded by a comma or “-”6 is likely to be the local head. The Annotation ma-
trix for NPs states (inter alia) that heads are annotated ↑=↓, that DTs (determiners)
to the left of the head are annotated (↑ SPEC DET) = ↓, NPs to the right of the head as
↓∈(↑ APP) (appositions). Table 2 provides a sample extract from the NP Annotation
matrix. Figure 4 provides an example of the application of the NP and PP Annotation
matrices to a simple tree.

For each phrasal category, Annotation matrices are constructed by inspecting the
most frequent Penn-II rule types expanding the category such that the token occurrences
of these rule types cover more than 85% of all occurrences of expansions of that category
in Penn-II. For NP rules, for example, this means that we analyze the most frequent
102 rule types expanding NP, rather than the complete set of more than 6,500 Penn-II
NP rule types, in order to populate the NP Annotation matrix. Annotation matrices
generalize to unseen rule types as, in the case of NPs, these may also feature DTs to
the left of the local head and NPs to the right and similarly for rule types expanding
other categories.

Coordination. In order to support the modularity, maintainability, and extendability of
the annotation algorithm, the Left–Right Annotation matrices apply only to local trees
of depth one, which do not feature coordination. This keeps the statement of Annotation
matrices perspicuous and compact. The Penn-II treatment of coordination is (inten-
tionally) flat. The annotation algorithm has modules for like- and unlike-constituent
coordination. Coordinated constituents are elements of a COORD set and annotated ↓∈
(↑ COORD). The Coordination module reuses the Left–Right context Annotation ma-
trices to annotate any remaining nodes in a local subtree containing a coordinating
conjunction. Figure 5 provides a VP-coordination example (with right-node-raising).

Catch-All and Clean-Up. The Catch-All and Clean-Up module provides defaults to cap-
ture remaining unannotated nodes (Catch-All) and corrects (Clean-Up) overgeneraliza-
tions resulting from the application of the Left–Right context Annotation matrices. The
Left–Right Annotation matrices are allowed a certain amount of overgeneralization as
this facilitates the perspicuous statement of generalizations and a separate statement of
exceptions, supporting the modularity and maintainability of the annotation algorithm.
PPs under VPs are a case in point. The VP Annotation matrix analyses PPs to the right
of the local VP head as adjuncts: ↓ ∈ (↑ADJUNCT). The Catch-All and Clean-Up module

6 If the rightmost nominal is preceded by a comma or “-”, it is likely to be an apposition to the head.

89

Computational Linguistics Volume 34, Number 1

Figure 4
Automatically annotated Penn-II tree (fragment) and f-structure (simplified) for Gerry Purdy,
director of marketing.

uses Penn-II functional tag (Table 1) information (if present), for example -CLR (closely
related to local head), to replace the original adjunct analysis by an oblique argument
analysis: (↑OBL)=↓. An example of this is provided by the PP-CLR in the left VP-conjunct
in Figure 5. In other cases, argument–adjunct distinctions are encoded configurationally
in Penn-II (without the use of -CLR tags). To give a simple example, the NP Anno-
tation matrix indiscriminately associates SBARs to the right of the local head with
(↑ RELMOD) = ↓. However, some of these SBARs are actually arguments of the local
NP head and, unlike SBAR relative clauses which are Chomsky-adjoined to NP (i.e.,
relative clauses are daughters of an NP mother and sisters of a phrasal NP head), SBAR
arguments are sisters of non-phrasal NP heads.7 In such cases, the Catch-All and Clean-
Up module rewrites the original relative clause analysis into the correct complement
argument analysis (↑COMP)=↓. Figure 6 shows the COMP f-structure analyses for an
example NP containing an internal SBAR argument (rather than relative clause) node.

Traces. The Traces module translates traces and coindexed material in Penn-II trees
representing long-distance dependencies into corresponding reentrancies at f-structure.
Penn-II provides a rich arsenal of trace types to relate “displaced” material to where it

7 Structural information of this kind is not encoded in the Annotation matrices; compare Table 2.

90

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Figure 5
Automatically annotated Penn-II tree (fragment) and resulting f-structure for asked for and
received refunds.

should be interpreted semantically. The f-structure annotation algorithm coverswh- and
wh-less relative clause constructions, interrogatives, control and raising constructions,
right-node-raising, and general ICH (interpret constituent here) traces. Figure 5 gives an
example that shows the interplay between coordination, right-node-raising traces and
the corresponding automatically generated reentrancies at f-structure.

2.3 Parsing Architecture

The pipeline parsing architecture of Cahill et al. (2004) and Cahill (2004) for parsing raw
text into LFG f-structures is shown in Figure 7. In this model, PCFGs or history-based
lexicalized parsers are extracted from the unannotated treebank and used to parse raw
text into trees. The resulting parse trees are then passed to the automatic f-structure
annotation algorithm to generate f-structures.8

Compared to full Penn-II treebank trees, the output of standard probabilistic
parsers is impoverished: Parsers do not normally output Penn-II functional tag an-
notations (Table 1) nor do they indicate/resolve long-distance dependencies, recorded

8 In the integratedmodel (Cahill et al. 2004; Cahill 2004), we extract f-structure annotated PCFGs
(A-PCFGs) from the f-structure annotated treebank, where each non-terminal symbol in the grammar
has been augmented with LFG functional equations, such as NP[↑OBJ=↓] → DT[↑SPEC=↓] NN[↑=↓].
We treat a non-terminal symbol followed by annotations as a monadic category for grammar extraction
and parsing. Parsing with A-PCFGs results in annotated parse trees, from which an f-structure can be
generated. In this article we only use the pipeline parsing architecture.

91

Computational Linguistics Volume 34, Number 1

Figure 6
Automatically annotated Penn-II tree (fragment) and f-structure for signs that managers
expect declines.

in terms of a fine-grained system of empty productions (traces) and coindexation in
the full Penn-II treebank trees. The f-structure annotation algorithm, as described in
Section 2.2, makes use of Penn-II functional tag information (if present) and relies on
traces and coindexation to capture LDDs in terms of corresponding reentrancies at
f-structure.

Penn-II functional labels are used by the annotation algorithm to discriminate
between adjuncts and (oblique) arguments. PP-sisters to a head verb are analyzed as
arguments iff they are labeled -CLR, -PUT, -DTV or -BNF, for example. Conversely,
functional labels (e.g., -TMP) are also used to analyze certain NPs as adjuncts, and
-LGS labels help to identify logical subjects in passive constructions. In the absence of
functional labels, the annotation algorithm will default to decisions based on simple
structural, configurational, and CFG-category information (and, for example, conserva-
tively analyze a PP sister to a head verb as an adjunct, rather than as an argument).

In Sections 3 and 4 we present a number of treebank-based parsers (in particular the
PCFGs and a version of Bikel’s history-based, lexicalized generative parser) trained to
output CFG categories with Penn-II functional tags. We achieve this through a simple

92

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Figure 7
Treebank-based LFG parsing architecture.

masking and un-masking operation where functional tags are joined with their local
CFG category label to form a new (larger) set of (monadic) CFG category labels (e.g.,
PP-CLR goes to PP CLR) for training and parsing (for Bikel, the parser head-finding rules
are also adjusted to the expanded set of categories). After parsing, the Penn-II functional
tags are unmasked and available to the f-structure annotation algorithm.

The Traces component in the f-structure annotation algorithm (Figure 3) translates
LDDs represented in terms of traces and coindexation in the original Penn-II treebank
trees into corresponding reentrancies at f-structure. Most probabilistic treebank-based
parsers, however, do not indicate/resolve LDDs, and the Traces component of the an-
notation algorithm does not apply. Initially, the f-structures produced for parser output
trees in the architecture in Figure 7 are therefore LDD-unresolved: They are incomplete
(or proto) f-structures, where displaced material (e.g., the values of FOCUS, TOPIC, and
TOPICREL attributes [wh- and wh-less relative clauses, topicalization, and interrogative
constructions] at f-structure) is not yet linked to the appropriate argument grammati-
cal functions (or elements of adjunct sets) for the governing local PRED. A dedicated
LDD Resolution component in the architecture in Figure 7 turns parser output proto-
f-structures into fully LDD-resolved proper f-structures, without traces and coindexa-
tion in parse trees.

Consider the following fragment of a proper Penn-II treebank tree (Figure 8), where
the LDD between the WHNP in the relative clause and the embedded direct object
position of the verb reward is indicated in terms of the trace *T*-3 and its coindexation
with the antecedent WHNP-3. Note further that the control relation between the subject
of the verbs wanted and reward is similarly expressed in terms of traces (*T*-2) and
coindexation (NP-SBJ-2). From the treebank tree, the f-structure annotation algorithm
is able to derive a fully resolved f-structure where the LDD and the control relation are
captured in terms of corresponding reentrancies (Figure 9).

93

Computational Linguistics Volume 34, Number 1

Figure 8
Penn-II treebank tree with LDD indicated in terms of traces (empty productions) and
coindexation and f-structure annotations generated by the annotation algorithm.

Now consider the corresponding “impoverished” (but otherwise correct) parser
output tree (Figure 10) for the same string: The parser output does not explicitly record
the control relation nor the LDD.

Given this parser output tree, prior to the LDD resolution component in the parsing
architecture (Figure 7), the f-structure annotation algorithmwould initially construct the
partial (proto-) f-structure in Figure 11, where the LDD indicated by the TOPICREL func-
tion is unresolved (i.e., the value of TOPICREL is not coindexedwith the OBJ grammatical
function of the embedded verb reward). The control relation (shared subject between
the two verbs in the relative clause) is in fact captured by the annotation algorithm in
terms of a default annotation (↑ SUBJ) = (↓ SUBJ) on sole argument VPs to the right of
head verbs (as often, even in the full Penn-II treebank trees, control relations are not
consistently captured through explicit argument traces).

In LFG, LDD resolution operates at the level of f-structure, using functional un-
certainty equations (regular expressions over paths in f-structure [Kaplan and Zaenen
1989] relating f-structure components in different parts of an f-structure), obviating
traces and coindexation in c-structure trees. For the example in Figure 10, a functional
uncertainty equation of the form (↑TOPICREL) = (↑[COMP|XCOMP]∗ [SUBJ|OBJ]) would
be associated with the WHNP daughter node of the SBAR relative clause. The equation
states that the value of the TOPICREL attribute is token-identical (re-entrant) with the
value of a SUBJ or OBJ function, reached through a path along any number (including

94

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Figure 9
Fully LDD-resolved f-structure.

Figure 10
Impoverished parser output tree: LDDs not captured.

zero) of COMP or XCOMP attributes. This equation, together with subcategorization
frames (LFG semantic forms) for the local PREDs and the usual LFG completeness and
coherence conditions, resolve the partial proto-f-structure in Figure 11 into the fully
LDD-resolved proper f-structure in Figure 9.

95

Computational Linguistics Volume 34, Number 1

Figure 11
Proto-f-structure: LDDs not captured.

Following Cahill et al. (2004), in our parsing architecture (Figure 7) we model
LFG LDD resolution using automatically induced finite approximations of functional-
uncertainty equations and subcategorization frames from the f-structure-annotated
Penn-II treebank (O’Donovan et al. 2004) in an LDD resolution component. From the
fully LDD-resolved f-structures from the Penn-II training section treebank trees we
learn probabilistic LDD resolution paths (reentrancies in f-structure), conditional on
LDD type (Table 3), and subcategorization frames, conditional on lemma (and voice)
(Table 4). Table 3 lists the eight most probable TOPICREL paths (out of a total of 37
TOPICREL paths acquired). The totality of these paths constitutes a finite subset of the
reference language definde by the full functional uncertainty equation (↑TOPICREL) =
(↑[COMP|XCOMP]∗ [SUBJ|OBJ]). Given an unresolved LDD type (such as TOPICREL in
the parser output for the relative clause example in Figure 11), admissible LDD res-
olutions assert a reentrancy between the value of the LDD trigger (here, TOPICREL)
and a grammatical function (or adjunct set element) of an embedded local predicate,
subject to the conditions that (i) the local predicate can be reached from the LDD trigger
using the LDD path; (ii) the grammatical function terminates the LDD path; (iii) the
grammatical function is not already present (at the relevant level of embedding in
the local f-structure); and (vi) the local predicate subcategorizes for the grammatical
function in question.9 Solutions satisfying (i)–(iv) are ranked using the product of
LDD path and subcategorization frame probabilities and the highest ranked solution
(possibly involving multiple interacting LDDs for a single f-structure) is returned by
the algorithm (for details and comparison against alternative LDD resolution methods,
see Cahill et al. 2004).10

For our example (Figure 11), the highest ranked LDD resolution is for LDD path
(↑TOPICREL) = (↑ XCOMP OBJ) and the local subcat frame REWARD〈↑ SUBJ, ↑ OBJ〉. This

9 Conditions (i)–(iv) are suitably adapted for LDD resolutions terminating in adjunct sets.
10 In our experiments we do not use the limited LDD resolution for wh-phrases provided by Collins’s Model

3 parser as better results are achieved using the purely f-structure-based LDD resolution as shown in
Cahill et al. (2004).

96

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Table 3
Most frequent wh-TOPICREL paths.

wh-TOPICREL Probability wh-TOPICREL Probability

subj .7583 xcomp .0830
obj .0458 xcomp:obj .0338
xcomp:xcomp .0168 xcomp:subj .0109
comp .0097 comp:subj .0073

Table 4
Most frequent semantic forms for active and passive (p) occurrences of the verb want and
reward.

Semantic form Probability

want([subj,xcomp]) .6208
want([subj,obj]) .2496
want([subj,obj,xcomp]) .1008
want([subj]) .0096
want([subj,obj,obl]) .0048
want([subj,obj,part]),p) .5000
want([subj,obl]),p) .1667
want([subj,part]),p) .1667
want([subj]),p) .1667
reward([subj,obj]) .8000
reward([subj,obj,obl]) .2000
reward([subj]),p) 1.0000

(together with the subject control equation described previously) turns the parser-
output proto-f-structure (in Figure 11) into the fully LDD resolved f-structure in
(Figure 9).

The full pipeline parsing architecture with the LDD resolution (rather than the
Traces component for LDD resolved Penn-II treebank trees) component (and the LDD
path and subcategorization frame extraction) is given in Figure 7.

The pipeline architecture supports flexible integration of treebank-based PCFGs
or state-of-the-art, history-based, and lexicalized parsers (Collins 1999; Charniak 2000;
Bikel 2002) and enables dependency-based evaluation of such parsers.

3. Experiment Design

In our experiments we compare four history-based parsers for integration into the
pipeline parsing architecture described in Section 2.3:

� Collins’s 1999 Models 311

� Charniak’s 2000 maximum-entropy inspired parser12

11 Downloaded from ftp://ftp.cis.upenn.edu/pub/mcollins/PARSER.tar.gz.
12 Downloaded from ftp://ftp.cs.brown.edu/pub/nlparser/.

97

Computational Linguistics Volume 34, Number 1

� Bikel’s 2002 emulation of Collins Model 213

� a retrained version of Bikel’s (2002) parser which retains Penn-II functional
tags

Input for Collins’s and Bikel’s parsers was pre-tagged using the MXPOST POS tag-
ger (Ratnaparkhi 1996). Charniak’s parser provides its own POS tagger. The combined
system of best history-based parser and automatic f-structure annotation is compared
to two probabilistic parsing systems based on hand-crafted, wide-coverage, constraint-
based, deep grammars:

� the RASP parsing system (Carroll and Briscoe 2002)

� the XLE parsing system (Riezler et al. 2002; Kaplan et al. 2004)

Both hand-crafted grammars perform their own POS tagging, resolve LDDs, and
associate strings with dependency relations (in the form of grammatical relations or
LFG f-structures).

We evaluate the parsers against a number of gold-standard dependency banks.
We use the DCU 105 Dependency Bank (Cahill et al. 2002a) as our development set
for the treebank-based LFG parsers. We use the f-structure annotation algorithm to
automatically generate a gold-standard test set from the original Section 22 treebank
trees (the f-structure annotated WSJ Section 22 Dependency Bank) to choose the best
treebank-based LFG parsing systems for the PARC 700 and CBS 500 experiments.
Following the experimental setup in Kaplan et al. (2004), we use the Penn-II Section 23-
based PARC 700 Dependency Bank (King et al. 2003) to evaluate the treebank-induced
LFG resources against the hand-crafted XLE grammar and parsing system of Riezler
et al. (2002) and Kaplan et al. Following Preiss (2003), we use the SUSANNE Based CBS
500 Dependency Bank (Carroll, Briscoe, and Sanfilippo 1998) to evaluate the treebank-
induced LFG resources against the hand-crafted RASP grammar and parsing system
(Carroll and Briscoe 2002) as well as against the XLE system (Riezler et al. 2002).

For each gold standard, our experiment design is as follows: We parse automati-
cally tagged input14 sentences with the treebank- and machine-learning-based parsers
trained on WSJ Sections 02–21 in the pipeline architecture, pass the resulting parse
trees to our automatic f-structure annotation algorithm, collect the f-structure equations,
pass them to a constraint-solver which generates an f-structure, resolve long-distance
dependencies at f-structure following Cahill et al. (2004) and convert the resulting LDD-
resolved f-structures into dependency representations using the formats and software
of Crouch et al. (2002) (for the DCU 105, PARC 700, and WSJ Section 22 evaluations)
and the formats and software of Carroll, Briscoe, and Sanfilippo (1998) (for the CBS
500 evaluation). In the experiments we did not use any additional annotations such as
-A (for argument) that can be generated by some of the history-based parsers (Collins
1999) as the f-structure annotation algorithm is designed for Penn-II trees (which do
not contain such annotations). We also did not use the limited LDD resolution for wh-
relative clauses provided by Collins’s Model 3 as better results are achieved by LDD

13 This was developed at the University of Pennsylvania by Dan Bikel and is freely available to download
from http://www.cis.upenn.edu/∼dbikel/software.html.

14 Tags were automatically assigned either by the parsers themselves or by the MXPOST tagger
(Ratnaparkhi 1996).

98

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Table 5
Results of tree-based evaluation on all sentences WSJ section 23, Penn-II.

Parser Labeled
f-score (%)

PCFG 73.03
Parent-PCFG 78.05
Collins M3 88.33
Charniak 89.73
Bikel 88.32

Bikel+Tags 87.53

resolution on f-structure (Cahill et al. 2004). A complete set of parameter settings for the
parsers is provided in the Appendix.

In order to evaluate the treebank-induced LFG resources against the PARC 700
and the CBS 500 dependency banks, a certain amount of automatic mapping is re-
quired to account for systematic differences in linguistic analysis, feature geometry,
and nomenclature at the level of dependencies. This is discussed in Sections 5.1 and
5.2. Throughout, we use the Approximate Randomization Test (Noreen 1989) to test the
statistical significance of the results.

4. Choosing a Treebank-Based LFG Parsing System

In this section, we choose the best treebank-based LFG parsing system for the compar-
isons with the hand-crafted XLE and RASP resources in Section 5. We use the DCU
105 Dependency Bank as our development set and carry out comparative evaluation
and statistical significance testing on the larger, automatically generated WSJ Section 22
Dependency Bank as a test set. The system based on Bikel’s (2002) parser retrained to
retain Penn-II functional tags (Table 1) achieves overall best results.

4.1 Tree-Based Evaluation against WSJ Section 23

For reference, we include the traditional CFG-tree-based comparison for treebank-
induced parsers. The parsers are trained on Sections 02 to 21 of the Penn-II Treebank and
tested on Section 23. The published results15 on these experiments for the history-based
parsers are given in Table 5. We also include figures for a PCFG and a Parent-PCFG (a
PCFG which has undergone the parent transformation [Johnson 1999]). These PCFGs
are induced following standard treebank preprocessing steps, including elimination of
empty nodes, but following Cahill et al. (2004), they do include Penn-II functional tags
(Table 1), as these tags contain valuable information for the automatic f-structure anno-
tation algorithm (Section 2.2). These tags are removed for the tree-based evaluation.

The results show that the history-based parsers produce considerably better trees
than the more basic PCFGs (with and without parent transformations). Charniak’s
(2000) parser scores best with an f-score of 89.73% on all sentences in Section 23. The

15 Where there were no published results available for Section 23, we calculated them using the
downloadable versions of the parsers.

99

Computational Linguistics Volume 34, Number 1

vanilla PCFG achieves the lowest f-score of 73.03%, a difference of 16.7 percentage
points. The hand-crafted XLE and RASP grammars achieve around 80% coverage
(measured in terms of complete spanning parse) on Section 23 and use a variety of
(longest) fragments combining techniques to generate dependency representations for
the remaining 20% of Section 23 strings. By contrast, the treebank-induced PCFGs and
history-based parsers all achieve coverage of over 99.9%. Given that the history-based
parsers score considerably better than PCFGs on trees, we would also expect them to
produce dependency structures of substantially higher quality.

4.2 Using DCU 105 as a Development Set

The DCU 105 (Cahill et al. 2002a) is a hand-crafted gold-standard dependency bank
for 105 sentences, randomly chosen from Section 23 of the Penn-II Treebank.16 This is a
relatively small gold standard, initially developed to evaluate the automatic f-structure
annotation algorithm. We parse the 105 tagged sentences into LFG f-structures with
each of the treebank-induced parsers in the pipeline parsing and f-structure annotation
architecture. The f-structures of the gold standard and the f-structures returned by the
parsing systems are converted into dependency triples following Crouch et al. (2002)
and Riezler et al. (2002) and we also use their software for evaluation. The following
dependency triples are produced by the f-structure in Figure 1:

subj(sign∼0,U.N.∼1)
obj(sign∼0,treaty∼2)
num(U.N.∼1,sg)
pers(U.N.∼1,3)
num(treaty∼2,sg)
pers(treaty∼3,3)
tense(sign∼0,present)

We evaluate preds-only f-structures (i.e., where paths in f-structures end in a PRED

value: the predicate-argument-adjunct structure skeleton) and all grammatical func-
tions (GFs) including number, tense, person, and so on. The results are given in Table 6.

With one main exception, Tables 5 and 6 confirm the general expectation that
the better the trees produced by the parsers, the better the f-structures automatically
generated for those trees. The exception is Bikel+Tags. The automatic f-structure an-
notation algorithm will exploit Penn-II functional tag information if present to generate
appropriate f-structure equations (see Section 2.2). It will default to possibly less reliable
configurational and categorial information if Penn-II tags are not present in the trees.

In order to test whether the retention of Penn-II functional labels in the history-
based parser output will improve LFG f-structure-based dependency results, we use
Bikel’s (2002) training software,17 and retrain the parser on a version of the Penn-II
treebank (Sections 02 to 21) with the Penn-II functional tag labels (Table 1) annotated
in such a way that the resulting history-based parser will retain them (Section 2.3). The
retrained parser (Bikel+Tags) then produces CFG-trees with Penn-II functional labels
and these are used by the f-structure annotation algorithm. We evaluate the f-structure
dependencies against the DCU 105 (Table 6) and achieve an f-score of 82.92% preds-only

16 It is publicly available for download from: http://nclt.computing.dcu.ie/gold105.txt.
17 We use Bikel’s software rather than Charniak’s for this experiment as the former proved more stable

during the retraining phase.

100

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Table 6
Treebank-induced parsers: results of dependency-based evaluation against DCU 105.

Parser Preds only All GFs
f-score (%) f-score (%)

PCFG 70.24 79.90
Parent-PCFG 75.84 83.58
Collins M3 77.84 85.08
Charniak 79.61 85.66
Bikel 79.39 86.56

Bikel+Tags 82.92 88.30

Table 7
Treebank induced parsers: breakdown by dependency relation of preds-only evaluation against
DCU 105.

Dep. Percent of total F-score (%)

Parent-PCFG Collins M3 Charniak Bikel Bikel+Tags

ADJUNCT 33.73 71 72 76 73 79
APP 0.68 61 0 55 70 65
COMP 2.31 60 61 66 61 73
COORD 5.73 64 73 77 67 76
DET 9.58 91 93 96 96 96
FOCUS 0.04 100 100 0 100 100
OBJ 16.42 82 84 86 85 90
OBJ2 0.07 80 57 50 57 50
OBL 2.17 58 24 27 23 63
OBL2 0.07 50 0 0 0 67
OBL AG 0.43 40 96 96 92 92
POSS 2.88 80 83 82 82 79
QUANT 1.85 70 67 69 70 70
RELMOD 1.78 50 78 67 78 73
SUBJ 14.74 80 81 83 85 85
TOPIC 0.46 85 87 96 96 89
TOPICREL 1.85 61 80 80 79 74
XCOMP 5.20 90 92 79 93 93

and 88.3% all GFs. A detailed breakdown by dependency is given in Table 7. The system
based on the retrained parser is nowmuch better able to identify oblique arguments and
overall preds-only accuracy has improved by 3.53% over the original Bikel experiment
and 3.31% over Charniak’s parser, even though Charniak’s parser performs more than
2% better on the tree-based scores in Table 5 and even though the retrained parser drops
0.79% against the original Bikel parser on the tree-based scores.18

Inspection of the results broken down by grammatical function (Table 7) for the
preds-only evaluation against the DCU 105 shows that just over one third of all depen-
dency triples in the gold standard are adjuncts. SUBJ(ects) and OBJ(ects) together make
up a further 30%.

18 The figures suggest that retraining Charniak’s parser to retain Penn-II functional tags is likely to produce
even better dependency scores than those achieved by Bikel’s retrained parser.

101

Computational Linguistics Volume 34, Number 1

Table 7 shows that the treebank-based LFG system using Collins’s Models 3 is
unable to identify APP(osition). This is due to Collins’s treatment of punctuation and
the fact that punctuation is often required to reliably identify apposition.19 None of
the original history-based parsers produced trees which enabled the annotation algo-
rithm to identify second oblique dependencies (OBL2), and they generally performed
considerably worse than Parent-PCFG when identifying OBL(ique) dependencies. This
is because the automatic f-structure annotation algorithm is cautious to the point of
undergeneralization when identifying oblique arguments. In many cases, the algorithm
relies on the presence of, for example, a -CLR Penn-II functional label (indicating that the
phrase is closely related to the verb), and the history-based (Collins M3, Charniak, and
Bikel) parsers do not produce these labels, whereas Parent-PCFG (as well as PCFG) are
trained to retain Penn-II functional labels. Parent-PCFG, by contrast, performs poorly
for oblique agents (OBL AG, agentive by-phrases in passive constructions), whereas the
history-based parsers are able to identify these with considerable accuracy. This is be-
cause Parent-PCFG often erroneously finds oblique agents, even when the preposition
is not by, as it never has enough context in which to distinguish by prepositional phrases
from other PPs. The history-based parsers produce trees from which the automatic
f-structure annotation algorithm can better identify RELMOD and TOPICREL dependen-
cies than Parent-PCFG. This, in turn, leads to improved long distance dependency
resolution which improves overall accuracy.

The DCU 105 development set is too small to support reliable statistical significance
testing of the performance ranking of the six treebank-based LFG parsing systems. In
order to carry out significance testing to select the best treebank-based LFG parsing
system for comparative evaluation against the hand-crafted deep XLE and RASP re-
sources, we move to a larger dependency-based evaluation data set: the gold-standard
dependency bank automatically generated fromWSJ Section 22.

4.3 Evaluation against WSJ Section 22 Dependencies

In an experimental setup similar to that of Hockenmaier and Steedman (2002),20 we
evaluate each parser against a large automatically generated gold standard. The gold-
standard dependency bank is automatically generated by annotating the original 1,700
treebank trees from WSJ Section 22 of the Penn-II Treebank with our f-structure an-
notation algorithm. We then evaluate the f-structures generated from the tree output
of the six parsers trained on Sections 02 to 21 resulting from parsing the Section 22
strings against the automatically produced f-structures for the original Section 22 Penn-II
treebank trees. The results are given in Table 8.

Compared to Table 6 for the DCU 105 gold standard, most scores are up, particularly
so for the history-based parsers. This trend is possibly due to the fact that the WSJ

19 The annotation algorithm relies on Penn-II-style punctuation patterns where an NP apposition follows a
nominal head separated by a comma ([NP [NP Bush] , [NP the president]]), all three sisters of the same
mother node, while the trees produced by Collins’s parser attach the comma low in the tree ([NP [NP
Bush,] [NP the president]]). Although it would be trivial to carry out a tree transformation on the Collins
output to raise the punctuation to the expected level, we have not done this here.

20 This corresponds to experiments where the original Penn-II Section 23 treebank trees are automatically
converted into CCG derivations, which are then used as a gold standard to evaluate the CCG parser
trained on Sections 02–21. A similar methodology is used for the evaluation of treebank-based HPSG
resources (Miyao, Ninomiya, and Tsujii 2003) where Penn-II treebank trees are automatically annotated
with HPSG typed-feature structure information.

102

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Table 8
Results of dependency-based evaluation against the automatically generated gold standard for
WSJ Section 22.

Parser Preds only All GFs
f-score (%) f-score (%)

PCFG 70.76 80.44
Parent-PCFG 74.92 83.04
Collins M3 79.30 86.00
Charniak 81.35 86.96
Bikel 81.40 87.00
Bikel+Tags 83.06 87.63

Section 22 gold standard is generated automatically from the original “perfect” Penn-II
treebank trees using the automatic f-structure annotation algorithm, whereas the DCU
105 has been created manually without regard as to whether or not the f-structure
annotation algorithm could ever generate the f-structures, even given the “perfect”
trees.

The LFG system based on Bikel’s retrained parser achieves the highest f-score of
83.06% preds-only and 87.63% all GFs. Parent-PCFG achieves an f-score of 74.92%
preds-only and 83.04% all GFs. Table 9 provides a breakdown by feature of the preds-
only evaluation.

Table 9 shows that, once again, the automatic f-structure annotation algorithm is
not able to identify any cases of apposition from the output of Collins’s Model 3 parser.
Apart from Bikel’s retrained parser, none of the history-based parsers are able to identify

Table 9
Breakdown by dependency of results of preds-only evaluation against the automatically
generated Section 22 gold standard.

Dep. Percent of total F-score (%)

Parent-PCFG Collins M3 Charniak Bikel Bikel+Tags

ADJUNCT 33.77 70 75 78 78 80
APP 0.74 61 0 77 77 71
COMP 1.35 60 72 70 70 80
COORD 5.11 74 78 82 82 81
DET 10.72 88 91 92 92 91
FOCUS 0.02 27 67 88 88 71
OBJ 16.17 80 85 87 87 88
OBJ2 0.07 15 30 32 32 71
OBL 1.92 50 19 21 21 73
OBL2 0.07 47 3 3 3 69
OBL AG 0.31 50 90 89 89 85
POSS 2.47 86 91 91 91 91
QUANT 2.12 89 89 93 93 92
RELMOD 1.84 51 71 72 72 69
SUBJ 15.45 75 80 81 81 82
TOPIC 0.44 81 85 84 84 76
TOPICREL 1.82 61 72 74 75 69
XCOMP 5.62 81 87 81 81 88

103

Computational Linguistics Volume 34, Number 1

Figure 12
Approximate Randomization Test for statistical significance testing.

OBJ2, OBL or OBL2 dependencies very well, although Parent-PCFG is able to produce
trees from which it is easier to identify obliques (OBL), because of the Penn-II functional
-CLR label. The automatic annotation algorithm is unable to identify RELMOD depen-
dencies satisfactorily from the trees produced by parsing with Parent-PCFG, although
the history-based parsers score reasonably well for this function. Whereas Charniak’s
parser is able to identify some dependencies better than Bikel’s retrained parser, overall
the system based on Bikel’s retrained parser performs better when evaluating against
the dependencies in WSJ Section 22.

In order to determine whether the results are statistically significant, we use the Ap-
proximate Randomization Test (Noreen 1989).21 This test is an example of a computer-
intensive statistical hypothesis test. Such tests are designed to assess result differences
with respect to a test statistic in cases where the sampling distribution of the test statistic
is unknown. Comparative evaluations of outputs of parsing systems according to test
statistics, such as differences in f-score, are examples of this situation. The test statistics
are computed by accumulating certain count variables over the sentences in the test
set. In the case of f-score, variable tuples consisting of the number of dependency-
relations in the parse for the system translation, the number of dependency-relations
in the parse for the reference translation, and the number of matching dependency-
relations between system and reference parse, are accumulated over the test set.

Under the null hypothesis, the compared systems are not different, thus any vari-
able tuple produced by one of the systems could just as likely have been produced by
the other system. So shuffling the variable tuples between the two systems with equal
probability, and recomputing the test statistic, creates an approximate distribution of
the test statistic under the null hypothesis. For a test set of S sentences there are 2S

different ways to shuffle the variable tuples between the two systems. Approximate
randomization produces shuffles by random assignments instead of evaluating all 2S

possible assignments. Significance levels are computed as the percentage of trials where
the pseudo statistic, that is the test statistic computed on the shuffled data, is greater
than or equal to the actual statistic, that is the test statistic computed on the test data. A
sketch of an algorithm for approximate randomization testing is given in Figure 12.

21 Applications of this test to natural language processing problems can be found in Chinchor et al. (1993)
and Yeh (2000).

104

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Table 10
Comparing parsers evaluated against Section 22 dependencies (preds-only): p-values for
approximate randomization test for 10,000,000 randomizations.

PCFG Parent-PCFG Collins M3 Charniak Bikel Bikel+Tags

PCFG - - - - - -
Parent-PCFG <.0001 - - - - -
Collins M3 <.0001 <.0001 - - - -
Charniak <.0001 <.0001 <.0001 - - -
Bikel <.0001 <.0001 <.0001 .0003 - -
Bikel+Tags <.0001 <.0001 <.0001 <.0001 <.0001 -

Table 10 gives the p-values (the smallest fixed level at which the null hypothesis can
be rejected) for comparing each parser against all of the other parsers. We test for sig-
nificance at the 95% level. Because we are doing a pairwise comparison of six systems,
giving 15 comparisons, the p-value needs to be below .0034 for there to be a significant
difference at the 95% level.22 For each parser, the values in the row corresponding to
that parser represent the p-values for those parsers that achieve a lower f-score than
that parser. This shows that the system based on Bikel’s retrained parser is significantly
better than those based on the other parsers with a statistical significance of >95%. For
the XLE and RASP comparisons, we will use the f-structure-annotation algorithm and
Bikel retrained-based LFG system.

5. Cross-Formalism Comparison of Treebank-Induced and Hand-Crafted Grammars

From the experiments in Section 4, we choose the treebank-based LFG system using
the retrained version of Bikel’s parser (which retains Penn-II functional tag labels) to
compare against parsing systems using deep, hand-crafted, constraint-based grammars
at the level of dependencies. We report on two experiments. In the first experiment
(Section 5.1), we evaluate the f-structure annotation algorithm and Bikel retrained
parser-based LFG system against the hand-crafted, wide-coverage LFG and XLE pars-
ing system (Riezler et al. 2002; Kaplan et al. 2004) on the PARC 700 Dependency Bank
(King et al. 2003). In the second experiment (Section 5.2), we evaluate against the hand-
crafted, wide-coverage unification grammar and RASP parsing system of Carroll and
Briscoe (2002) on the CBS 500 Dependency Bank (Carroll, Briscoe, and Sanfilippo 1998).

5.1 Evaluation against PARC 700

The PARC 700 Dependency Bank (King et al. 2003) provides dependency relations
(including LDD relations) for 700 sentences randomly selected from WSJ Section 23 of
the Penn-II Treebank. In order to evaluate the parsers, we follow the experimental setup
of Kaplan et al. (2004) with a split of 560 dependency structures for the test set and 140
for the development set. The set of features (Table 12, later in this article) evaluated
in the experiment form a proper superset of preds-only, but a proper subset of all

22 Based on Cohen (1995, p. 190): αe ≈ 1 – (1 – αc)
m, where m is the number of pairwise comparisons, αe is

the experiment-wise error, and αc is the per-comparison error.

105

Computational Linguistics Volume 34, Number 1

Figure 13
PARC 700 conversion software.

grammatical functions (preds-only ⊂ PARC ⊂ all GFs). This feature set was selected in
Kaplan et al. because the features carry important semantic information. There are sys-
tematic differences between the PARC 700 dependencies and the f-structures generated
in our approach as regards feature geometry, feature nomenclature, and the treatment
of named entities. In order to evaluate against the PARC 700 test set, we automatically
map the f-structures produced by our parsers to a format similar to that of the PARC
700 Dependency Bank. This is done with conversion software in a post-processing stage
on the f-structure annotated trees (Figure 13).

The conversion software is developed on the 140-sentence development set of the
PARC 700, except for the Multi-Word Expressions section. Following the experimental
setup of Kaplan et al. (2004), we mark up multi-word expression predicates based on
the gold-standard PARC 700 Dependency Bank.

Multi-Word Expressions The f-structure annotation algorithm analyzes the internal
structure of all noun phrases fully. In Figure 14, for example, BT is analyzed as
an ADJUNCT modifier of the head securities, whereas PARC 700 analyzes this and
other (more complex) named entities as multi-word expression predicates. The
conversion software transforms the output of the f-structure annotation algorithm
into the multi-word expression predicate format.

Feature Geometry In constructions such as Figure 2, the f-structure annotation algo-
rithm analyzes say as the main PRED with what is said as the value of a COMP

argument. In the PARC 700, these constructions are analyzed in such a way that
what is said/reported provides the top level f-structure whereas other material
(who reported, etc.) is analyzed in terms of ADJUNCTs modifying the top level
f-structure. A further systematic structural divergence is provided by the analysis

Figure 14
Named entity and OBL AG feature geometry mapping.

106

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

of passive oblique agent constructions (Figure 14): The f-structure annotation
algorithm generates a complex internal analysis of the oblique agent PP, whereas
the PARC analysis encodes a flat representation. The conversion software adjusts
the output of the f-structure annotation algorithm to the PARC-style encoding of
linguistic information.

Feature Nomenclature There are a number of systematic differences between feature
names used by the automatic annotation algorithm and PARC 700: For example,
DET is DET FORM in the PARC 700, COORD is CONJ, FOCUS is FOCUS INT. Nomen-
clature differences are treated in terms of a simple relabeling by the conversion
software.

Additional Features A number of features in the PARC 700 are not produced by the au-
tomatic annotation algorithm. These include: AQUANT for adjectival quantifiers,
MOD for NP-internal modifiers, and STMT TYPE for statement type (declarative,
interrogative, etc.). Additional features (and their values) are automatically gen-
erated by the mapping software, using categorial, configurational, and already
produced f-structure annotation information, extending the original annotation
algorithm.

XCOMP Flattening The automatic annotation algorithm treats both auxiliary and
modal verb constructions in terms of hierarchically cascading XCOMPs, whereas
in PARC 700 the temporal and aspectual information expressed by auxiliary verbs
is represented in terms of a flat analysis and features (Figure 15). The conversion
software automatically flattens the f-structures produced by the automatic anno-
tation algorithm into the PARC-style encoding.

For full details of the mapping, see Burke et al. (2004).
In our parsing experiments, we used the most up-to-date version of the hand-

crafted, wide-coverage, deep LFG resources and XLE parsing system with improved
results over those reported in Kaplan et al. (2004): This latest version achieves 80.55%
f-score, a 0.95 percentage point improvement on the previous 79.6%. The XLE parsing
system combines a large-scale, hand-crafted LFG for English and a statistical disam-
biguation component to choose the most likely analysis among those returned by
the symbolic parser. The statistical component is a log-linear model trained on 10,000
partially labeled structures from the WSJ. The results of the parsing experiments are
presented in Table 11. We also include a figure for the upper bound of each system.23

Using Bikel’s retrained parser, the treebank-based LFG system achieves an f-score of
82.73%, and the hand-crafted grammar and XLE-based system achieves an f-score
of 80.55%. The approximate randomization test produced a p-value of .0054 for this
pairwise comparison, showing that this result difference is statistically significant at
the 95% level. Evaluation results on a reannotated version (Briscoe and Carroll 2006) of
the PARC 700 Dependency Bank were recently published in Clark and Curran (2007),
reporting f-scores of 81.9% for the CCG parser, and 76.3% for RASP. As Briscoe and

23 The upper bound for the treebank-based LFG system is determined by taking the original Penn-II WSJ
Section 23 trees corresponding to the PARC 700 strings, automatically annotating them with the
f-structure annotation algorithm, and evaluating the f-structures against the PARC 700 dependencies. The
upper bound for the XLE system is determined by selecting the XLE parse that scores best against the
PARC 700 dependencies for each of the PARC 700 strings. It is interesting to note that the upper bound
for the treebank-based system is only 1.18 percentage points higher than that for the XLE system. Apart
from the two different methods for establishing the upper bounds, this is most likely due to the fact that
the mapping required for evaluating the treebank-based LFG system against PARC 700 is lossy (cf. the
discussion in Section 6).

107

Computational Linguistics Volume 34, Number 1

Figure 15
DCU 105 and PARC 700 analyses for the sentence Unlike 1987, interest rates have been falling
this year.

Carroll point out, these evaluations are not directly comparable with the Kaplan et al.
(2004) style evaluation against the original PARC 700 Dependency Bank, because the
annotation schemes are different. Kaplan et al. and our experiments use a fine-grained
feature set of 34 features (Table 12), while the Briscoe and Carroll scheme uses 17
features.

A breakdown by dependency relation for each system is given in Table 12. The
treebank-induced grammar system can better identify DET FORM, SUBORD FORM, and

Table 11
Results of evaluation against the PARC 700 Dependency Bank following the experimental setup
of Kaplan et al. (2004).

Bikel+Tags XLE p-Value

F-score 82.73 80.55 .0054
Upper bound 86.83 85.65 -

108

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Table 12
Breakdown by dependency relation of results of evaluation against PARC 700.

Dep. Percent of deps. F-score (%)

Bikel+Tags XLE

ADEGREE 6.17 80 82
ADJUNCT 14.32 68 66
AQUANT 0.06 78 61
COMP 1.23 80 74
CONJ 2.64 73 69
COORD FORM 1.20 83 90
DET FORM 4.61 97 91
FOCUS 0.02 0 36
MOD 2.74 74 67
NUM 19.82 91 89
NUMBER 1.42 89 83
NUMBER TYPE 2.10 94 86
OBJ 8.92 87 78
OBJ THETA 0.05 43 31
OBL 0.83 55 69
OBL AG 0.22 82 76
OBL COMPAR 0.07 38 56
PASSIVE 1.14 80 88
PCASE 0.25 79 68
PERF 0.41 89 90
POSS 0.98 88 80
PRECOORD FORM 0.03 0 91
PROG 0.97 89 81
PRON FORM 2.54 92 94
PRON INT 0.03 0 33
PRON REL 0.57 74 72
PROPER 3.56 83 93
PRT FORM 0.22 80 41
QUANT 0.34 77 80
STMT TYPE 5.23 87 80
SUBJ 8.51 78 78
SUBORD FORM 0.93 47 42
TENSE 5.02 95 90
TOPIC REL 0.57 56 73
XCOMP 2.29 80 78

PRT FORM dependencies24 and achieves higher f-scores for OBJ and POSS. However, the
hand-crafted parsing system can better identify FOCUS, OBL(ique) arguments, PRECO-
ORD FORM and TOPICREL relations.

5.2 Evaluation against CBS 500

We also compare the hand-crafted, deep, probabilistic unification grammar-based RASP
parsing system of Carroll and Briscoe (2002) to our treebank- and retrained Bikel

24 DET FORM, SUBORD FORM, and PRT FORM (and in general X FORM) dependencies record (semantically
relevant) surface forms in f-structure for X-type closed class categories.

109

Computational Linguistics Volume 34, Number 1

Figure 16
CBS 500 conversion software.

parser-based LFG system. The RASP parsing system is a domain-independent, robust
statistical parsing system for English, based on a hand-written, feature-based unification
grammar. A probabilistic parse selection model conditioned on the structural parse
context, degree of support for a subanalysis in the parse forest, and lexical informa-
tion (when available) chooses the most likely parses. For this experiment, we evaluate
against the CBS 500,25 developed by Carroll, Briscoe, and Sanfilippo (1998) in order to
evaluate a precursor of the RASP parsing resources. The CBS 500 contains dependency
structures (including some long distance dependencies26) for 500 sentences chosen at
random from the SUSANNE corpus (Sampson 1995), but subject to the constraint that
they are parsable by the parser in Carroll, Briscoe, and Sanfilippo. Aswith the PARC 700,
there are systematic differences between the f-structures produced by our methodology
and the dependency structures of the CBS 500. In order to be able to evaluate against
the CBS 500, we automatically map our f-structures into a format similar to theirs. We
did not split the data into a heldout and a test set when developing the mapping, so
that a comparison could be made with other systems that report evaluations against
the CBS 500. The following CBS 500-style grammatical relations are produced from the
f-structure in Figure 1:

(ncsubj sign U.N.)
(dobj sign treaty)

Some mapping is carried out (as in the evaluation against the PARC 700) on the f-
structure annotated trees, and the remaining mapping is carried out on the f-structures
(Figure 16). As with the PARC 700 mapping, all mappings are carried out automatically.

The following phenomena were dealt with on the f-structure annotated trees:

Auxiliary verbs (xcomp flattening) XCOMPS were flattened to promote the main verb
to the top level, while maintaining a list of auxiliary and modal verbs and their
relation to one another.

Treatment of topicalized sentences The predicate of the topicalized sentence became
the main predicate and any other top level material became an adjunct.

Multi-word expressions Multi-word expressions (such as according to) were not
marked up in the parser input, but captured in the annotated trees and the
annotations adjusted accordingly.

Treatment of the verbs be and become Our automatic annotation algorithm does not
treat the verbs be and become differently from any other verbs when they are used
transitively. This analysis conflicted with the CBS 500 analysis, so was changed to
match theirs.

25 This was downloaded from http://www.informatics.susx.ac.uk/research/nlp/carroll/greval.html.
26 The long distance dependencies include passive, wh-less relative clauses, control verbs, and so forth.

110

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Table 13
Results of dependency evaluation against the CBS 500 (Carroll, Briscoe, and Sanfillipo 1998).

Bikel+Tags RASP p-Value

F-score 80.23 76.57 <.0001

The following are the main mappings carried out on the f-structures:

Encoding of Passive We treat passive as a feature in our automatic f-structure annota-
tion algorithm, whereas the CBS 500 triples encode this information indirectly.

Objects of Prepositional Phrases No dependency was generated for these objects, as
there was no corresponding dependency in the CBS 500 analyses.

Nomenclature Differences There were some trivial mappings to account for differ-
ences in nomenclature, for example OBL in our analyses became IOBJ in the
mapped dependencies.

Encoding of wh-less relative clauses These are encoded by means of reentrancies in
f-structure, but were encoded in a more indirect way in the mapped dependencies
to match the CBS 500 annotation format.

To carry out the experiments, we POS-tagged the tokenized CBS 500 sentences with
the MXPOST tagger (Ratnaparkhi 1996) and parsed the tag sequences with our Penn-II
and Bikel retrained-based LFG system. We use the evaluation software of Carroll,
Briscoe, and Sanfilippo (1998)27 to evaluate the grammatical relations produced by each
parser. The results are given in Table 13.

Our LFG system based on Bikel’s retrained parser achieves an f-score of 80.23%,
whereas the hand-crafted RASP grammar and parser achieves an f-score of 76.57%.
Crouch et al. (2002) report that their XLE system achieves an f-score of 76.1% for the
same experiment. A detailed breakdown by dependency is given in Table 14. The
LFG system based on Bikel’s retrained parser is able to better identify MOD(ifier) de-
pendency relations, ARG MOD (the relation between a head and a semantic argument
which is syntactically realized as a modifier, for example by-phrases), IOBJ (indirect
object) and AUXiliary relations. RASP is able to better identify XSUBJ (clausal subjects
controlled from without), CSUBJ (clausal subjects), and COMP (clausal complement)
relations. Again we use the Approximate Randomization Test to test the parsing results
for statistical significance. The p-value for the test comparing our system using Bikel’s
retrained parser against RASP is <.0001. The treebank-based LFG system using Bikel’s
retrained parser is significantly better than the hand-crafted, deep, unification grammar-
based RASP parsing system with a statistical significance of >95%.

6. Discussion and Related Work

At the moment, we can only speculate as to why our treebank-based LFG resources
outperform the hand-crafted XLE and RASP grammars.

In Section 4, we observed that the treebank-induced LFG resources have consid-
erably wider coverage (>99.9% measured in terms of complete spanning parse) than

27 This was downloaded from http://www.informatics.susx.ac.uk/research/nlp/carroll/greval.html.

111

Computational Linguistics Volume 34, Number 1

Table 14
Breakdown by grammatical relation for results of evaluation against CBS 500.

Dep. Percent of deps. F-score (%)

Bikel+Tags RASP

DEPENDANT 100.00 80.23 76.57
MOD 48.96 80.30 75.29
NCMOD 30.42 85.37 72.98
XMOD 1.60 70.05 55.88
CMOD 2.61 75.60 53.08
DETMOD 14.06 95.85 91.97
ARG MOD 0.51 80.00 64.52
ARG 43.70 78.28 77.57
SUBJ 13.10 79.84 83.57
NCSUBJ 12.99 87.84 84.32
XSUBJ 0.06 0.00 88.89
CSUBJ 0.04 0.00 22.22
SUBJ OR DOBJ 18.22 81.21 83.84
COMP 12.38 76.73 71.87
OBJ 7.34 76.05 69.53
DOBJ 5.11 84.55 84.57
OBJ2 0.25 48.00 43.84
IOBJ 1.98 59.04 47.60
CLAUSAL 5.04 77.74 75.37
XCOMP 4.03 80.00 84.11
CCOMP 1.01 69.61 75.14

AUX 4.76 94.94 88.27
CONJ 2.06 68.84 69.09

the hand-crafted grammars (∼80% for XLE and RASP grammars on unseen treebank
text). Both XLE and RASP use a number of (largest) fragment-combining techniques
to achieve full coverage. If coverage is a significant component in the performance
difference observed between the hand-crafted and treebank-induced resources, then
it is reasonable to expect that the performance difference is more pronounced with
increasing sentence length (with shorter sentences being simpler and more likely to
be within the coverage of the hand-crafted grammars). In other words, we expect the
hand-crafted, deep, precision grammars to do better on shorter sentences (more likely to
be within their coverage), whereas the treebank-induced grammars should show better
performance on longer strings (less likely to be within the coverage of the hand-crafted
grammars).

In order to test this hypothesis, we carried out a number of experiments:
First, we plotted the sentence length distribution for the 560 PARC 700 test sen-

tences and the 500 CBS 500 sentences (Figures 17 and 18). Both gold standards are
approximately normally distributed, with the CBS 500 distribution possibly showing
the effects of being chosen subject to the constraint that the strings are parsable by the
parser in Carroll, Briscoe, and Sanfilippo (1998). For each case we use the mean, µ, and
two standard deviations, 2σ, to the left and right of themean to exclude sentence lengths
not supported by sufficient observations: For PARC 700, µ = 23.27, µ − 2σ = 2.17, and
µ + 2σ = 44.36; for CBS 500, µ = 17.27, µ − 2σ = 1.59, and µ + 2σ = 32.96. Both the
PARC 700 and the CB 500 distributions are positively skewed. For the PARC 700, µ − 2σ
is actually outside the observed data range, whereas for CB 500, µ − 2σ almost coincides

112

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Figure 17
Distribution of sentence frequency by sentence length in the PARC 700 test set with Bezier
interpolation. Vertical lines mark two standard deviations from the mean.

with the left border. It is therefore useful to further constrain the ±2σ range by a
sentence count threshold of ≥ 5.28 This results in a sentence length range of 4–41 for
PARC 700 and 4–32 for CBS 500.

Second, in order to test whether fragment parses increase with sentence length, we
plotted the percentage of fragment parses over sentence length for the XLE parses of the
560-sentence test set of the PARC 700 (we did not do this for the CBS 500 as its strings
are selected to be fully parsable by RASP). Figure 19 shows that the number of fragment
parses tends to increase with sentence length.

Third, we plotted the average dependency f-score for the hand-crafted and the
treebank-induced resources against sentence lengths. Figure 20 shows the results for
PARC 700, Figure 21 for CBS 500.

In both cases, contrary to our (perhaps somewhat naive) assumption, the graphs
show that the treebank-induced resources outperform the hand-crafted resources
within (most of) the 4–41 and 4–32 sentence length bounds, with the results for the very
short and the very long strings outside those bounds not being supported by sufficient
data points.

In the parsing literature, results are often also provided for strings with lengths
≤40. Below we give those results and statistical significance testing for the PARC 700
and CBS 500 (Tables 15 and 16). The results show that the Bikel retrained–based LFG
system achieves a higher dependency f-score on sentences of length ≤40 than on all
sentences, whereas the XLE system achieves a slightly lower score on sentences of
length ≤40. The Bikel-retrained system achieves an f-score of 83.18%, a statistically

28 Note that because the distributions in Figures 17 and 18 are Bezier interpolated, the constraint does not
guarantee that every sentence length within the range occurs five or more times.

113

Computational Linguistics Volume 34, Number 1

Figure 18
Distribution of sentence frequency by sentence length in the CB 500 test set with Bezier
interpolation. Vertical lines mark two standard deviations from the mean.

Figure 19
Percentage of fragment sentences for XLE parsing system per sentence length with Bezier
interpolation.

significant improvement of 2.67 percentage points over the XLE system on sentences of
length≤40. Against the CBS 500, Bikel’s retrained system achieves a weighted f-score of
82.58%, a statistically significant improvement of 3.87 percentage points over the RASP
system which achieves a weighted f-score of 78.81% on sentences of length ≤40.

114

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Figure 20
Average f-score by sentence length for PARC 700 test set with Bezier interpolation.

Figure 21
Average f-score by sentence length for CB 500 test set with Bezier interpolation.

Finally, we test whether the strict preds-only dependency evaluation has an ef-
fect on the results for the PARC 700 experiments. Recall that following Kaplan et al.
(2004) for the PARC 700 evaluation we used a set of semantically relevant grammatical
functions that is a superset of preds-only and a subset of all-GFs. A preds-only based
evaluation is “stricter” and tends to produce lower scores as it directly reflects the effects

115

Computational Linguistics Volume 34, Number 1

Table 15
Evaluation and significance testing of sentences length ≤40 against the PARC 700.

All sentence lengths Length ≤40
f-score f-score

Bikel + Tags 82.73 83.18
XLE 80.55 80.51
p-value .0054 .0010

Table 16
Evaluation and significance testing of sentences length ≤40 against the CBS 500.

All sentence lengths Length ≤40
f-score f-score

Bikel + Tags 80.23 82.58
RASP 76.57 78.81
p-value <.0001 <.0001

Table 17
Preds-only evaluation against the PARC 700 Dependency Bank.

All GFs Preds only
f-score f-score

Bikel + Tags 82.73 77.40
XLE 80.55 74.31

of predicate–argument/adjunct misattachments in the resulting dependency represen-
tations (while local functions such as NUM(ber), for example, can score properly even
if the local predicate is misattached). Table 1729 below gives the results for preds-only
evaluation30 on the PARC 700 for all sentence lengths. The results show that the Bikel-
retrained treebank-based LFG resource achieves an f-score of 77.40%, 5.33 percentage
points lower than the score for all the PARC dependencies. The XLE system achieves
an f-score of 74.31%, 6.24 percentage points lower than the score for all the PARC
dependencies and a 3.09 percentage point drop against the results obtained by the
Bikel-retrained treebank-based LFG resources. The performance of the Bikel retrained–
based LFG system suffers less than the XLE system when preds-only dependencies are
evaluated.

It is important to note that in our f-structure annotation algorithm and treebank-
based LFG parsing architectures, we do not claim to provide fully adequate statistical
models. It is well known (Abney 1997) that PCFG- or history-based parser approxima-
tions to general constraint-based grammars can yield inconsistent probability models

29 We do not include a p-value here as the breakdown by function per sentence was not available to us for
the XLE data.

30 The dependency relations we include in preds-only evaluation are: ADJUNCT, AQUANT, COMP, CONJ,
COORD FORM, DET FORM, FOCUS INT, MOD, NUMBER, OBJ, OBJ THETA, OBL, OBL AG, OBL COMPAR,
POSS, PRON INT, PRON REL, PRT FORM, QUANT, SUBJ, SUBORD FORM, TOPIC REL, XCOMP.

116

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

due to loss of probability mass: The parser successfully returns the highest ranked
parse tree but the constraint solver cannot resolve the f-structure equations and the
probability mass associated with that tree is lost. Research on adequate probability
models for constraint-based grammars is important (Bouma, van Noord, and Malouf
2000; Miyao and Tsujii 2002; Riezler et al. 2002; Clark and Curran 2004). In this context,
it is interesting to compare parser performance against upper bounds. For the PARC
700 evaluation, the upper bound for the XLE-based resources is 85.65%, against 86.83%
for the treebank-based LFG resources. XLE-based parsing currently achieves 94.05%
(f-score 80.55%) of its upper bound using a discriminative disambiguation method,
whereas the treebank-based LFG resource achieves 95.28% (f-score 82.73%) of its upper
bound.

Although this seems to indicate that the two disambiguationmodels achieve similar
results, the figures are actually very difficult to compare. In the case of the XLE, the
upper bound is established by unpacking all parses for a string and scoring the best
match against the gold standard (rather than letting the probability model select a
parse). By contrast, in the case of the treebank-based LFG resources, we use the original
“perfect” Penn-II treebank trees (rather than the trees produced by the parser), auto-
matically annotate those trees with the f-structure annotation algorithm, and score the
results against the PARC 700 (it is not feasible to generate all parses for a string, there
are simply too many for treebank-induced resources). The upper bound computed in
this fashion for the treebank-based LFG resource (86.83%) is relatively low. The main
reason is that the automatic mapping required to relate the f-structures generated by the
treebank-based LFG resources to the PARC 700 dependencies is lossy. This is indicated
by comparing the upper bound for the treebank-based LFG resources for the PARC 700
against the upper bound for the DCU 105 gold standard, where little or no mapping
(apart from the feature-structure to dependency-triple conversion) is required: Scoring
the f-structure annotations for the original treebank trees results in 86.83% against PARC
700 versus 96.80% against DCU 105.

Our discussion shows how delicate it can be to compare parsing systems and
their disambiguation models. Ultimately what is required is an evaluation strategy that
separates out and clearly distinguishes between the grammar, parsing algorithm, and
disambiguation model and is capable of assessing different combinations of these core
components. Of course, this will not always be possible andmoving towards it is part of
a much more extended research agenda, well beyond the scope of the research reported
in the present article. Our approach, and previous approaches, evaluate systems at
the highest level of granularity, that of the complete package: the combined grammar-
parser-disambiguation model. The results show that machine-learning-based resources
can outperform deep, state-of-the-art hand-crafted resources with respect to the quality
of dependencies generated.

Treebank-based, deep and wide-coverage constraint-based grammar acquisition
has become an important research topic: Starting with the seminal TAG-based work
of Xia (1999), there are now also HPSG-, CCG- and LFG-based approaches. Miyao,
Ninomiya, and Tsujii (2003) and Tsuruoka, Miyao, and Tsujii (2004) present re-
search on inducing Penn-II treebank-based HPSGs with log-linear probability models.
Hockenmaier and Steedman (2002) and Hockenmaier (2003) provide treebank-induced
CCG-basedmodels including LDD resolution. It would be interesting to conduct a com-
parative evaluation involving treebank-based HPSG, CCG, and LFG resources against
the PARC 700 and CBS 500 Dependency Banks to enable more comprehensive compar-
ison of machine-learning-based with hand-crafted, deep, wide-coverage resources such
as those used in the XLE or RASP parsing systems.

117

Computational Linguistics Volume 34, Number 1

Gildea and Hockenmaier (2003) and Miyao and Tsujii (2004) present PropBank
(Kingsbury, Palmer, andMarcus 2002)-based evaluations of their automatically induced
CCG and HPSG resources. PropBank-based evaluations provide valuable information
to rank parsing systems. Currently, however, PropBank-based evaluations are some-
what partial: They only represent (and hence score) verbal arguments and disregard a
raft of other semantically important dependencies (e.g., temporal and aspectual infor-
mation, dependencies within nominal clusters, etc.) as captured in the PARC 700 or CBS
500 Dependency Banks.31

7. Conclusions

Parser comparison is a non-trivial and time-consuming exercise. We extensively eval-
uated four machine-learning-based shallow parsers and two hand-crafted, wide-
coverage deep probabilistic parsers involving four gold-standard dependency banks,
using the Approximate Randomization Test (Noreen 1989) to test for statistical signifi-
cance. We used a sophisticated method for automatically producing deep dependency
relations from Penn-II-style CFG-trees (Cahill et al. 2002b, 2004) to compare shallow
parser output at the level of dependency relation and revisit experiments carried out by
Preiss (2003) and Kaplan et al. (2004).

Our main findings are twofold:

1. Using our CFG-tree-to-dependency annotation technology, together with treebank- and
machine-learning-based parsers, we can outperform hand-crafted, wide-coverage, deep,
probabilistic, constraint-based grammars and parsers.

This result is surprising for two reasons. First, it is established against two externally-
provided dependency banks (the PARC 700 and the CBS 500 gold standards), originally
designed using the hand-crafted, wide-coverage, probabilistic grammars for the XLE
(Riezler et al. 2002) and RASP (Carroll and Briscoe 2002) parsing systems to evaluate
those systems. What is more, the SUSANNE corpus-based CBS 500 constitutes an
instance of domain variation for the Penn-II-trained LFG resources, likely to adversely
affect scores. Second, the treebank- and machine-learning-based LFG resources require
automatic mapping to relate f-structure output of the treebank-based parsing systems
to the representation format in the PARC 700 and CBS 500 Dependency Banks. These
mappings are partial and lossy: That is, they do not cover all of the systematic dif-
ferences between f-structure and dependency bank representations and introduce a
certain amount of error in what they are designed to capture, that is they both over-
and undergeneralize, again adversely affecting scores. Improvements of the mappings
should lead to a further improvement in the dependency scores.

2. Parser evaluation at the level of dependency representation still requires non-trivial
mappings between different dependency representation formats.

31 In a sense, PropBank does not yet provide a single agreed upon gold standard: Role information is
provided indirectly and an evaluation gold-standard has to be computed from this. In doing so, choices
have to be made as regards the representation of shared arguments, the analysis of coordinate structures,
and so forth, and it is not clear that the same choices are currently made for evaluations carried out by
different research groups.

118

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Earlier we criticized tree-based parser evaluation on the grounds that equally valid
different tree-typologies can be associated with strings, and identified this as a major
obstacle to fair and unbiased parser evaluation. Dependency-based parser evaluation,
as it turns out, is not entirely free of this criticism either: There are significant systematic
differences between the PARC 700 dependency and the CBS 500 dependency represen-
tations; there are significant systematic differences between the LFG f-structures gener-
ated by the hand-crafted, wide-coverage grammars of Riezler et al. (2002) and Kaplan
et al. (2004) and those of the treebank-induced and f-structure annotation algorithm
based resources of Cahill et al. (2004). These differences require careful implementation
of mappings if parsers are not to be unduly penalized for systematic and motivated
differences at the level of dependency representation. By and large, these differences
are, however, less pronounced than differences on CFG tree representations, making
dependency-based parser evaluation a worthwhile and rewarding exercise.

Summarizing our results, we find that against the DCU 105 development set, the
treebank- and f-structure annotation algorithm-based LFG system using Bikel’s parser
retrained to retain Penn-II functional tag labels performs best, achieving f-scores of
82.92% preds-only and 88.3% all grammatical functions. Against the automatically
generated WSJ Section 22 Dependency Bank, the system using Bikel’s retrained parser
achieves the highest results, achieving f-scores of 83.06% preds-only and 87.861% all
GFs. This is statistically significantly better than all other parsers. In order to evaluate
against the PARC 700 and CBS 500 gold standards, we automaticallymap the dependen-
cies produced by our treebank-based LFG system into a format compatible with the gold
standards. Against the PARC 700 Dependency Bank, the treebank-based LFG system
using Bikel’s retrained parser achieves an f-score of 82.73%, a statistically significant
improvement of 2.18% against the most up-to-date results of the hand-crafted XLE-
based parsing resources. Against the CBS 500, the treebank-based LFG system using
Bikel’s retrained parser achieved the highest f-score of 80.23%, a statistically significant
improvement of 3.66 percentage points on the highest previously published results
for the same experiment with the hand-crafted RASP resources in Carroll and Briscoe
(2002).

Appendix A. Parser Parameter Settings

This section provides a complete list of the parameter settings used for each of the
parsers described in this article.

Parser Parameters

Collins Model 3 We used the Collins parser with its default settings of a
beam size of 10,000 and where the values of the following
flags are set to 1: punctuation-flag, distaflag, distvflag,
and npbflag. Input was pre-tagged using the MXPOST
POS tagger (Ratnaparkhi 1996). We parse the input file
with all three models and use the scripts provided to
merge the outputs into the final parser output file. Note
that this file has been cleaned of all -A functional tags and
trace nodes.

Charniak We used the parser dated August 2005 and ran the
parser using the data provided in the download on pre-
tokenized sentences of length ≤200. Input was automati-
cally tagged by the parser.

119

Computational Linguistics Volume 34, Number 1

Bikel Emulation of We used version 0.9.9b of the parser trained on the file
Collins Model 2 of observed events made available on the downloads

page. We used the collins.properties file and a maximum
heap size of 1,500 MB. Input was pre-tagged using the
MXPOST POS tagger (Ratnaparkhi 1996).

Bikel + Functional Tags We used version 0.9.9b of the parser trained on a version
of Sections 02–21 of the Penn-II treebank where functional
tags were not ignored by the parser. We updated the de-
fault head-finding rules to deal with the new categories.
We also trained on all sentences from the training set
(the default collins.properties file is set to ignore trees of
more than 500 tokens). Input was pre-tagged using the
MXPOST POS tagger (Ratnaparkhi 1996) and the maxi-
mum heap size was 1,500 MB.

RASP Weused a file of parser output provided through personal
communication with John Carroll. (Tagging is carried out
automatically by the parser.)

XLE We used a file of parser output provided by the Natural
Language Theory and Technology group at the Palo Alto
Research Center. (Tagging is carried out automatically by
the parser.)

Acknowledgments
We are grateful to our anonymous reviewers
whose insightful comments have improved
the article significantly. We would like to
thank John Carroll for discussion and help
with reproducing the RASP parsing results;
Michael Collins, Eugene Charniak, Dan
Bikel, and Helmut Schmid for making their
parsing engines available; and Ron Kaplan
and the team at PARC for discussion,
feedback, and support. Part of the research
presented here has been supported by
Science Foundation Ireland grants
04/BR/CS0370 and 04/IN/I527, Enterprise
Ireland Basic Research Grant SC/2001/0186,
an Irish Research Council for Science,
Engineering and Technology Ph.D.
studentship, an IBM Ph.D. studentship and
support from IBM’s Centre for Advanced
Studies (CAS) in Dublin.

References
Abney, Stephen. 1997. Stochastic
attribute-value grammars. Computational
Linguistics, 23(4):597–618.

Alshawi, Hiyan and Stephen Pulman, 1992.
Ellipsis, Comparatives, and Generation,
chapter 13. The MIT Press, Cambridge,
MA.

Baldwin, Timothy, Emily Bender, Dan
Flickinger, Ara Kim, and Stephan Oepen.
2004. Road-testing the English Resource
Grammar over the British National

Corpus. In Proceedings of the Fourth
International Conference on Language
Resources and Evaluation (LREC 2004),
pages 2047–2050, Lisbon, Portugal.

Bikel, Dan. 2002. Design of a multi-lingual,
parallel-processing statistical parsing
engine. In Proceedings of HLT 2002,
pages 24–27, San Diego, CA.

Black, Ezra, Steven Abney, Dan Flickenger,
Claudia Gdaniec, Ralph Grishman, Philip
Harrison, Donald Hindle, Robert Ingria,
Fred Jelineck, Judith Klavans, Mark
Liberman, Mitchell Marcus, Salim Roukos,
Beatrice Santorini, and Tomek
Strzalkowski. 1991. A procedure for
quantitatively comparing the syntactic
coverage of english grammars. In
Proceedings of the Speech and Natural
Language Workshop, pages 306–311, Pacific
Grove, CA.

Bod, Rens. 2003. An efficient implementation
of a new DOP model. In Proceedings of the
Tenth Conference of the European Chapter of
the Association for Computational Linguistics
(EACL’03), pages 19–26, Budapest,
Hungary.

Bouma, Gosse, Gertjan van Noord, and
Robert Malouf. 2000. Alpino:
Wide-coverage computational analysis of
dutch. In Walter Daelemans, Khalil
Sima’an, Jorn Veenstra, and Jakub Zavrel,
editors, Computational Linguistics in The
Netherlands 2000. Rodopi, Amsterdam,
pages 45–59.

120

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

Bresnan, Joan. 2001. Lexical-Functional Syntax.
Blackwell, Oxford, England.

Briscoe, Edward and John Carroll. 1993.
Generalized probabilistic LR parsing of
natural language (corpora) with
unification-based grammars. Computational
Linguistics, 19(1):25–59.

Briscoe, Ted and John Carroll. 2006.
Evaluating the accuracy of an
unlexicalized statistical parser on the
PARC DepBank. In Proceedings of the
COLING/ACL 2006 Main Conference Poster
Sessions, pages 41–48, Sydney, Australia.

Briscoe, Edward, Claire Grover, Bran
Boguraev, and John Carroll. 1987. A
formalism and environment for the
development of a large grammar of
English. In Proceedings of the 10th
International Joint Conference on AI,
pages 703–708, Milan, Italy.

Burke, Michael. 2006. Automatic Treebank
Annotation for the Acquisition of LFG
Resources. Ph.D. thesis, School of
Computing, Dublin City University,
Dublin, Ireland.

Burke, Michael, Aoife Cahill, Ruth
O’Donovan, Josef van Genabith, and Andy
Way. 2004. Evaluation of an automatic
annotation algorithm against the PARC
700 Dependency Bank. In Proceedings of the
Ninth International Conference on LFG,
pages 101–121, Christchurch, New Zealand.

Butt, Miriam, Helge Dyvik, Tracy Holloway
King, Hiroshi Masuichi, and Christian
Rohrer. 2002. The Parallel Grammar
Project. In Proceedings of COLING 2002,
Workshop on Grammar Engineering and
Evaluation, pages 1–7, Taipei, Taiwan.

Cahill, Aoife. 2004. Parsing with Automatically
Acquired, Wide-Coverage, Robust,
Probabilistic LFG Approximations. Ph.D.
thesis, School of Computing, Dublin City
University, Dublin, Ireland.

Cahill, Aoife, Michael Burke, Ruth
O’Donovan, Josef van Genabith, and Andy
Way. 2004. Long-distance dependency
resolution in automatically acquired
wide-coverage PCFG-based LFG
approximations. In Proceedings of the 42nd
Annual Meeting of the Association for
Computational Linguistics, pages 320–327,
Barcelona, Spain.

Cahill, Aoife, Mairéad McCarthy, Josef van
Genabith, and Andy Way. 2002a.
Automatic annotation of the Penn
Treebank with LFG f-structure
information. In Proceedings of the LREC
Workshop on Linguistic Knowledge
Acquisition and Representation: Bootstrapping

Annotated Language Data, pages 8–15, Las
Palmas, Canary Islands, Spain.

Cahill, Aoife, Mairéad McCarthy, Josef van
Genabith, and Andy Way. 2002b. Parsing
with PCFGs and automatic f-structure
annotation. In Proceedings of the Seventh
International Conference on LFG,
pages 76–95, Palo Alto, CA.

Carroll, John and Edward Briscoe. 2002.
High precision extraction of grammatical
relations. In Proceedings of the 19th
International Conference on Computational
Linguistics (COLING), pages 134–140,
Taipei, Taiwan.

Carroll, John, Edward Briscoe, and Antonio
Sanfilippo. 1998. Parser evaluation: A
survey and new proposal. In Proceedings of
the International Conference on Language
Resources and Evaluation, pages 447–454,
Granada, Spain.

Carroll, John, Anette Frank, Dekang Lin,
Detlef Prescher, and Hans Uszkoreit,
editors. 2002. HLT Workhop: ‘Beyond
PARSEVAL — Towards improved evaluation
measures for parsing systems’, Las Palmas,
Canary Islands, Spain.

Charniak, Eugene. 1996. Tree-bank
grammars. In Proceedings of the
Thirteenth National Conference on
Artificial Intelligence, pages 1031–1036,
Menlo Park, CA.

Charniak, Eugene. 2000. A maximum
entropy inspired parser. In Proceedings
of the First Annual Meeting of the North
American Chapter of the Association for
Computational Linguistics (NAACL 2000),
pages 132–139, Seattle, WA.

Chinchor, Nancy, Lynette Hirschman, and
David D. Lewis. 1993. Evaluating message
understanding systems: An analysis of the
Third Message Understanding Conference
(MUC-3). Computational Linguistics,
19(3):409–449.

Clark, Stephen and James Curran. 2004.
Parsing the WSJ using CCG and log-linear
models. In Proceedings of the 42nd Annual
Meeting of the Association for Computational
Linguistics (ACL-04), pages 104–111,
Barcelona, Spain.

Clark, Stephen and James Curran. 2007.
Formalism-independent parser evaluation
with CCG and DepBank. In Proceedings of
the 45th Annual Meeting of the Association
for Computational Linguistics (ACL 2007),
pages 248–255, Prague, Czech Republic
http://www.aclweb-org/anthology/P/
P07/P07-1032.

Clark, Stephen and Julia Hockenmaier. 2002.
Evaluating a wide-coverage CCG parser.

121

Computational Linguistics Volume 34, Number 1

In Proceedings of the LREC 2002 Beyond
Parseval Workshop, pages 60–66, Las
Palmas, Canary Islands, Spain.

Cohen, Paul R. 1995. Empirical Methods for
Artificial Intelligence. The MIT Press,
Cambridge, MA.

Collins, Michael. 1997. Three generative,
lexicalized models for statistical parsing.
In Proceedings of the 35th Annual Meeting of
the Association for Computational Linguistics,
pages 16–23, Madrid, Spain.

Collins, Michael. 1999. Head-Driven Statistical
Models for Natural Language Parsing. Ph.D.
thesis, University of Pennsylvania,
Philadelphia, PA.

Crouch, Richard, Ron Kaplan, Tracy Holloway
King, and Stefan Riezler. 2002. A
comparison of evaluation metrics for a
broad coverage parser. In Proceedings of
the LREC Workshop: Beyond PARSEVAL—
Towards Improved Evaluation Measures for
Parsing Systems, pages 67–74, Las Palmas,
Canary Islands, Spain.

Dalrymple, Mary. 2001. Lexical-Functional
Grammar. London, Academic Press.

Dienes, Péter and Amit Dubey. 2003.
Antecedent recovery: Experiments with a
trace tagger. In Proceedings of the 2003
Conference on Empirical Methods in Natural
Language Processing, pages 33–40, Sapporo,
Japan.

Eisele, Andreas and Jochen Dörre. 1986. A
lexical functional grammar system in
Prolog. In Proceedings of the 11th International
Conference on Computational Linguistics
(COLING 1986), pages 551–553, Bonn.

Flickinger, Dan. 2000. On building a more
efficient grammar by exploiting types.
Natural Language Engineering, 6(1):15–28.

Gaizauskas, Rob. 1995. Investigations into
the grammar underlying the Penn
Treebank II. Research Memorandum
CS-95-25, Department of Computer
Science, Univeristy of Sheffield, UK.

Gildea, Daniel and Julia Hockenmaier.
2003. Identifying semantic roles using
combinatory categorial grammar.
In Proceedings of the 2003 Conference
on Empirical Methods in Natural
Language Processing, pages 57–64,
Sapporo, Japan.

Hockenmaier, Julia. 2003. Parsing with
generative models of predicate–argument
structure. In Proceedings of the 41st Annual
Conference of the Association for
Computational Linguistics, pages 359–366,
Sapporo, Japan.

Hockenmaier, Julia and Mark Steedman.
2002. Generative models for statistical

parsing with combinatory categorial
grammar. In Proceedings of the 40th
Annual Meeting of the Association for
Computational Linguistics, pages 335–342,
Philadelphia, PA.

Johnson, Mark. 1999. PCFG models of
linguistic tree representations.
Computational Linguistics, 24(4):613–632.

Johnson, Mark. 2002. A simple
pattern-matching algorithm for
recovering empty nodes and their
antecedents. In Proceedings of the 40th
Annual Meeting of the Association for
Computational Linguistics, pages 136–143,
Philadelphia, PA.

Kaplan, Ron and Joan Bresnan. 1982.
Lexical functional grammar, a formal
system for grammatical representation.
In Joan Bresnan, editor, The Mental
Representation of Grammatical Relations.
MIT Press, Cambridge, MA,
pages 173–281.

Kaplan, Ron, Stefan Riezler, Tracy Holloway
King, John T. Maxwell, Alexander
Vasserman, and Richard Crouch. 2004.
Speed and accuracy in shallow and deep
stochastic parsing. In Proceedings of the
Human Language Technology Conference and
the 4th Annual Meeting of the North
American Chapter of the Association for
Computational Linguistics (HLT-NAACL’04),
pages 97–104, Boston, MA.

Kaplan, Ronald and Annie Zaenen. 1989.
Long-distance dependencies, constituent
structure and functional uncertainty. In
Mark Baltin and Anthony Kroch, editors,
Alternative Conceptions of Phrase Structure,
pages 17–42, University of Chicago Press,
Chicago.

King, Tracy Holloway, Richard Crouch,
Stefan Riezler, Mary Dalrymple, and Ron
Kaplan. 2003. The PARC 700 dependency
bank. In Proceedings of the EACL03: 4th
International Workshop on Linguistically
Interpreted Corpora (LINC-03), pages 1–8,
Budapest, Hungary.

Kingsbury, Paul, Martha Palmer, and
Mitch Marcus. 2002. Adding semantic
annotation to the Penn TreeBank. In
Proceedings of the Human Language
Technology Conference, pages 252–256,
San Diego, CA.

Klein, Dan and Christopher D. Manning.
2003. Accurate unlexicalized parsing. In
Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics,
pages 423–430, Sapporo, Japan.

Leech, Geoffrey and Roger Garside. 1991.
Running a grammar factory: On the

122

Cahill et al. Statistical Parsing Using Automatic Dependency Structures

compilation of parsed corpora, or
‘treebanks’. In Stig Johansson and
Anna-Brita Stenström, editors, English
Computer Corpora: Selected Papers. Mouton
de Gruyter, Berlin, pages 15–32.

Levy, Roger and Christopher D. Manning.
2004. Deep dependencies from context-free
statistical parsers: Correcting the surface
dependency approximation. In Proceedings
of the 42nd Annual Meeting of the Association
for Computational Linguistics (ACL 2004),
pages 328–335, Barcelona, Spain.

Lin, Dekang. 1995. A dependency-based
method for evaluating broad-coverage
parsers. In Proceedings of the International
Joint Conference on AI, pages 1420–1427,
Montréal, Canada.

Magerman, David. 1994. Natural Language
Parsing as Statistical Pattern Recognition.
Ph.D. thesis, Department of Computer
Science, Stanford University, CA.

Marcus, Mitchell, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre,
Ann Bies, Mark Ferguson, Karen Katz,
and Britta Schasberger. 1994. The
Penn Treebank: Annotating predicate
argument structure. In Proceedings
of the ARPA Workshop on Human
Language Technology, pages 110–115,
Princeton, NJ.

McCarthy, Mairéad. 2003. Design and
Evaluation of the Linguistic Basis of an
Automatic F-Structure Annotation Algorithm
for the Penn-II Treebank. Master’s thesis,
School of Computing, Dublin City
University, Dublin, Ireland.

McDonald, Ryan and Fernando Pereira. 2006.
Online learning of approximate
dependency parsing algorithms. In
Proceedings of the 11th Conference of the
European Chapter of the Association for
Computational Linguistics, pages 81–88,
Trento, Italy.

Miyao, Yusuke, Takashi Ninomiya, and
Jun’ichi Tsujii. 2003. Probabilistic modeling
of argument structures including non-local
dependencies. In Proceedings of the
Conference on Recent Advances in Natural
Language Processing (RANLP),
pages 285–291, Borovets, Bulgaria.

Miyao, Yusuke and Jun’ichi Tsujii. 2002.
Maximum entropy estimation for feature
forests. In Proceedings of Human Language
Technology Conference (HLT 2002),
pages 292–297, San Diego, CA.

Miyao, Yusuke and Jun’ichi Tsujii.
2004. Deep linguistic analysis
for the accurate identification of
predicate–argument relations. In

Proceedings of the 18th International
Conference on Computational Linguistics
(COLING 2004), pages 1392–1397,
Geneva, Switzerland.

Noreen, Eric W. 1989. Computer Intensive
Methods for Testing Hypotheses: An
Introduction. Wiley, New York.

O’Donovan, Ruth, Michael Burke, Aoife
Cahill, Josef van Genabith, and Andy
Way. 2004. Large-scale induction and
evaluation of lexical resources from the
Penn-II treebank. In Proceedings of the 42nd
Annual Meeting of the Association for
Computational Linguistics, pages 368–375,
Barcelona, Spain.

Pollard, Carl and Ivan Sag. 1994. Head-driven
Phrase Structure Grammar. CSLI
Publications, Stanford, CA.

Preiss, Judita. 2003. Using grammatical
relations to compare parsers. In Proceedings
of the Tenth Conference of the European
Chapter of the Association for Computational
Linguistics (EACL’03), pages 291–298,
Budapest, Hungary.

Ratnaparkhi, Adwait. 1996. A maximum
entropy part-of-speech tagger. In
Proceedings of the Empirical Methods in
Natural Language Processing Conference,
pages 133–142, Philadelphia, PA.

Riezler, Stefan, Tracy King, Ronald Kaplan,
Richard Crouch, John T. Maxwell,
and Mark Johnson. 2002. Parsing
theWall Street Journal using a
lexical-functional grammar and
discriminative estimation techniques.
In Proceedings of the 40th Annual
Conference of the Association for
Computational Linguistics (ACL-02),
pages 271–278, Philadelphia, PA.

Sampson, Geoffrey. 1995. English for the
Computer: The SUSANNE Corpus and
Analytic Scheme. Clarendon Press,
Oxford, England.

Tsuruoka, Yoshimasa, Yusuke Miyao,
and Jun’ichi Tsujii. 2004. Towards
efficient probabilistic HPSG parsing:
Integrating semantic and syntactic
preference to guide the parsing.
In Proceedings of IJCNLP-04 Workshop:
Beyond shallow analyses—Formalisms
and statistical modeling for deep
analyses, Hainan Island, China. [No
page numbers].

van Genabith, Josef and Richard Crouch.
1996. Direct and underspecified
interpretations of LFG f-structures. In 16th
International Conference on Computational
Linguistics (COLING 96), pages 262–267,
Copenhagen, Denmark.

123

Computational Linguistics Volume 34, Number 1

van Genabith, Josef and Richard
Crouch. 1997. On interpreting
f-structures as UDRSs. In Proceedings
of ACL-EACL-97, pages 402–409,
Madrid, Spain.

Xia, Fei. 1999. Extracting tree adjoining
grammars from bracketed corpora. In
Proceedings of the 5th Natural Language
Processing Pacific Rim Symposium
(NLPRS-99), pages 398–403, Beijing,
China.

Xue, Nianwen, Fei Xia, Fu-Dong Chiou, and
Martha Palmer. 2004. The Penn Chinese
treebank: Phrase structure annotation of a
large corpus. Natural Language Engineering,
10(4):1–30.

Yeh, Alexander. 2000. More accurate tests
for the statistical significance of result
differences. In Proceedings of the 18th
International Conference on Computational
Linguistics (COLING, 2000), pages 947–953,
Saarbrücken, Germany.

124

