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Squibs and Discussions
Comments on “Incremental Construction and
Maintenance of Minimal Finite-State
Automata,” by Rafael C. Carrasco and Mikel
L. Forcada
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In a recent article, Carrasco and Forcada (June 2002) presented two algorithms: one for incremental
addition of strings to the language of a minimal, deterministic, cyclic automaton, and one for
incremental removal of strings from the automaton. The first algorithm is a generalization of the
“algorithm for unsorted data”—the second of the two incremental algorithms for construction
of minimal, deterministic, acyclic automata presented in Daciuk et al. (2000). We show that the
other algorithm in the older article—the “algorithm for sorted data”—can be generalized in a
similar way. The new algorithm is faster than the algorithm for addition of strings presented in
Carrasco and Forcada’s article, as it handles each state only once.

1. Introduction

Carrasco and Forcada (2002) present two algorithms: one algorithm for incremental
addition of strings into a minimal, cyclic, deterministic, finite-state automaton, and
another for removal of strings from such an automaton. The algorithm for addition of
strings can be seen as an extension to cyclic automata of the algorithm for unsorted
data, the second algorithm in Daciuk et al, (2000). It turns out that not only the al-
gorithm for unsorted data (the second algorithm in Daciuk et al. [2000]), but also the
algorithm for sorted data (the first one in that article) can be extended in the same
way. That extension is presented in Section 3 of this article.

Carrasco and Forcada emphasize on-line maintainance of dictionaries. Their dictio-
naries are constantly updated. In a different model, dictionaries are mostly consulted
and are updated much less frequently. In such a model, it is more convenient to re-
build the dictionary off-line each time it is updated. By taking the process off-line, one
saves much memory, as certain structures needed for construction are not needed for
consultation, and other structures can be very efficiently compressed (Kowaltowski,
Lucchesi, and Stolfi 1993; Daciuk, 2000). The data for dictionaries can be kept sorted;
adding a few new (sorted) entries can be done in linear time. Although Carrasco and
Forcada’s string addition algorithm can be used in this particular model, an algorithm
specialized for sorted data can perform the construction process faster than its more
general equivalent.

The rest of the article is organized as follows. Section 2 introduces mathematical
preliminaries. Section 3 presents an incremental algorithm for addition of sorted strings
to a cyclic automaton. First, the role of a data structure called the register is explained
in detail in Section 3.1, then necessary modifications to the algorithm in Carrasco and
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Forcada (2002) are introduced in Section 3.2, and the final algorithm is presented in
Section 3.3. The algorithm is then analyzed in Section 4 and evaluated in Section 5.
Section 6 gives conclusions.

2. Mathematical Preliminaries

We define a deterministic finite-state automaton as M = (Q, Σ, δ, q0, F), where Q is a
finite set of states, Σ is a finite set of symbols called the alphabet, q0 ∈ Q is the start (or
initial) state, and F ⊆ Q is a set of final (accepting) states. As in Carrasco and Forcada
(2002), we define δ : Q×Σ→ Q as a total mapping. In other words, if the automaton
is not complete, that is, if ∃q ∈ Q∧ ∃a ∈ Σ : δ(q, a) �∈ Q, then an absorption state ⊥ �∈ F
such that ∀a ∈ Σ : δ(⊥, a) = ⊥ must be added to Q. A complete acyclic automaton
always has an absorption state. The extended mapping is defined as

δ∗(q, ε) = q

δ∗(q, ax) = δ∗(δ(q, a), x)

The right language of a state q is defined as

→
L (q) = {x ∈ Σ∗ : δ∗(q, x) ∈ F}

The language of the automaton L(M) =
→
L (q0). The right language can be defined

recursively:
→
L (q) =

⋃
a∈Σ:δ(q,a) �=⊥

a·
→
L (δ(q, a)) ∪

{
{ε} if q ∈ F
∅ otherwise

Equality of right languages is an equivalence relation that partitions the set of
states into abstraction classes (equivalence classes). The minimal automaton is the
unique automaton (up to isomorphisms) that has the minimal number of states among
automata recognizing the same language. It is also the automaton in which all states
are useful (i.e., they are reachable from the start state, and from them a final state can
be reached), and each equivalence class has exactly one member.

The length of a string w ∈ Σ∗ is denoted |w|, and the ith symbol (starting from
one) in the string w is denoted wi.

3. Incremental Addition of Sorted Strings

3.1 The Role of the Register
Carrasco and Forcada (2002) derive their algorithm for addition of strings from the
union of an automaton M = (Q, Σ, δ, q0, F) with a single-string automaton Mw = (Qw, Σ,
δw, q0w, Fw). In a single-string automaton, Qw = Pr(w) ∪ {⊥w}, where Pr(w) is the set
of all prefixes of w, which also serve as names of states, ⊥w is the absoption state,
Fw = {w}, and q0w = ε.

States in the automaton M′ = M∪Mw that is the result of the union can be divided
into four groups:

• Intact states of the form (q,⊥w) with q ∈ Q− {⊥}, states that are not
affected by the union.
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• Cloned states of the form (q, x) with q ∈ Q−{⊥} and x ∈ Pr(w) such that
δ∗(q0, x) = q. All other states in (Q− {⊥})× Pr(x) can be safely
discarded. The new initial state (q0, ε) is a cloned state.

• Queue states of the form (⊥, x), with x ∈ Pr(w).

• The new absorption state ⊥′ = (⊥,⊥w) �∈ F. It is present only if M has an
absoption state.

In Carrasco and Forcada, (2002), the algorithm for addition of strings proceeds by
minimizing the queue states and cloned states, arriving at the minimal automaton.
All states of M are put into a set called a register of states, which holds all unique
states in the automaton. States unreachable from the new initial state are removed
from the automaton and from the register. Then, starting from the states that are the
most distant from the initial state, queue states and cloned states are compared against
those in the register. If an equivalent state is found in the register, it replaces the state
under investigation. If not, the state under investigation is added to the register.

Before we go further, we have to look at the role of the register of states in greater
detail. It is explained in Daciuk et al. (2000) and omitted in Carrasco and Forcada
(2002). Carrasco and Forcada do not have to examine the register closely, as they
clone all states that they call cloned states. Incremental construction consists of two
synchronized processes: One that adds new states, and another that minimizes the
automaton. In minimization, it is important to check whether two states are equivalent.
The Myhill-Nerode theorem tells us that two states are equivalent when they have the
same right languages. Computing right languages can take much time. However, what
we need to check is whether two states have the same right language, and not what
that language actually is. We can use the recursive definition of the right language.
If the target states of all outgoing transitions are unique in the automaton, that is, if
they are already in the register, then instead of comparing their right languages, we
can compare their identity (e.g., their addresses in memory). The assumption in the
previous statement can be made true by enforcing a particular order in which states
are compared against those in the register. When states are on a path representing a
finite string, they should be processed from the end of the string toward the beginning.

The queue states should be processed in that order. If an equivalent state is found
in the register, it replaces the current state. Otherwise, the current state is added to
the register.

The register can be organized as a hash table. Finality of the state, the number
of transitions, labels on transitions, and targets of transitions are treated together as a
key—an argument to a hash function. The register does not store right languages. It
stores pointers to states. If the right language of a state changes, the key of that state
does not have to. Therefore, we do not need to take a state out from the register and
put it back there if the key of the state does not change.

3.2 Necessary Modifications
We divide the set of cloned states into two groups: prefix states (up to, but excluding
the first state with more than one incoming transition) and the proper cloned states.
Proper cloned states are modified copies of other states. They are new states; they were
created by adding a new string. In Carrasco and Forcada (2002), the prefix states are
also cloned. However, it is usually not necessary to clone them (Carrasco and Forcada
mention that on page 215). They all change their right languages as the result of adding
a new string, but only the last prefix state (the most distant from the initial state) is
sure to change its transitions. Therefore, it should be removed from the register before
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adding a new string. Other prefix states should be removed from the register only if
they change their key features. This can happen only if the next prefix state in the path
is replaced by another state. In that case, the current prefix state is removed from the
register and reevaluated. If an equivalent state is found in the register, it replaces the
current state, and the previous prefix state should be considered. Otherwise the state
is put back into the register, and no further reevaluation is necessary.

If strings are added in an ordered way, the minimization process can be optimized
in the same way as in the “sorted data algorithm,” the first algorithm described in
Daciuk et al. (2000). We introduce two changes to the string addition algorithm in
Carrasco and Forcada (2002):

• Prefix states are not cloned when not necessary.

• States are never minimized (i.e., compared against the register and either
put there or replaced by other states) more than once.

The first modification is described above. The second one requires more explanation.
Let us consider an automaton in which no minimization takes place after a new string
has been added. That automaton has form of a trie. If a set of strings is lexicographically
sorted, then the paths in the automaton recognizing two consecutive strings w′ and
w share some prefix states (at least the initial state, the root of the trie). We denote
the longest common prefix of w and w′ as lcp(w, w′). If w′ is a prefix of w, then all
states in the path recognizing w′ are also in the path of w. Otherwise, there will be
states in the path recognizing w′ that are not shared with the path recognizing w. Note
that no subsequent words will have these states in the common prefix path either, as
the shared initial part of paths of w′ and subsequent words can only become shorter
because of sorting. Therefore, the states after lcp(w, w′) will never change their right
language, so they can be minimized without any further need of reevaluation. As soon
as we add w, we know which states in the path of w′ can be minimized. Instead of a
trie, we keep a minimal automaton except for the path of the last string added to the
automaton.

If we start from scratch and add strings in the manner just described, proper
cloned states will never be created. Proper cloned states are created only when the
common prefix of two words contains states with more than one incoming transition.
Additional transitions coming to states are created when the states are in the register
and they are found to be equivalent to some other states. But the states can be put
into the register only when they are no longer in the common prefix path.

In case of a cyclic automaton, we do not start from scratch. There is an initial
(minimal) automaton that contains cycles. No new cycles are created by adding mere
strings one by one (as opposed to regular expressions, infinite sets of strings, etc.).
As the automaton already contains some strings, and it can contain states with more
than one incoming transition, proper cloned states can be created. However, no proper
cloned states will be created in the common prefix path, because the path recognizing
the previous string does not contain any states with more than one incoming transition.

3.3 The Algorithm
1: func build automaton;
2: R← Q;
3: if (fanin(q0) > 0) then
4: q0 ← clone(q0);
5: fi;
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6: w′ ← ε;
7: while ((w← nextword) �= ε) do
8: p← lcp(w, w′);
9: M← minim path(M, w′, p);
10: M← add suffix(M, w, p);
11: w′ ← w;
12: end;
13: minim path(M, w′, q0);
14: if ∃r ∈ R : equiv(r, q0)→
15: delete q0; q0 ← r;
16: fi;
17: cnuf

18: func lcp(M, w, w′);
19: j← max(i : ∀k≤j wk = wk′);
20: return w1 . . .wj;
21: cnuf

22: func minim path(M, w, p);
23: q← δ∗(q0, p);
24: i← |p|; j← i;
25: while i ≤ |w| do
26: path[i− j]← q;
27: q← δ(q, wi); i← i + 1;
28: end;
29: path[i− j]← q;
30: while i > j do
31: if ∃r ∈ R : equiv(r, q) then
32: δ(path[i− j− 1], wi−1)← r;
33: delete q;
34: else
35: R← R ∪ {q};
36: fi;
37: i← i− 1;
38: end;
39: return M;
40: cnuf

41: func add suffix(M, w, p);
42: q← δ∗(q0, p);
43: i← |p|+ 1;
44: while i ≤ |w| and δ(q, wi) �= ⊥ and fanin(δ(q, wi)) ≤ 1 do
45: q← δ(q, wi); R← R− {q}; i← i + 1;
46: end;
47: while i ≤ |w| and δ(q, wi) �= ⊥ do
48: δ(q, wi)← clone(δ(q, wi));
49: q← δ(q, wi); i← i + 1;
50: end;
51: while i < |w| do
52: δ(q, wi)← newstate;
53: q← δ(q, wi); i← i + 1;



232

Computational Linguistics Volume 30, Number 2

54: end;
55: F← F ∪ {q};
56: return M;
57: cnuf

Function fanin(q) returns the number of incoming transition for a state q. If the
initial state has more than one incoming transition, it must be cloned (lines 3–5) to
prevent prepending of unwanted prefixes to words to be added. Function nextword
simply returns the next word in lexicographical order from the input, or ε if there are
no more words. Function lcp (lines 18–21) returns the longest common prefix of two
words. It is called with the last string added to the automaton and the string to be
added to the automaton as the arguments. For the first string, the previous string is
empty. Function minim path (lines 22–40) minimizes that part of the path recognizing
the string previously added to the automaton that is not in the longest common prefix.
This is done by going to the back of the path representing the string (lines 23–29) and
checking the states one by one starting from the last state in the path (lines 30–38).
The register is represented as variable R.

While function minim path is not much different from an analogical function for
the acyclic case, function add suffix (lines 41–57) does introduce some new elements. It
resembles more closely a similar function from the algorithm for unsorted data (Daciuk
et al. 2000). The longest prefix common to the string to be added and the last string
added to the automaton is not necessarily the same as the longest prefix common to
the string to be added to the automaton and all strings already in the automaton. The
latter can be longer, and the path recognizing it may contain states with more than
one incoming transition. Those states have to be cloned (lines 47–50).

4. Analysis

The algorithm correctly adds new strings to the automaton, while maintaining its
minimality. We assume that all states in the initial automaton are in the register, that
there are no pairs of states with the same right language, that all states are reachable
from the initial state, and that there is a path from every state to one of the final states.
The absorption state and transitions that lead to it are not explicitly represented.

To prove that the algorithm is correct, we need to show that

1. the language of the automaton after the addition of the string contains
that string;

2. no other strings are added to the automaton;

3. no strings are removed from the automaton;

4. the automaton remains minimal except for the path of the newly added
string, that is, the states covered by the path of the newly added string
are representatives of the only equivalence classes that may have more
than one member.

It is easy to show that strings are indeed added to the language of the automaton.
First, transitions with subsequent symbols from the strings are followed from the initial
state. When there are no transitions with appropriate symbols, new ones are created.
The state reachable with the string is made final. Minimization done by minim path
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replaces states with other states that have the same right language. That operation
does not change the language of the automaton.

If the initial state has any incoming transitions, it is cloned, and the clone becomes
the new initial state. That operation does not change the language of the automaton—
the right language of the new initial state is exactly the same as of the old one. The
old initial state is still reachable, because it has incoming transitions from either the
new initial state (the old initial state had a loop) or other states that are reachable. The
cloning creates a new state that is not in the register and that is equivalent to another
state in the automaton. Lines 14–16 of the algorithm check whether after addition of
new strings, the new initial state is equivalent to some other state in the automaton.
If it is, the new initial state is replaced with the equivalent state.

Since the automaton is deterministic, it cannot hold more than one copy of the
same string. Therefore, we need only to show that no other strings are erroneously
added to the automaton. Such erroneous addition could happen by creating or redi-
recting transitions. New transitions are created to store some suffixes of new strings
that are not present in the automaton. This could lead to addition of new, superflous
strings, provided the states that to which we add transitions are reentrant/confluence.
However, the algorithm excludes such cases. All states in the path of the previously
added string have only one incoming transition. All reentrant/confluence states not in
the longest common prefix path are cloned in line 48 of function add suffix. Function
minim path can redirect transitions only to states not in the longest common prefix
path.

Since states that are deleted in line 33 in function minim path (the only place in
the algorithm where states are deleted) are always replaced as targets of transitions
by equivalent states, strings could be deleted from the automaton only by making
parts of it unreachable. However, all targets of transitions going out from a state to be
deleted go to states that have more than one incoming transition—states that replaced
previous targets of those transitions. This includes the case of states with no outgoing
transitions.

To show that the automaton remains minimal except for the path of the newly
added string, we first note that all existing states are in the register before we start
adding new strings. Adding a new string creates a single chain of states not in the
register. The chain is added in its entirety with function add suffix, as the “previous”
string for the first string is assumed to be empty. If w is the string to be added, and
∃i>0∃q∈Q δ∗(q0, w1 · · ·wi) �= ⊥, then non-reentrant states not following any reentrant
states in the path from q0 to q are removed from the register, and reentrant states (and
states that follow them) are cloned. For wi+1 · · ·w|w|, new states and transitions are
created. This concludes forming a path for the first string. That path consists entirely
of states that are not in the register and that can have an equivalent state somewhere
in the rest of the automaton.

When next strings are added, they are divided into two parts by function lcp.
It divides both the previous and the next string. The first part (the longest common
prefix) is shared between the previous and the next string, and it remains outside the
register. This also means that for each state in that part, there may be an equivalent
state in the remaining part of the automaton. The second part of the next string will
form the rest of the path of states outside the register. The second part of the path of the
previous string will be subject to minimization, as no further outgoing transitions will
be added to any of its states in the future. Minimization replaces with their equivalent
states those states in the path of the suffix of the previous string that are not unique.
Since minimization is performed from the end of the string toward the longest common
prefix, we can use the register and compare the states using the recursive definition
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of the right language, replacing right languages of target states with their addresses.
At the end of the process, we have an automaton that is minimal except for the path
of the last string added to it. We return to the start situation.

The algorithm has the same asymptotic complexity as the corresponding algo-
rithms in Carrasco and Forcada (2002) and Daciuk et al. (2000). However, it is faster
than algorithms for unsorted data, because it does not have to reprocess the states
over and over again. Each time the original algorithm clones a state, that state is re-
processed. Cloning in the new version is limited to the part of the automaton built
before addition of new strings. No state created by the algorithm is cloned afterward.

5. Evaluation

Two experiments have been performed to compare the new algorithm with the algo-
rithm for adding strings to a minimal, deterministic, cyclic automaton presented in
Carrasco and Forcada (2002). In both experiments, a cyclic automaton was created. It
recognized any sequence of words from one set and any word from another set. The
first set was used to construct an initial cyclic automaton recognizing any sequence of
words from the first set. Then the second set was used to measure the relative speed
of the algorithms being compared. In the first experiment, the first set consisted of
German words beginning with Latin letters from A to M, and the second set consisted
of German words beginning with letters from N to Z. This was the “easier” task, since
only the initial state of the automaton had to be cloned. In the second experiment,
odd-numbered German words beginning with letters A to Z formed the first set, and
even-numbered ones, the second set. In this task, many paths in the automaton were
shared between words from both sets. A total of 69,669 German words were used in
the experiments.

In the first experiment, the new algorithm was 4.96 times faster, and in the second
one, 2.53. Most of the speedup was not the result of using an algorithm optimized
for sorted data—an improvement to the algorithm for adding strings in Carrasco
and Forcada (2002) consisting in avoiding unnecessary cloning of prefix states (as
described in section 3.2 and mentioned on page 215 in Carrasco and Forcada [2002] as
a suggestion from one of Carrasco and Forcada’s reviewers) was 3.12 and respectively
2.35 times faster than the original algorithm. However, the new algorithm is still the
fastest.

6. Conclusions

An algorithm for adding strings to a cyclic automaton has been presented. It is faster
than the algorithm for adding strings presented in Carrasco and Forcada (2002), but
it operates on sorted input data. The new algorithm is a generalized version of the
first algorithm presented in Daciuk et al. (2000). The relation between the algorithm
presented here and the first algorithm in Daciuk et al. (2000) is the same as that
between the algorithm for adding strings in Carrasco and Forcada (2002) and the
second algoritm in Daciuk et al. (2000).
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