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The paper discusses the problem of determinizing finite-state automata containing large numbers 
of c-moves. Experiments with finite-state approximations of natural language grammars often 
give rise to very large automata with a very large number of c-moves. The paper identifies and 
compares a number of subset construction algorithms that treat c-moves. Experiments have been 
performed which indicate that the algorithms differ considerably in practice, both with respect 
to the size of the resulting deterministic automaton, and with respect to practical efficiency. 
Furthermore, the experiments suggest that the average number of ~-moves per state can be used 
to predict which algorithm is likely to be the fastest for a given input automaton. 

1. Introduction 

1.1 Finite-State Language Processing 
An important problem in computational linguistics is posed by the fact that the gram- 
mars typically hypothesized by linguists are unattractive from the point of view of 
computation. For instance, the number of steps required to analyze a sentence of n 
words is n 3 for context-free grammars. For certain linguistically more attractive gram- 
matical formalisms it can be shown that no upper bound to the number of steps 
required to find an analysis can be given. The human language user, however, seems 
to process in linear time; humans understand longer sentences with no noticeable 
delay. This implies that neither context-free grammars nor more powerful grammati- 
cal formalisms are likely models for human language processing. An important issue 
therefore is how the linearity of processing by humans can be accounted for. 

A potential solution to this problem concerns the possibility of approximating 
an underlying general and abstract grammar by techniques of a much simpler sort. 
The idea that a competence grammar might be approximated by finite-state means 
goes back to early work by Chomsky (Chomsky 1963, 1964). There are essentially 
three observations that motivate the view that the processing of natural language is 
finite-state: 

1. 

2. 

. 

humans have a finite (small, limited, fixed) amount of memory available 
for language processing 

humans have problems with certain grammatical constructions, such as 
center-embedding, which are impossible to describe by finite-state means 
(Miller and Chomsky 1963) 

humans process natural language very efficiently (in linear time) 
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1.2 Finite-State Approximation and c-Moves 
In experimenting with finite-state approximation techniques for context-free and more 
powerful grammatical formalisms (such as the techniques presented in Black [1989], 
Pereira and Wright [1991, 1997], Rood [1996], Grimley-Evans [1997], Nederhof [1997, 
1998], and Johnson [1998]), we have found that the resulting automata often are ex- 
tremely large. Moreover, the automata contain many e-moves (jumps). And finally, if 
such automata are determinized then the resulting automata are often smaller. It turns 
out that a straightforward implementation of the subset construction determinization 
algorithm performs badly for such inputs. In this paper we consider a number of 
variants of the subset construction algorithm that differ in their treatment of c-moves. 

Although we have observed that finite-state approximation techniques typically 
yield automata with large numbers of c-moves, this is obviously not a necessity. Instead 
of trying to improve upon determinization techniques for such automata, it might be 
more fruitful to try to improve these approximation techniques in such a way that 
more compact automata are produced. 1 However, because research into finite-state 
approximation is still of an exploratory and experimental nature, it can be argued 
that more robust determinization algorithms do still have a role to play: it can be 
expected that approximation techniques are much easier to define and implement if 
the resulting automaton is allowed to be nondeterministic and to contain c-moves. 

Note furthermore that even if our primary motivation is in finite-state approxima- 
tion, the problem of determinizing finite-state automata with c-moves may be relevant 
in other areas of language research as well. 

1.3 Subset Construction and c-Moves 
The experiments were performed using the FSA Utilities. The FSA Utilities toolbox 
(van Noord 1997, 1999; Gerdemann and van Noord 1999; van Noord and Gerde- 
mann 1999) is a collection of tools to manipulate regular expressions, finite-state 
automata, and finite-state transducers. Manipulations include determinization, min- 
imization, composition, complementation, intersection, Kleene closure, etc. Various 
visualization tools are available to browse finite-state automata. The toolbox is imple- 
mented in SICStus Prolog, and is available free of charge under Gnu General Public 
License via anonymous ftp at f tp: / / f tp . le t . rug.nl /pub/vannoord/Fsa/ ,  and via the 
web at ht tp:/ /www.let .rug.nl/~vannoord/Fsa/ .  At the time of our initial experiments 
with finite-state approximation, an old version of the toolbox was used, which ran 
into memory problems for some of these automata. For this reason, the subset con- 
struction algorithm has been reimplemented, paying special attention to the treatment 
of E-moves. Three variants of the subset construction algorithm are identified, which 
differ in the way c-moves are treated: 

per graph The most obvious and straightforward approach is sequential in the 
following sense: Firstly, an equivalent automaton without c-moves is con- 
structed for the input. To do this, the transitive closure of the graph consist- 
ing of all c-moves is computed. Secondly, the resulting automaton is then 
treated by a subset construction algorithm for c-free automata. Different 
variants of per graph can be identified, depending on the implementation 
of the c-removal step. 

1 Indeed, a later implementation by Nederhof avoids construction of the complete nondetermistic 
automaton by minimizing subautomata before they are embedded into larger subautomata. 
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per state For each state that occurs in a subset produced during subset construc- 
tion, compute the states that are reachable using e-moves. The results of 
this computation can be memorized, or computed for each state in a pre- 
processing step. This is the approach mentioned briefly in Johnson and 
Wood (1997). 2 

per subset For each subset Q of states that arises during subset construction, com- 
pute Q~ 2 Q, which extends Q with all states that are reachable from any 
member of Q using e-moves. Such an algorithm is described in Aho, Sethi, 
and Ullman (1986). 

The motivation for this paper is the knowledge gleaned from experience, that the 
first approach turns out to be impractical for automata with very large numbers of 
e-moves. An integration of the subset construction algorithm with the computation of 
e-reachable states performs much better in practice for such automata. 

Section 2 presents a short statement of the problem (how to determinize a given 
finite-state automaton), and a subset construction algorithm that solves this problem in 
the absence of e-moves. Section 3 defines a number of subset construction algorithms 
that differ with respect to the treatment of e-moves. Most aspects of the algorithms are 
not new and have been described elsewhere, and /or  were incorporated in previous 
implementations; a comparison of the different algorithms had not been performed 
previously. We provide a comparison with respect to the size of the resulting determin- 
istic automaton (in Section 3) and practical efficiency (in Section 4). Section 4 provides 
experimental results both for randomly generated automata and for automata gen- 
erated by approximation algorithms. Our implementations of the various algorithms 
are also compared with AT&T's FSM utilities (Mohri, Pereira, and Riley 1998), to es- 
tablish that the experimental differences we find between the algorithms are truly 
caused by differences in the algorithm (as opposed to accidental implementation de- 
tails). 

2. Subset Construction 

2.1 Problem Statement 
Let a finite-state machine M be specified by a tuple (Q, G, 6, S, F) where Q is a finite 
set of states, G is a finite alphabet, and ~ is a function from Q x (G u {¢}) --* 2 Q. 
Furthermore, S c_ Q is a set of start states and F _C Q is a set of final states. 3 

Let e-move be the relation {(qi, qj)lqj E ~(qi, e)}. c-reachable is the reflexive and 
transitive closure of e-move. Let e-CLOSURE: 2 Q ~ 2 Q be a function defined as: 

e-CLOSURE(Q') = {qlq' E Q', (q',q) E e-reachable} 

Furthermore, we write e-CLOSURE-I(Q ') for the set {qlq' E Q', (q,q') E e-reachable}. 

2 According to Derick Wood (p. c.), this approach has been implemented in several systems, including 
Howard Johnson's INR system. 

3 Note that a set of start states is required, rather than a single start state. Many operations on automata 
can be defined somewhat more elegantly in this way (including per graph t discussed below). Obviously, 
for deterministic automata this set should be a singleton set. 
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funct subset_eonstruction( ( Q, ~, ~, S, F) ) 
index_transitions(); Trans := O; Finals := O; States := O; 
Start := epsilon_closure( S) 
add(Start) 
whi le  there is an unmarked subset T E States d__qo 

mark(T) 
foreach (a, U) C instructions(T) do 

U := epsilon_closure(U) 
Trans[T,a] := {U} 
add(U) 
od 

od 
return (States, ~, Trans, {Start}, Finals) 

end 

proc add(U) Reachable-state-set Maintenance 
if  U ~ States 

then add U unmarked to States 
if U M F then Finals := Finals U {U} fi 

fi 
end 

funct instructions(P) Instruction Computation 
return merge(Up~ P transitions(p)) 

end 

funct epsilon_closure( U) 
return U 

end 

variant 1: No c-moves 

Figure 1 
Subset construction algorithm. 

For any  g iven finite-state au toma ton  M = (Q, G, 6, S, F), there is an equivalent  de- 
terministic au toma ton  M I = (2 Q, G, 6', {Q0}, FI) • F ~ is the set of all states in 2 Q containing 
a final state of M, i.e., the set of subsets  {Qi E 2Qiq E Qi, q E F}. M '  has  a single start  
state Q0, which  is the epsi lon closure of the start  states of M, i.e., Q0 = c-CLOSURE(S). 
Finally, 

6'({ql, q2 . . . . .  qi},a) = E-CLOSURE(6(ql, a) U 6(q2,a) U . . .  U 6(qi, a)) 

An algor i thm that  computes  M / for a g iven M will only  need  to take into account  
states in 2 Q that  are reachable f rom the start  state Q0. This is the reason that  for m a n y  
input  au tomata  the a lgor i thm does  not  need  to treat  all subsets of states (but note  that  
there are au tomata  for which  all subsets  are relevant,  and  hence exponent ia l  behav ior  
cannot  be avo ided  in general).  

Consider  the subset  construct ion a lgor i thm in Figure 1. The a lgor i thm mainta ins  
a set of subsets  States. Each subset  can be either m a r k e d  or u n m a r k e d  (to indicate 
whe ther  the subset  has  been  treated by  the algori thm);  the set of u n m a r k e d  sub- 
sets is somet imes  referred to as the agenda.  The a lgor i thm takes such an u n m a r k e d  
subset  T and  computes  all t ransit ions leaving T. This computa t ion  is p e r f o r m e d  by  
the function instructions and  is called instruction computation by  Johnson and  Wood 
(1997). 
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The function index_transitions constructs the function transitions: Q --, ~. x 2 Q, which 
returns for a given state p the set of pairs (s, T) representing the transitions leaving p. 
Furthermore, the function merge takes such a set of pairs and merges all pairs with the 
same first element (by taking the union of the corresponding second elements). For 
example: 

merge({(a, {1,2,4}), (b, {2,4}), (a, {3,4}), (b, {5,6})}) 

= {(a, {1,2,3,4}), (b, {2,4,5,6})} 

The procedure add is responsible for "reachable-state-set maintenance," by en- 
suring that target subsets are added  to the set of subsets if these subsets were not 
encountered before. Moreover, if such a new subset contains a final state, then this 
subset is added  to the set of final states. 

3. Variants for E-Moves 

The algorithm presented in the previous section does not  treat c-moves. In this section, 
possible extensions of the algorithm are identified to treat c-moves. 

3.1 Per Graph 
In the per graph variant, two steps can be identified. In the first step, efree, an equiva- 
lent c-free automaton is constructed. In the second step this c-free automaton is deter- 
minized using the subset construction algorithm. The advantage of this approach is 
that the subset construction algorithm can remain simple because the input automaton 
is c-free. 

An algorithm for efree is described for instance in Hopcroft and Ullman (1979, 26- 
27). The main ingredient of efree is the construction of the function c-CLOSURE, which 
can be computed using a standard transitive closure algorithm for directed graphs: 
this algorithm is applied to the directed graph consisting of all c-moves of M. Such 
an algorithm can be found in several textbooks (see, for instance, Cormen, Leiserson, 
and Rivest [1990]). 

For a given finite-state automaton M = (Q, G,6,S,F), efree computes M' = 
(Q, ~, 6', S', F'), where S' = c-CLOSURE(S), F' = c-CLOSURE -1 (F), and 6'(p,a) = 
{qiq' E 6(p', a), p' c c-CLOSURE -1 (p), q E c-CLOSURE(q')}. Instead of using c-CLOSURE 
on both the source and target side of a transition, efree can be optimized in two different 
ways by using c-CLOSURE only on one side: 

efreet: M'  = (Q, ~, 6', S',F), where S' = c-CLOSURE(S), and 
6'(p,a) = {qiq' E 6(p,a),q E c-CLOSURE(q')}. 

efreeS: M'  = (Q, ~,  6', S,F'), where F' = ¢-CLOSURE-I(F), and 
6'(p,a) = {qlq E 6(p',a),p' E c-CLOSURE-I(p)}. 

Al though the variants appear very similar, there are some differences. Firstly, efree t 
might  introduce states that are not coaccessible: states from which no path exists to a 
final state; in contrast, efree s might  introduce states that are not accessible: states from 
which no path  exists from the start state. A straightforward modification of both algo- 
ri thms is possible to ensure that these states are not  present in the output. Thus efree t,c 
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c a  a 

(1) 

(2) (3) 

a 

2) 

a a a 

(4 (5) 

Figure 2 
Illustration of the difference in size between two variants of efree. (1) is the input automaton. 
The result of efree t is given in (2); (3) is the result of erred. (4) and (5) are the result of applying 
the subset construction to the result of efree t and efred, respectively. 

ensures that all states in the resulting au tomaton  are co-accessible; efree s,a ensures that 
all states in the resulting au tomaton  are accessible. As a consequence,  the size of the 
determinized machine is in general smaller if efree t,c is employed,  because states that 
were not  co-accessible (in the input) are removed  (this is therefore an addit ional  ben- 
efit of efreet,C; the fact that efree s,a removes accessible states has no effect on the size of 
the determinized machine because the subset construction algori thm already ensures 
accessibility anyway).  

Secondly, it turns out  that applying eSree t in combinat ion with the subset construc- 
tion algori thm generally produces  smaller automata  than efree s (even if we ignore the 
benefit  of ensuring co-accessibility). An example is presented in Figure 2. The differ- 
ences can be quite significant, as illustrated in Figure 3. 

Below we will write per graph x to indicate the nonintegra ted  algori thm based on 
efree x . 

3.2 Per Subset  and Per State 
Next, we discuss two variants (per subset and per state) in which the t reatment  of c- 
moves  is integrated with the subset construction algorithm. We will show later that 
such an integrated approach is in practice often more  efficient than the per graph ap- 
proach if there are many  C-moves. The per subset and per state approaches are also 
more  suitable for a lazy implementat ion of the subset construction algori thm (in such 
a lazy implementat ion,  subsets are only computed  with respect to a given input  
string). 

The  per subset and the per state algori thms use a simplified variant  of the transitive 
closure algori thm for graphs. Instead of comput ing  the transitive closure of a given 
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Figure 3 
Difference in sizes of deterministic automata constructed with either efree s o r  efree t, for 
randomly generated input automata consisting of 100 states, 15 symbols, and various numbers 
of transitions and jumps (cf. Section 4). Note that all states in the input are co-accessible; the 
difference in size is due solely to the effect illustrated in Figure 2. 

funct closure(T) 
D : = 0  
foreach t E T do add t unmarked to D od 
whi le  there is an unmarked state t C D do 

mark(t) 
foreach q E ~5(t, e) do 

if q ~ D then add q unmarked to D fi 
od 

od 
retum D 

end 

Figure 4 
Epsilon closure algorithm. 

graph,  this a lgor i thm only computes  the closure for a g iven set of states. Such an 
a lgor i thm is g iven in Figure 4. 

In bo th  of the two integrated approaches,  the subset  construct ion a lgor i thm is ini- 
tialized wi th  an agenda  containing a single subset  that  is the e-CLOSURE of the set of 
start  states of the input;  fur thermore,  the w a y  in which  new transit ions are c o m p u t e d  
also takes the effect of c-moves into account. Both differences are accounted for b y  an 
alternative definit ion of the epsilon_closure function. 

The approach  in which the transit ive closure is c o m p u t e d  for one state at a t ime 
is def ined by  the fol lowing definit ion of the epsilon_closure function. Note  that  we  
make  sure that  the transit ive closure computa t ion  is only pe r fo rmed  once for each 
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input state, by memorizing the closure function; the full computation is memorized 
as well. 4 

funct epsilon_closure( U) 
return memo(Uu~u memo(closure( {u} ) ) ) 

end 

variant 2: per state 

In the case of the per subset approach, the closure algorithm is applied to each 
subset. We also memorize the closure function, in order to ensure that the closure 
computation is performed only once for each subset. This can be useful, since the 
same subset can be generated many times during subset construction. The definition 
simply is: 

funct epsilon_closure( U) 
return memo(closure(U)) 

end 

variant 3: per subset 

The motivation for the per state variant is the insight that in this case the closure 
algorithm is called at most IQ] times. In contrast, in the per subset approach the transi- 
tive closure algorithm may need to be called 2 IQI times. On the other hand, in the per 
state approach some overhead must be accepted for computing the union of the results 
for each state. Moreover, in practice, the number of subsets is often much smaller than 
21QI. In some cases, the number of reachable subsets is smaller than the number of 
states encountered in those subsets. 

3.3 Implementation 
In order to implement the algorithms efficiently in Prolog, it is important to use ef- 
ficient data structures. In particular, we use an implementation of (non-updatable) 
arrays based on the N+K trees of O'Keefe (1990, 142-145) with N = 95 and K = 32. 
On top of this data structure, a hash array is implemented using the SICStus library 
predicate term_hash/4, which constructs a key for a given term. In such hashes, a 
value in the underlying array is a partial list of key-value pairs; thus collisions are 
resolved by chaining. This provides efficient access in practice, although such ar- 
rays are quite memory-intensive: care must be taken to ensure that the deterministic 
algorithms indeed are implemented without introducing choice-points during run- 
time. 

4. Experiments 

Two sets of experiments have been performed. In the first set of experiments, random 
automata are generated according to a number of criteria based on Leslie (1995). In 
the second set of experiments, results are provided for a number of (much larger) 
automata that surfaced during actual development work on finite-state approximation 
techniques. 5 

Random Automata. Here, we report on a number of experiments for randomly gener- 
ated automata. Following Leslie (1995), the absolute transition density of an automaton 

4 This is an improvement over the algorithm given in a preliminary version of this paper (van Noord 
1998). 

5 All the automata used in the experiments are freely available from 
http://www.let.rug.nl/-vannoord / Fsa/. 
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is defined as the number of transitions divided by the square of the number of states 
multiplied by the number of symbols (i.e., the number of transitions divided by the 
maximum number of "possible" transitions, or, in other words, the probability that a 
possible transition in fact exists). Deterministic transition density is the number of tran- 
sitions divided by the number of states multiplied by the number of symbols (i.e., the 
ratio of the number of transitions and the maximum number of "possible" transitions 
in a deterministic machine). 

In both of these definitions, the number of transitions should be understood as 
the number of nonduplicate transitions that do not lead to a sink state. A sink state 
is a state from which there exists no sequence of transitions to a final state. In the 
randomly generated automata, states are accessible and co-accessible by construction; 
sink states and associated transitions are not represented. 

Leslie (1995) shows that deterministic transition density is a reliable measure for 
the difficulty of subset construction. Exponential blow-up can be expected for input 
automata with deterministic transition density of around 2. 6 He concludes (page 66): 

randomly generated automata exhibit the maximum execution time, 
and the maximum number of states, at an approximate deterministic 
density of 2. Most of the area under the curve occurs within 0.5 and 
2.5 deterministic density--this is the area in which subset construction 
is expensive. 

Conjecture. For a given NFA, we can compute the expected num- 
bers of states and transitions in the corresponding DFA, produced by 
subset construction, from the deterministic density of the NFA. In ad- 
dition, this functional relationship gives rise to a Poisson-like curve 
with its peak approximately at a deterministic density of 2. 

A number of automata were generated randomly, according to the number of 
states, symbols, and transitions. For the first experiment, automata were generated 
consisting of 15 symbols, 25 states, and various densities (and no c-moves). The results 
are summarized in Figure 5. CPU-time was measured on a HP 9000/785 machine 
running HP-UX 10.20. Note that our timings do not include the start-up of the Prolog 
engine, nor the time required for garbage collection. 

In order to establish that the differences we obtain later are genuinely due to 
differences in the underlying algorithm, and not due to "accidental" implementation 
details, we have compared our implementation with the determinizer of AT&T's FSM 
utilities (Mohri, Pereira, and Riley 1998). For automata without e-moves, we establish 
that FSM normally is faster: for automata with very small transition densities, FSM is 
up to four times as fast; for automata with larger densities, the results are similar. 

A new concept called absolute jump density is introduced to specify the number 
of c-moves. It is defined as the number of e-moves divided by the square of the 
number of states (i.e., the probability that an c-move exists for a given pair of states). 
Furthermore, deterministic jump density is the number of e-moves divided by the 
number of states (i.e., the average number of e-moves that leave a given state). In 
order to measure the differences between the three implementations, a number of 
automata have been generated consisting of 15 states and 15 symbols, using various 

6 Leslie uses the terms absolute density and deterministic density. 
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Deterministic transition density versus CPU-time in msec. The input automata have 25 states, 
15 symbols, and no C-moves. fsa represents the CPU-time required by our FSA6 
implementation; fsm represents the CPU-time required by AT&T's FSM library; states 
represents the sum of the number of states of the input and output automata. 

transition densities between 0.01 and 0.3 (for larger densities, the automata tend to 
collapse to an automaton for ~.*). For each of these transition densities, deterministic 
jump densities were chosen in the range 0 to 2.5 (again, for larger values, the automata 
tend to collapse). In Figures 6 to 9, the outcomes of these experiments are summarized 
by listing the average amount of CPU-time required per deterministic jump density 
(for each of the algorithms), using automata with 15, 20, 25, and 100 states, respectively. 
Thus, every dot represents the average for determinizing a number of different input 
automata with various absolute transition densities and the same deterministic jump 
density. 

The striking aspect of these experiments is that the integrated per subset and per 
state variants are much more efficient for larger deterministic jump densities. The per 
graph t is typically the fastest algorithm of the nonintegrated versions. However, in these 
experiments all states in the input are co-accessible by construction; and moreover, all 
states in the input are final states. Therefore, the advantages of the pergraph t'c algorithm 
could not be observed here. 

The turning point is a deterministic jump density of around 0.8: for smaller densi- 
ties the per graph t is typically slightly faster; for larger densities the per state algorithm 
is much faster. For densities beyond 1.5, the per subset algorithm tends to perform bet- 
ter than the per state algorithm. Interestingly, this generalization is supported by the 
experiments on automata generated by approximation techniques (although the re- 
sults for randomly generated automata are more consistent than the results for "real" 
examples). 
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Figure 6 
Average amount  of CPU-time versus jump density for each of the algorithms, and FSM. Input  
automata have 15 states. Absolute transition densities: 0.01-0.3. 
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Figure 7 
Average amount  of CPU-time versus jump density for each of the algorithms, and FSM. Input  
automata have 20 states. Absolute transition densities: 0.01-0.3. 
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Figure 8 
Average amount  of CPU-time versus deterministic jump density for each of the algorithms, 
and FSM. Input  automata have 25 states. Absolute transition densities: 0.01-0.3. 
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Average amount  of CPU-time versus deterministic jump density for each of the algorithms, 
and FSM. Input  automata have 100 states. Absolute transition densities: 0.001-0.0035. 
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Comparison with the FSM Library. We also provide the results for AT&T's FSM library. 
FSM is designed to treat weighted automata for very general weight sets. The initial 
implementation of the library consisted of an on-the-fly computation of the epsilon 
closures combined with determinization. This was abandoned for two reasons: it could 
not be generalized to the case of general weight sets, and it was not outputting the 
intermediate epsilon-removed machine (which might be of interest in itself). In the 
current version, c-moves must be removed before determinization is possible. This 
mechanism thus is comparable to our per graph variant. Apparently, FSM employs 
an algorithm equivalent to our per graph s,a. The resulting determinized machines are 
generally larger than the machines produced by our integrated variants and the vari- 
ants that incorporate c-moves on the target side of transitions. The timings below are 
obtained for the pipe 

fsmrmepsilon I fsmdeterminize 

This is somewhat unfair, since this includes the time to write and read the intermediate 
machine. Even so, it is interesting to note that the FSM library is a constant factor faster 
than our per graphS,a; for larger numbers of jumps the per state and per subset variants 
consistently beat the FSM library. 

Experiment: Automata Generated by Approximation Algorithms. The automata used in the 
previous experiments were randomly generated. However, it may well be that in 
practice the automata that are to be treated by the algorithm have typical properties 
not reflected in this test data. For this reason, results are presented for a number of 
automata that were generated using approximation techniques for context-free gram- 
mars; in particular, for automata created by Nederhof, using the technique described 
in Nederhof (1997), and a small number of automata created using the technique 
of Pereira and Wright (1997) (as implemented by Nederhof). We have restricted our 
attention to automata with at least 1,000 states in the input. 

The automata typically contain lots of jumps. Moreover, the number of states of 
the resulting automaton is often smaller than the number of states in the input automa- 
ton. Results are given in Tables I and 2. One of the most striking examples is the ygrim 
automaton consisting of 3,382 states and 9,124 jumps. For this example, the per graph 
implementations ran out of memory (after a long time), whereas the implementation 
of the per subset algorithm produced the determinized automaton (containing only 9 
states) within a single CPU-second. The FSM implementation took much longer for 
this example (whereas for many of the other examples it is faster than our implemen- 
tations). Note that this example has the highest ratio of number of jumps to number 
of states. This confirms the observation that the per subset algorithm performs better 
on inputs with a high deterministic jump density. 

5. C o n c l u s i o n  

We have discussed a number of variants of the subset construction algorithm for deter- 
minizing finite automata containing c-moves. The experiments support the following 
conclusions: 

The integrated variants per subset and per state work much better for 
automata containing a large number of c-moves. The per subset variant 
tends to improve upon the per state algorithm if the number of E-moves 
increases even further. 
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Table 1 
The automata generated by approximation algorithms. The table lists the number of states, 
transitions, and jumps of the input automaton, and the number of states of the determinized 
machine using the erred, efree t, and the efree t; variants, respectively. 

Input Output 

Id # of States # of Transitions # of Jumps # of States 

per graph s per graph t per graph t; 
per graph s~ per subset 

FSM per state 

g14 1,048 403 1,272 137 137 131 
ovis4.n 1,424 2,210 517 164 133 107 

g13 1,441 1,006 1,272 337 337 329 
rene2 1,800 2,597 96 846 844 844 

ovis9.p 1,868 2,791 2,688 2,478 2,478 1,386 
ygrim 3,382 5,422 9,124 9 9 9 

ygrim.p 48,062 63,704 109,296 702 702 702 
java19 54,369 28,333 51,018 1,971 1,971 1,855 
java16 64,210 43,935 41,305 3,186 3,186 3,078 
zovis3 88,156 78,895 68,093 5,174 5,154 4,182 
zovis2 89,832 80,400 69,377 6,561 6,541 5,309 

Table 2 
Results for automata generated by approximation algorithms. The dashes in the 
table indicate that the corresponding algorithm ran out of memory (after a long 
period of time) for that particular example. 

CPU-time (sec) 

graph t graph t'c graph s graph s~ subset state FSM 

g14 0.4 0.4 0.3 0.3 0.4 0.2 0.1 
ovis4.n 0.9 1.1 0.8 1.0 0.7 0.6 0.6 

g13 0.9 0.8 0.6 0.6 1.2 0.7 0.2 
rene2 0.2 0.3 0.2 0.2 0.2 0.2 0.1 

ovis9.p 36.6 16.0 16.9 17.0 25.2 20.8 . 21.9 
ygrim - 0.9 21.0 512.1 

ygrim.p - 562.1 - 4512.4 
java19 55.5 67.4 52.6 45.0 25.8 19.0 3.8 
java16 30.0 45.8 35.0 29.9 11.3 12.1 3.0 
zovis3 741.1 557.5 407.4 358.4 302.5 325.6 
zovis2 909.2 627.2 496.0 454.4 369.4 392.1 

• We have identified four different variants of the per graph algorithm. In 
our experiments, the per graph t is the algori thm of choice for automata  
containing few c-moves, because it is faster than the other algorithms, 
and because it produces  smaller automata  than the per graph s and per 
graph s,a variants. 

• The per graph t,c variant is an interesting alternative in that it produces  the 
smallest results. This variant should be used if the input  au tomaton  is 
expected to contain m a n y  non-co-accessible states. 
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Automata  p roduced  by  finite-state approximat ion techniques tend to 
contain ma ny  c-moves. We found that for these automata  the differences 
in speed be tween the various algori thms can be enormous.  The per subset 
and per state algorithms are good candidates for this application. 

We have a t tempted to characterize the expected efficiency of the various algorithms 
in terms of the number  of jumps and the number  of states in the input  automaton.  It 
is quite conceivable that other simple propert ies  of the input  au tomaton  can be used 
even more effectively for this purpose.  One reviewer suggests using the number  of 
strongly c-connected components  (the strongly connected components  of the graph of 
all c-moves) for this purpose.  We leave this and other possibilities to a future occasion. 
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