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Abstract

This paper describes our submission to I-
JCNLP 2017 shared task 4, for predict-
ing the tags of unseen customer feedback
sentences, such as comments, complaints,
bugs, requests, and meaningless and un-
determined statements. With the use of
a neural network, a large number of deep
learning methods have been developed,
which perform very well on text classifi-
cation. Our ensemble classification model
is based on a bi-directional gated recurren-
t unit and an attention mechanism which
shows a 3.8% improvement in classifica-
tion accuracy. To enhance the model per-
formance, we also compared it with sev-
eral word-embedding models. The com-
parative results show that a combination
of both word2vec and GloVe achieves the
best performance.

1 Introduction

Understanding and being able to react to customer
feedback is the most fundamental task in provid-
ing good customer service. The goal of task 4 of
the custom feedback analysis of IJCNLP-2017 is
to train classifiers for the detection of meaning in
customer feedback provided in English, French, S-
panish, and Japanese. This task can be considered
a short-text classification task, which has recently
become popular in many areas of natural language
processing, including sentiment analysis, question
answering, and dialog management. The feature
representation of a short text is a key to classifica-
tion, which is usually extracted as features based
on uni-gram, bi-gram, n-gram, or other combina-
tion patterns of the bag-of-words (BoW) model.

Deep neural networks (Hinton and Salakhutdi-
nov, 2006) and representation learning (Bengio

et al., 2003) have recently brought new ideas to
resolving the data sparsity problem, and various
neural models for learning word representation-
s have been proposed (Bengio et al., 2003; Col-
lobert et al., 2011; Huang et al., 2012; Mikolov
et al., 2013b). Mikolov et al. (2013b) showed that
meaningful syntactic and semantic regularities can
be captured in pre-trained word embedding. The
embedding model measures the word relevance by
simply using the cosine distance between two em-
bedded vectors.

Using pre-trained word embedding, neural net-
works have achieved remarkable results, including
a convolutional neural network (CNN) (Collobert
et al., 2011) and recurrent neural network (RNN)
(Mikolov et al., 2010). Furthermore, several ad-
vanced architectures such as long short-term mem-
ory (LSTM) (Hochreiter and Urgen Schmidhu-
ber, 1997) and a gated recurrent unit (GRU) (Cho
et al., 2014) have been proposed owing to their
better ability to capture long-term dependencies.
They are equipped with gates to balance the in-
formation flow from the previous and current time
steps dynamically. In addition, neural processes
involving attention have been extensively studied
in the field of computational neuroscience (Itti
et al., 1998; Desimone and Duncan, 1995). Re-
cent studies have shown that attention mechanisms
are flexible techniques, and that new changes can
be used to create elegant and powerful solutions.
Yang et al. (2016) introduced an attention mech-
anism using a single matrix and outputting a s-
ingle vector. Instead of deriving a context vector
in terms of the input, a summary is calculated by
referring to the context vector learning as a mod-
el parameter. Raffel and Ellis (2015) proposed
a feed-forward network model with an attention
mechanism, which selects the most important ele-
ment from each time step using learnable weights
depending on the target. In addition, Parikh et al.
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(2016) introduced an attention mechanism for two
sentence matrices, which outputs a single vector,
and built an alignment (similarity) matrix by mul-
tiplying learned vectors from each matrix, com-
puting the context vectors from the alignment ma-
trix, and mixing with the original signal.

In the present study, we used a uni-gram and
bi-gram as features for a support vector machine
(SVM) and naı̈ve bayes as baseline methods. A
deep learning method was also implemented for
better text classification results. We created our
model using a bi-directional gate recurrent unit
(Bi-GRU) with an attention mechanism, and com-
pared the results with different word-embedding
models (word2vec, GloVe, and their concatenate
modes). We found that our model using word2vec
or GloVe slightly outperformed the baseline meth-
ods, whereas the ensemble model using both
word2vec and GloVe achieved better performance
in comparison to the other models.

2 Bi-GRUATT

Our model is based on a bidirectional GRU (Bah-
danau et al., 2014) with an attention mechanism
(Raffel and Ellis, 2015). GRU was designed to
have more persistent memory, thereby making it
easier to capture long-term dependencies than an
RNN. Irsoy and Cardie (2014) showed that such
a bi-directional deep neural network maintains t-
wo hidden layers, one for the left-to-right propaga-
tion, and the other for the right-to-left propagation.
We chose the Bi-GRU model because it could ob-
tain full information through two propagations. In
addition, attention mechanisms allow for a more
direct dependence between the states of the mod-
el at different points in time. In this section, our
model is described using the following four steps:
embedding, encoding, attending, and prediction.
The model architecture is shown in Fig. 1.

Embedding. We took size L tokens of text as
input, where L was the maximum length of al-
l training texts. In this English training dataset,
L is 117. In addition, every word in the text was
embedded into a 300-dimensional vector through
the pre-trained embedding model. For those words
that cannot be recognized in the pre-trained mod-
el, the same dimensional vector of zeros was re-
placed. This was also used for padding out the
sentence when it was shorter than L.

Mikolov et al. (2013a) proposed word2vec,
which allows training on larger corpora, and
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Figure 1: Architecture of Bi-GRUATT model.
(the left-hand side ignores dropout layers which
marked up on the right hand side, and L is the
maximum length of all training texts.)

showed how semantic relationships emerge from
such training. Pennington et al. (2014) proposed
the GloVe approach, which maintains the seman-
tic capacity of word2vec while introducing statis-
tical information from a latent semantic analysis
(LSA), which shows improvement in semantic and
syntactic tasks. We tested word2vec and GloVe
on pre-trained embedding models, and combined
these two vectors, converted from each model, to
a new 600-dimensional vector to obtain the advan-
tages of both word2vec and GloVe.

Encoding. Through the given sequence of word
vectors, the encoding step computes a represen-
tation of a sentence matrix, where each row rep-
resents the meaning of each token in the con-
text of the rest of the sentence. We used a bi-
directional GRU to summarize the contextual in-
formation from both directions of a sentence text,
and obtained a full sentence matrix vector by con-
catenating the sentence matrix vector forward and
backward at each time step. Similarly to the L-
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Figure 2: Illustration of gated recurrent units.
(r and z are the reset and update gates, and h and
h̃ are the activation and the candidate activation.)

STM unit, the GRU has gating units that modulate
the flow of information inside the unit, however,
without having a separate memory cells (Chung
et al., 2014). As is shown in Fig. 2. A GRU
has two gates(a reset gate r, and an update gate
z) rather than three gates in LSTM. Intuitively, the
reset gate determines how to combine the new in-
put with the previous memory, and the update gate
defines how much of the previous memory to keep
around. We ultized Bi-GRU instead of Bi-LSTM
for its better performance on this task. For the ac-
tivation function, softsign was used.

Attending. The attending step reduces the matrix
representation generated by the encoding step into
a single vector. The formula used by the attention
mechanism to produce a single vector can be de-
scribed as follows:

et = tanh(Wht) (1)

αt = softmax(et) (2)

c =
T∑
t

αtht (3)

where ht denotes the hidden state at each time
step, and T is the total number of time steps in the
input sequence. Vectors in hidden state sequence
ht are fed into the learnable function αt to produce
a probability vector α. Based on the weighting
given by α, vector c is computed as the weighted
average of ht.

The characteristic advantage of an attention
mechanism over other reduction operations is that
the attention mechanism takes an auxiliary con-
text vector as input. The context vector is crucial
because it indicates which information to discard,
and thus a summary vector is tailored to the net-

Train Dev Test
Comment 1758 276 285
Complaint 950 146 145

Request 103 19 13
Bug 72 20 10

Meaningless 306 48 62
Undefined 22 3 4

Total 3065 500 500

Table 1: Customer feedback classification of En-
glish dataset distribution of the shared task.

work using it. The activation function of a dense
layer during the attending step is tanh.

Prediction. After the text has been reduced to a s-
ingle vector, we can learn the target representation
as a class label, real value, or vector. The activa-
tion function of a dense layer during the prediction
step is softmax.

3 Experiment

For comparison, we used SVM and Naı̈ve Bayes
models as the baseline methods to evaluate
our system performance. The following sub-
sections describe the baseline methods and the bi-
directional GRU approach with an attention mech-
anism. We then tested the system results using d-
ifferent word embedding models individually and
in combination.

3.1 Datasets

For this shared task, we got four languages (En-
glish, French, Spanish and Japanese) of customer
feedback datasets. In this paper, only English
datasets were used. The training data published by
the organizers included sets of sentences annotat-
ed with six tags, comments, requests, bugs, com-
plaints, and meaningless or undetermined state-
ments. Each sentence has at least one tag assigned
to it, and might be annotated with multiple tags.
The distribution of all datasets is shown in Table
1. The total number is not equal to the sum of
each category because several samples have mul-
tiple labels. We took these multi-labeled samples
as separate samples with the same text and differ-
ent labels.

For a better performance with deep learning,
we additionally crawled user comments from the
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Booking1 and Amazon APP2 websites, and trained
the word2vec (Mikolov et al., 2013b) word-
embedding model on about 26,148,855 tokens.
GloVe (Pennington et al., 2014) was also used to
develop the system using pre-trained word vector
glove.840B.300d, which was trained on 840B to-
kens and is publicly available3.

3.2 Implementation Details

The two baseline methods were implemented us-
ing scikit-learn (Pedregosa et al., 2011) in Python.
Instead of a simple whitespace tokenizer, we used
Unitok4 as a full tokenizer because of its better
performance. Baseline methods were used one-
vs-all SVM method with linear kernel and multi-
nomial Naı̈ve Bayes method. All parameters were
adjusted using a grid search function. We experi-
mented with uni-gram and bi-gram separately, and
in combination, using the word level as features.

We implemented our model using the Python
Keras library with a TensorFlow backend. The re-
current dropout rate of the GRU was set to 0.2, and
two other layers with dropout rates of 0.3 and 0.5
were added before the dense layer during the at-
tending and prediction steps, respectively, to avoid
overfitting of the system. The model was trained
using rmsprop with a mini-batch size of 32 to min-
imize the loss of function of a categorical cross
entropy.

We found that the provided training data were
imbalanced. The smallest number of class samples
was only 22, which accounts for 0.7% of the entire
training dataset. The largest number of class sam-
ples was 1,758, which accounts for 54.7% of the
training data. For this reason, an additional param-
eter sample weight was set for balancing the data.
The loss was multiplied by the sample weight to
improve the accuracy of a small number of class-
es.

Finally, the epoch was set to depend on an early
stop, which relied on a validation set to determine
when to stop the training. The epoch was fixed at
around 20.

1https://www.booking.com/
2https://www.amazon.com/Best-

SellersAppstoreAndroid/zgbs/mobile-
apps/ref=zg bs nav 0

3https://nlp.stanford.edu/projects/glove/
4http://corpus.tools/wiki/Unitok

Methods Acc F1-Score
Micro Macro

word2vec
SVM 63.0 65.4 40.3
Naive Bayes 62.6 64.8 36.1
Bi-GRU (with weight) 61.2 62.2 41.2
Bi-GRUATT (no weight) 64.0 66.3 35.1
Bi-GRUATT (with weight) 65.0 67.3 44.1

GloVe
Bi-GRUATT (no weight) 71.0 73.0 47.0
Bi-GRUATT (with weight) 64.0 66.1 47.7

word2vec+GloVe
Bi-GRUATT (no weight) 71.0 73.2 48.8
Bi-GRUATT (with weight) 68.6 70.7 49.9

Table 2: Comparative results of methods with dif-
ferent word embedding.

3.3 Results

We validated the performance based on the devel-
opment dataset, and used the same model weight
on the test dataset to output the test results. For
this shared task, the micro-average (Micro) and
macro-average (Macro) were used in the evalua-
tion along with the accuracy (Acc). The results of
the baseline and our proposed models based on the
word2vec embedding are shown in Table 2.

We found that using the combination of a uni-
gam and bi-gram performed better than only a uni-
gram or bi-gram individually for both the SVM
and Naı̈ve Bayes models. The attention mecha-
nism enhanced 3-5% for the three evaluation indi-
cators, and showed remarkable improvement with
the parameter sample weight for the macro F1-
score.

Different word-embedding models were em-
ployed in our experiment, the comparative re-
sults of which are also presented in Table 2.
GloVe showed a clearly better performance over
word2vec embedding, with a 7% improvement in
accuracy owing to the training on larger corpora.
Moreover, using the parameter sample weight to
balance the training data, the model was trained to
be biased toward small sample classes. As a result,
the macro F1-score of Bi-GRUATT with the sam-
ple weight increased, whereas the micro F1-score
decreased. And the combination of word2vec and
glove achieved the best performance.

The model using word2vec and GloVe showed
different performance on different tags. For ex-
ample, as shown in Table 3, compared to Bi-
GRUATT with weight of word2vec, F1-score of
tags complaint, bug, meaningless increased 3-8%
in the model with GloVe, however, decreased
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Tags Bi-GRUATT(with weight)
word2vec GloVe word2vec+GloVe

comment 79.0 76.0 80.5
complaint 61.5 64.8 63.0

bug 30.8 38.5 38.5
meaningless 48.5 54.4 54.5

request 42.9 37.5 57.1
undetermined -1 -1 -1

Table 3: Comparative F1-score of each tag with
different word embedding.

0.05-3% in tags comment and request. By com-
bining word2vec and GloVe together, we not only
got the higher score of their each tag, but also ad-
vanced the score of each tag.

The task attracted a total of 139 submissions of
four languages from 12 teams. Our Bi-GRUATT
model with a combination of word2vec and GloVe
achieved the best result in terms of accuracy, and
ranked sixth in micro F1-score, third in macro F1-
score out of 56 submissions for the English lan-
guage.

4 Conclusion and Future Work

In this paper, we presented our implemented so-
lutions to IJCNLP task 4, with the goal of classi-
fying six classes for customer feedback sentences
of English. We promoted a bi-directional GRU
with an attention mechanism, and presented two
other baseline methods (SVM and Naı̈ve Bayes)
for comparison. The experiment results showed
an improvement of around 8% when using the Bi-
GRUATT model with GloVe and word2vec rela-
tive to the baseline methods; in addition, a sample
weight parameter for imbalanced data achieved a
good macro-average score, but with a decline in
accuracy and micro-average score.

As future work, we will attempt a multi-label
classification of this task, and test the performance
of our model in other languages, such as Spanish,
French, and Japanese.
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Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
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