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Abstract

Word embeddings learned from text cor-
pus can be improved by injecting knowl-
edge from external resources, while at
the same time also specializing them for
similarity or relatedness. These knowl-
edge resources (like WordNet, Paraphrase
Database) may not exist for all languages.
In this work we introduce a method to in-
ject word embeddings of a language with
knowledge resource of another language
by leveraging bilingual embeddings. First
we improve word embeddings of Ger-
man, Italian, French and Spanish using re-
sources of English and test them on variety
of word similarity tasks. Then we demon-
strate the utility of our method by creating
improved embeddings for Urdu and Tel-
ugu languages using Hindi WordNet, beat-
ing the previously established baseline for
Urdu.

1 Introduction

Recently fast and scalable methods to generate
dense vector space models have become very pop-
ular following the works of (Collobert and We-
ston, 2008; Mikolov et al., 2013; Pennington et al.,
2014). These methods take large amounts of text
corpus to generate real valued vector representa-
tion for words (word embeddings) which carry
many semantic properties.

Mikolov et al. (2013b) extended this model
to two languages by introducing bilingual embed-
dings where word embeddings for two languages
are simultaneously represented in the same vec-
tor space. The model is trained such that word
embeddings capture not only semantic informa-
tion of monolingual words, but also semantic re-
lationships across different languages. A number

of different methods have since been proposed to
construct bilingual embeddings (Zou et al., 2013;
Vulic and Moens, 2015; Coulmance et al., 2016).

A disadvantage of learning word embeddings
only from text corpus is that valuable knowl-
edge contained in knowledge resources like Word-
Net (Miller, 1995) is not used. Numerous meth-
ods have been proposed to incorporate knowledge
from external resources into word embeddings for
their refinement (Xu et al., 2014; Bian et al., 2014;
Mrksic et al., 2016). (Faruqui et al., 2015) intro-
duced retrofitting as a light graph based technique
that improves learned word embeddings.

In this work we introduce a method to im-
prove word embeddings of one language (tar-
get language) using knowledge resources from
some other similar language (source language).
To accomplish this, we represent both languages
in the same vector space (bilingual embeddings)
and obtain translations of source language’s re-
sources. Then we use these translations to im-
prove the embeddings of the target language by
using retrofitting, leveraging the information con-
tained in bilingual space to adjust retrofitting pro-
cess and handle noise. We also show why a dic-
tionary based translation would be ineffective for
this problem and how to handle situations where
vocabulary of target embeddings is too big or too
small compared to size of resource.

(Kiela et al., 2015) demonstrated the advantage
of specializing word embeddings for either sim-
ilarity or relatedness, which we also incorporate.
Our method is also independent of the way bilin-
gual embeddings were obtained. An added advan-
tage of using bilingual embeddings is that they are
better than monolingual counterparts due to incor-
porating multilingual evidence (Faruqui and Dyer,
2014; Mrkšić et al., 2017).
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2 Background

2.1 Bilingual Embeddings
Various methods have been proposed to generate
bilingual embeddings. One class of methods learn
mappings to transform words from one monolin-
gual model to another, using some form of dic-
tionary (Mikolov et al., 2013b; Faruqui and Dyer,
2014). Another class of methods jointly optimize
monolingual and cross-lingual objectives using
word aligned parallel corpus (Klementiev et al.,
2012; Zou et al., 2013) or sentence aligned par-
allel corpus (Chandar A P et al., 2014; Hermann
and Blunsom, 2014). Also there are other meth-
ods which use monolingual data and a smaller set
of sentence aligned parallel corpus (Coulmance
et al., 2016) and those which use non-parallel doc-
ument aligned data (Vulic and Moens, 2015).

We experiment with translation invariant bilin-
gual embeddings by (Gardner et al., 2015). We
also experiment with method proposed by (Artetxe
et al., 2016) where they learn a linear transform
between two monolingual embeddings with mono-
lingual invariance preserved. They use a small
bilingual dictionary to accomplish this task. These
methods are useful in our situation because they
preserve the quality of original monolingual em-
beddings and do not require parallel text (benefi-
cial in case of Indian languages).

2.2 Retrofitting
Retrofitting was introduced by (Faruqui et al.,
2015) as a light graph based procedure for enrich-
ing word embeddings with semantic lexicons. The
method operates post processing i.e it can be ap-
plied to word embeddings obtained from any stan-
dard technique such as Word2vec, Glove etc. The
method encourages improved vectors to be simi-
lar to the vectors of similar words as well as sim-
ilar to the original vectors. This similarity rela-
tion among words (such as synonymy, hypernymy,
paraphrase) is derived from a knowledge resource
such as PPDB, WordNet etc. Retrofitting works as
follows:

Let matrix Q contain the word embeddings to
be improved. Let V = {w1, w2...wn} be the vocab-
ulary which is equal to number of rows in Q and
d be the dimension of word vectors which is equal
to number of columns. Also let Ω be the ontol-
ogy that contains the intra word relations that must
be injected into the embeddings. The objective of
retrofitting is to find a matrix Q̂ such that the new

word vectors are close to their original vectors as
well as vectors of related words. The function to
be minimized to accomplish this objective is:

Φ(Q) =
n∑
i=1

[
αi‖qi − q̂i‖2 +

∑
(i,j)∈E

βij‖qi − qj‖2
]

The iterative update equation is:

qi =
∑
j:(i,j)∈E βijqj + αiq̂i∑
j:(i,j)∈E βij + αi

α and β are the parameters used to control the
process. We discuss in Section 3.2 how we set
them to adapt the process to bilingual settings.

2.3 Dictionary based approach

Before discussing our method, we would like to
point that using a dictionary for translating the lex-
ical resource and then retrofitting with this trans-
lated resource is not feasible. Firstly obtaining
good quality dictionaries is a difficult and costly
process1. Secondly it is not necessary that one
would obtain translations that are within the vo-
cabulary of the embeddings to be improved. To
demonstrate this, we obtain translations for em-
beddings of 3 languages2 and show the results in
Table 1. In all cases the number of translations that
are also present in the embedding’s vocabulary are
too small.

Language Vocab Matches
German 43,527 9,950
Italian 73,427 24,716
Spanish 41,779 16,547

Table 1: Using a dictionary based approach

3 Approach

Let S, T and R be the vocabularies of source, tar-
get and resource respectively. Size of R is always
fixed while size of S and T depends on embed-
dings. The relation between S, T and R is shown
in Figure 1. Sets S and R have one to one map-
ping which in not necessarily onto, while T and
S have many to one mapping. Consider the ideal
case where every word in R is also in S and every
word in S has the exact translation from T as its
nearest neighbour in the bilingual space. Then the

1eg. Google and Bing Translate APIs have become paid.
2using Yandex Translate API, it took around 3 days
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figlio

ragazzo
boy

T S R

Figure 1: Relationships between Source, Target
and Resource Vocabularies.

simple approach for translation would be assign-
ing every si ∈ S its nearest neighbour ti ∈ T as
the translation.

First problem is that in practical settings these
conditions are almost never satisfied. Secondly the
sizes of S, T andR can be very different. Suppose
the size of S, T is large compared to R or the size
of T is large but size of S is comparatively smaller.
In both cases size of translated resource will be too
small to make impact. Thirdly words common to
both R and S will be lesser than the total words in
R. So the size of R accessible to T using S will
be even lesser. A mechanism is therefore required
to control the size of translated resource and fil-
ter incorrect translations. We accomplish this as
follows:

3.1 Translating knowledge resource
For translation we adapt a dual approach that al-
lows control over the size of the translated list. We
iterate through T (not S) looking for translations
in S. A translation is accepted or rejected based
on whether the cosine similarity between words is
above the threshold η. This method stems from
the fact that mapping between T and S is many to
one. So the Italian word ragazzo is translated to
boy, but we can also translate (and subsequently
retrofit) figlio to boy (Figure 1) in order to get a
larger translated resource list with some loss in
quality of list. Thus η gives us direct control over
the size of translated resource list. Then to trans-
late the list of related words, we translate normally
(i.e from S to T ). Algorithm 1 summarizes this
process.

3.2 Retrofitting to translated resource
We modify the retrofitting procedure to accommo-
date noisy translations as follows:

As discussed earlier, retrofitting process con-
trols the relative shift of vectors by two parameters
α and β, where α controls the movement towards

original vector and β controls movement towards
vectors to be fitted with. (Faruqui et al., 2015) set
α as 1 and β as 1

γ where γ is the number of vectors
to be fitted with. Thus they give equal weights to
each vector.

Cosine similarity between a word and its trans-
lation is a good measure of the confidence in its
translation. We use it to set β such that differ-
ent vectors get different weights. A word for
which we have higher confidence in translation
(i.e higher cosine similarity) is given more weight
when retrofitting. Therefore wi being the weights,
α, β are set as :

α =
γ∑
i=1

wi, βi = wi

Further reduction in weights of noisy words can
be done by taking powers of cosine similarity. An
example in Table 2 shows weights of similar words
for Italian word professore derived by taking pow-
ers of cosine similarity (we refer to this power as
filter parameter).

Words Similarity Weights
educatore 0.955 0.796
harvard 0.853 0.452
insegnando 0.980 0.903
insegnata 0.990 0.951

Table 2: Taking power of weights reduces weights
of noisy words (here harvard). Here filter = 5.

Algorithm 1 Translating Knowledge Resource
Input : Source (S), Target (T ), Resource (R), η
Output : Translated Knowledge Resource
R∗

R∗ = []
for t in T do
ts ← NearestNeighbour(S)
if similarity(t, ts) > η then
lexicons← S[ts]
for l in lexicons do
lt ← NearestNeighbour(T )
weight← similarity(l, lt)
R∗[t].add(lt, weight)

end for
else
continue

end if
end for
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Language Vocab TRL Tasks Original Half En-
riched

Full En-
riched

German 43,527
18,802
37,408

MC30
RG65
WS353 (sim)
Simlex999

0.631
0.503
0.600
0.333

0.643
0.531
0.631
0.356

0.662
0.600
0.635
0.373

Italian 73,427
22,022
44,309

WS353 (sim)
Simlex999

0.595
0.247

0.640
0.283

0.652
0.313

Spanish 41,779
17,434
35,034

MC30
RG65

0.312
0.608

0.286
0.615

0.412
0.634

French 40,523
16,203
32,602

RG65 0.547 0.582 0.673

Table 3: Retrofitting Translation Invariant Bilingual Embeddings for German, Italian, Spanish and
French using English Paraphrase Database. (TRL stands for Translated Resource Length)

4 Datasets and Benchmarks

For English as source language, we use the Para-
phrase Database (Ganitkevitch et al., 2013) to spe-
cialize embeddings for similarity as it gives the
best results (compared to other sources like Word-
Net). To specialize embeddings for relatedness,
we use University of South Florida Free Asso-
ciation Norms (Nelson et al., 2004) as indicated
by (Kiela et al., 2015). For Hindi as source
language, we use Hindi WordNet (Bhattacharyya
et al., 2010). Whenever the size of resource is big
enough, we first inject word embeddings with half
of the dataset (random selection) followed by full
length dataset to demonstrate the sequential gain
in performance.
Multilingual WS353 and SimLex999 datasets are
by (Leviant and Reichart, 2015). We also use
German RG65 (Gurevych, 2005), French RG65
(Joubarne and Inkpen, 2011) and Spanish MC30,
RG65 (Hassan and Mihalcea, 2009; Camacho-
Collados et al., 2015). For Indian languages we
use datasets provided by (Akhtar et al., 2017).

5 Results

In this section we present the experimental results
of our method.3 Before discussing the results we
explain how different parameters are chosen. We
do 10 iterations of retrofitting process for all our
experiments because 10 iterations are enough for
convergence (Faruqui et al., 2015) and also using
the same value for all experiments avoids over-
fitting. The value of filter parameter is set as 2

3The implementation of our method is available at
https://github.com/prakhar987/InjectingBilingual

because we believe the embeddings that we use are
well trained and low in noise. This value can be
increased further if word embeddings being used
are very noisy but in most cases a value of 2 is
enough. η value, as explained in previous sections
is set such that the translated resource obtained is
of sufficient length. If more lexicons in translated
resource are required, relax η and vice-versa.

5.1 European Languages
Table 3 shows the result of retrofitting translation
invariant bilingual embeddings of four European
languages for similarity using English Paraphrase
Database. For each language we set η as 0.70 and
filter as 2. The embeddings are evaluated specif-
ically on datasets measuring similarity. All em-
beddings are 40 dimensional. To show that our
method is effective, the embeddings are first fitted
with only half of the database followed by fitting
with full length database. Table 3 also contains in-
formation about the size of vocabulary and trans-
lated resource. One can compare the size of trans-
lated resource that we get using our method to the
dictionary based approach.

Table 4 shows the results of specializing word
embeddings for relatedness using the USF Asso-
ciation Norms and evaluation on WS353 related-
ness task. We test only with German and Italian as
only these languages had datasets to test for relat-
edness.

Language Original Fitted
German 0.461 0.520
Italian 0.460 0.523

Table 4: Specializing for relatedness
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We also experiment with embeddings of large
dimensions (300) and large vocabulary size
(200,000) for English and Italian bilingual embed-
dings obtained by method described by (Artetxe
et al., 2016). Table 5 shows the improvements at-
tained for similarity task for Italian with 64,434
words in the translated resource, η = 0.35 and
filter = 2 (notice η is much smaller since we
want translated resource size to be comparable to
size of vocabulary).

Task Original Fitted
WS353 0.648 0.680
SimLex999 0.371 0.405

Table 5: Improving large embeddings

5.2 Indian Languages

To demonstrate the utility of our method, we ex-
periment with Indian languages, taking Hindi as
the source language (which has Hindi WordNet).
For target language, we take one language (Urdu)
which is very similar to Hindi (belongs to same
family) and one language (Telugu) which is very
different from Hindi (descendants from same fam-
ily). The vocabulary size of Urdu and Telugu were
129,863 and 174,008 respectively. The results are
shown in Table 6. Here again we fit with half
length followed by full length of Hindi WordNet.
As expected, we get much higher gains for Urdu
compared to Telugu.4

Language Original Half
Fitted

Full
Fitted

Telugu 0.427 0.436 0.440
Urdu 0.541 0.589 0.612

Table 6: Retrofitting Indian languages

6 Conclusion

In this work we introduced a method to improve
word embeddings of a language using resources
from another similar language. We accomplished
this by translating the resource using bilingual
embeddings and modifying retrofitting while han-
dling noise. Using our method, we also created
new benchmark on Urdu word similarity dataset.

4enriched embeddings and evaluation scripts can be
downloaded from https://goo.gl/tN6p3w
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