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Abstract

Mobile devices use language models to sug-
gest words and phrases for use in text en-
try. Traditional language models are based
on contextual word frequency in a static
corpus of text. However, certain types of
phrases, when offered to writers as sugges-
tions, may be systematically chosen more
often than their frequency would predict.
In this paper, we propose the task of gen-
erating suggestions that writers accept, a
related but distinct task to making accurate
predictions. Although this task is funda-
mentally interactive, we propose a counter-
factual setting that permits offline training
and evaluation. We find that even a simple
language model can capture text character-
istics that improve acceptability.

1 Introduction

Intelligent systems help us write by proactively
suggesting words or phrases while we type. These
systems often build on a language model that picks
most likely phrases based on previous words in con-
text, in an attempt to increase entry speed and ac-
curacy. However, recent work (Arnold et al., 2016)
has shown that writers appreciate suggestions that
have creative wording, and can find phrases sug-
gested based on frequency alone to be boring. For
example, at the beginning of a restaurant review,
“I love this place” is a reasonable prediction, but a
review writer might prefer a suggestion of a much
less likely phrase such as “This was truly a wonder-
ful experience”—they may simply not have thought
of this more enthusiastic phrase. Figure 1 shows
another example.

We propose a new task for NLP research: gener-
ate suggestions for writers. Doing well at this task
requires innovation in language generation but also

Figure 1: We adapt a language model to offer sug-
gestions during text composition. In above exam-
ple, even though the middle suggestion is predicted
to be about 1,000 times more likely than the one
on the right, a user prefers the right one.

interaction with people: suggestions must be eval-
uated by presenting them to actual writers. Since
writing is a highly contextual creative process, tra-
ditional batch methods for training and evaluat-
ing human-facing systems are insufficient: ask-
ing someone whether they think something would
make a good suggestion in a given context is very
different from presenting them with a suggestion
in a natural writing context and observing their re-
sponse. But if evaluating every proposed parameter
adjustment required interactive feedback from writ-
ers, research progress would be slow and limited
to those with resources to run large-scale writing
experiments.

In this paper we propose a hybrid approach: we
maintain a natural human-centered objective, but
introduce a proxy task that provides an unbiased
estimate of expected performance on human evalua-
tions. Our approach involves developing a stochas-
tic baseline system (which we call the reference
policy), logging data from how writers interact
with it, then estimating the performance of candi-
date policies by comparing how they would behave
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with how the reference policy did behave in the
contexts logged. As long as the behavior of the
candidate policy is not too different from that of
the reference policy (in a sense that we formalize),
this approach replaces complex human-in-the-loop
evaluation with a simple convex optimization prob-
lem.

This paper demonstrates our approach: we col-
lected data of how humans use suggestions made by
a reference policy while writing reviews of a well-
known restaurant. We then used logged interaction
data to optimize a simple discriminative language
model, and find that even this simple model gen-
erates better suggestions than a baseline trained
without interaction data. We also ran simulations
to validate the estimation approach under a known
model of human behavior.

Our contributions are summarized below:
• We present a new NLP task of phrase sugges-

tion for writing.1

• We show how to use counterfactual learning
for goal-directed training of language models
from interaction data.

• We show that a simple discriminative lan-
guage model can be trained with offline in-
teraction data to generate better suggestions
in unseen contexts.

2 Related Work

Language models have a long history and play an
important role in many NLP applications (Sordoni
et al., 2015; Rambow et al., 2001; Mani, 2001;
Johnson et al., 2016). However, these models do
not model human preferences from interactions.
Existing deployed keyboards use n-gram language
models (Quinn and Zhai, 2016; Kneser and Ney,
1995), or sometimes neural language models (Kim
et al., 2016), trained to predict the next word given
recent context. Recent advances in language model-
ing have increased the accuracy of these predictions
by using additional context (Mikolov and Zweig,
2012). But as argued in Arnold et al. (2016), these
increases in accuracy do not necessarily translate
into better suggestions.

The difference between suggestion and predic-
tion is more pronounced when showing phrases
rather than just words. Prior work has extended
predictive language modeling to phrase prediction
(Nandi and Jagadish, 2007) and sentence comple-

1Code and data are available at https://github.
com/kcarnold/counterfactual-lm.

tion (Bickel et al., 2005), but do not directly model
human preferences. Google’s “Smart Reply” email
response suggestion system (Kannan et al., 2016)
avoids showing a likely predicted response if it
is too similar to one of the options already pre-
sented, but the approach is heuristic, based on a
priori similarity. Search engine query completion
also generates phrases that can function as sugges-
tions, but is typically trained to predict what query
is made (e.g., Jiang et al. (2014)).

3 Counterfactual Learning for
Generating Suggestions

We consider the task of generating good words
and phrases to present to writers. We choose a
pragmatic quality measure: a suggestion system is
good if it generates suggestions that writers accept.
Let h denote a suggestion system, characterized
by h(y|x), the probability that h will suggest the
word or phrase y when in context x (e.g., words
typed so far).2 We consider deploying h in an inter-
active interface such as Figure 1, which suggests
phrases using a familiar predictive typing interface.
Let � denote a reward that a system receives from
that interaction; in our case, the number of words
accepted.3 We define the overall quality of a sug-
gestion system by its expected reward E[�] over all
contexts.

Counterfactual learning allows us to evaluate
and ultimately learn models that differ from those
that were deployed to collect the data, so we can
deploy a single model and improve it based on the
data collected (Swaminathan and Joachims, 2015).
Intuitively, if we deploy a model h0 and observe
what actions it takes and what feedback it gets, we
could improve the model by making it more likely
to suggest the phrases that got good feedback.

Suppose we deploy a reference model4 h0 and
log a dataset

D = {(x1, y1, �1, p1), . . . , (xn, yn, �n, pn)}

of contexts (words typed so far), actions (phrases
suggested), rewards, and propensities respectively,
where pi ⌘ h0(yi|xi). Now consider deploying an
alternative model h✓ (we will show an example as

2Our notation follows Swaminathan and Joachims (2015)
but uses “reward” rather than “loss.” Since h(y|x) has the
form of a contextual language model, we will refer to it as a
“model.”

3Our setting admits alternative rewards, such as the speed
that a sentence was written, or an annotator’s rating of quality.

4Some other literature calls h0 a logging policy.
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Eq. (1) below). We can obtain an unbiased estimate
of the reward that h✓ would incur using importance
sampling:

R̂(h✓) =
1
n

nX
i=1

�ih✓(yi|xi)/pi.

However, the variance of this estimate can
be unbounded because the importance weights
h✓(yi|xi)/pi can be arbitrarily large for small
pi. Like Ionides (2008), we clip the importance
weights to a maximum M :

R̂M (h) =
1
n

Xn

i=1
�i min {M, h⇥(yi|xi)/pi} .

The improved model can be learned by optimizing

ĥ✓ = argmaxh R̂M (h).

This optimization problem is convex and differen-
tiable; we solve it with BFGS. 5

4 Demonstration Using Discriminative
Language Modeling

We now demonstrate how counterfactual learning
can be used to evaluate and optimize the acceptabil-
ity of suggestions made by a language model. We
start with a traditional predictive language model
h0 of any form, trained by maximum likelihood
on a given corpus.6 This model can be used for
generation: sampling from the model yields words
or phrases that match the frequency statistics of
the corpus. However, rather than offering repre-
sentative samples from h0, most deployed systems
instead sample from p(wi) / h0(wi)1/⌧ , where ⌧
is a “temperature” parameter; ⌧ = 1 corresponds
to sampling based on p0 (soft-max), while ⌧ ! 0
corresponds to greedy maximum likelihood gener-
ation (hard-max), which many deployed keyboards
use (Quinn and Zhai, 2016). The effect is to skew
the sampling distribution towards more probable
words. This choice is based on a heuristic assump-
tion that writers desire more probable suggestions;
what if writers instead find common phrases to be
overly cliché and favor more descriptive phrases?
To capture these potential effects, we add features
that can emphasize various characteristics of the

5We use the BFGS implementation in SciPy.
6The model may take any form, but n-gram (Heafield et al.,

2013) and neural language models (e.g., (Kim et al., 2016))
are common, and it may be unconditional or conditioned on
some source features such as application, document, or topic
context.

LM weight = 1, all other weights zero:
i didn’t see a sign for; i am a huge sucker for
LM weight = 1, long-word bonus = 1.0:
another restaurant especially during sporting events

LM weight = 1, POS adjective bonus = 3.0:

great local bar and traditional southern

Table 1: Example phrases generated by the log-
linear language model under various parameters.
The context is the beginning-of-review token; all
text is lowercased. Some phrases are not fully gram-
matical, but writers can accept a prefix.

generated text, then use counterfactual learning to
assign weights to those features that result in sug-
gestions that writers prefer.

We consider locally-normalized log-linear lan-
guage models of the form

h✓(y|x) =
|y|Y
i=1

exp ✓ · f(wi|c, w[:i�1])P
w0 exp ✓ · f(w0|c, w[:i�1])

, (1)

where y is a phrase and f(wi|x, w[:i�1]) is a fea-
ture vector for a candidate word wi given its context
x. (w[:i�1] is a shorthand for {w1, w2, . . . wi�1}.)
Models of this form are commonly used in se-
quence labeling tasks, where they are called Max-
Entropy Markov Models (McCallum et al., 2000).
Our approach generalizes to other models such as
conditional random fields (Lafferty et al., 2001).

The feature vector can include a variety of fea-
tures. By changing feature weights, we obtain lan-
guage models with different characteristics. To il-
lustrate, we describe a model with three features be-
low. The first feature (LM) is the log likelihood un-
der a base 5-gram language model p0(wi|c, w[:i�1])
trained on the Yelp Dataset7 with Kneser-Ney
smoothing (Heafield et al., 2013). The second and
third features “bonus” two characteristics of wi:
long-word is a binary indicator of long word
length (we arbitrarily choose � 6 letters), and POS
is a one-hot encoding of its most common POS tag.
Table 1 shows examples of phrases generated with
different feature weights.

Note that if we set the weight vector to zero ex-
cept for a weight of 1/⌧ on LM, the model reduces
to sampling from the base language model with
“temperature” ⌧ . The fitted model weights of the
log-linear model in our experiments is shown in
supplementary material.

7https://www.yelp.com/dataset_
challenge; we used only restaurant reviews
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Reference model h0. In counterfactual estima-
tion, we deploy one reference model h0 to learn
another ĥ—but weight truncation will prevent ĥ
from deviating too far from h0. So h0 must of-
fer a broad range of types of suggestions, but they
must be of sufficiently quality that some are ulti-
mately chosen. To balance these concerns, we use
temperature sampling with a temperature ⌧ = 0.5):

p0(wi|c, w[:i�1])1/⌧P
w p0(w|c, w[:i�1])1/⌧

.

We use our reference model h0 to generate 6-word
suggestions one word at a time, so pi is the product
of the conditional probabilities of each word.

4.1 Simulation Experiment

We present an illustrative model of suggestion ac-
ceptance behavior, and simulate acceptance behav-
ior under that model to validate our methodology.
Our method successfully learns a suggestion model
fitting writer preference.

Desirability Model. We model the behavior of
a writer using the interface in Fig. 1, which dis-
plays 3 suggestions at a time. At each timestep i
they can choose to accept one of the 3 suggestions
{si

j}3
j=1, or reject the suggestions by tapping a key.

Let {pi
j}3

j=1 denote the likelihood of suggestion si
j

under a predictive model, and let pi
; = 1�P3

j=1 pi
j

denote the probability of any other word. Let ai
j de-

note the writer’s probability of choosing the corre-
sponding suggestion, and ai

j denote the probability
of rejecting the suggestions offered. If the writer
decided exactly what to write before interacting
with the system and used suggestions for optimal
efficiency, then ai

j would equal pi
j . But suppose the

writer finds certain suggestions desirable. Let Di
j

give the desirability of a suggestion, e.g., Di
j could

be the number of long words in suggestion si
j . We

model their behavior by adding the desirabilities to
the log probabilities of each suggestion:

a
(i)
j = p

(i)
j exp(D(i)

j )/Z(i), a
(i)
; = p

(i)
; /Z(i)

where Z(i) = 1�P
j p

(i)
j (1�exp(D(i)

j )). The net
effect is to move probability mass from the “reject”
action ai

; to suggestions that are close enough to
what the writer wanted to say but desirable.

Experiment Settings and Results. We sample
10% of the reviews in the Yelp Dataset, hold them

out from training h0, and split them into an equal-
sized training set and test set. We randomly sample
suggestion locations from the training set. We cut
off that phrase and pretend to retype it. We gen-
erate three phrases from the reference model h0,
then allow the simulated author to pick one phrase,
subject to their preference as modeled by the de-
sirability model. We learn a customized language
model and then evaluate it on an additional 500
sentences from the test set.

For an illustrative example, we set the desirabil-
ity D to the number of long words (� 6 characters)
in the suggestion, multiplied by 10. Figure 3 shows
that counterfactual learning quickly finds model pa-
rameters that make suggestions that are more likely
to be accepted, and the counterfactual estimates
are not only useful for learning but also correlate
well with the actual improvement. In fact, since
weight truncation (controlled by M ) acts as regu-
larization, the counterfactual estimate consistently
underestimates the actual reward.

4.2 Experiments with Human Writers

We recruited 74 workers through MTurk to write re-
views of Chipotle Mexican Grill using the interface
in Fig 1 from Arnold et al. (2016). For the sake of
simplicity, we assumed that all human writers have
the same preference. Based on pilot experiments,
Chipotle was chosen as a restaurant that many
crowd workers had dined at. User feedback was
largely positive, and users generally understood
the suggestions’ intent. The users’ engagement
with the suggestions varied greatly—some loved
the suggestions and their entire review consisted of
nearly only words entered with suggestions while
others used very few suggestions. Several users
reported that the suggestions helped them select
words to write down an idea or also gave them ideas
of what to write. We did not systematically enforce
quality, but informally we find that most reviews
written were grammatical and sensible, which indi-
cates that participants evaluated suggestions before
taking them. The dataset contains 74 restaurant
reviews typed with phrase suggestions. The mean
word count is 69.3, std=25.70. In total, this data
comprises 5125 words, along with almost 30k sug-
gestions made (including mid-word).

Estimated Generation Performance. We learn
an improved suggestion model by the estimated ex-
pected reward (R̂M ). We fix M = 10 and evaluate
the performance of the learned parameters on held-
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Figure 2: Example reviews. A colored background indicates that the word was inserted by accepting a
suggestion. Consecutive words with the same color were inserted as part of a phrase.

Figure 3: We simulated learning a model based
on the behavior of a writer who prefers long words,
then presented suggestions from that learned model
to the simulated writer. The model learned to make
desirable predictions by optimizing the counterfac-
tual estimated reward. Regularization causes that
estimate to be conservative; the reward actually
achieved by the model exceeded the estimate.

out data using 5-fold cross-validation. Figure 4
shows that while the estimated performance of the
new model does vary with the M used when esti-
mating the expected reward, the relationships are
consistent: the fitted model consistently receives
the highest expected reward, followed by an ab-
lated model that can only adjust the temperature
parameter ⌧ , and both outperform the reference
model (with ⌧ = 1). The fitted model weights sug-
gest that the workers seemed to prefer long words
and pronouns, and eschewed punctuation.

5 Discussion

Our model assumed all writers have the same pref-
erences. Modeling variations between writers, such
as in style or vocabulary, could improve perfor-
mance, as has been done in other domains (e.g.,
Lee et al. (2017)). Each review in our dataset was
written by a different writer, so our dataset could be

Figure 4: The customized model consistently im-
proves expected reward over baselines (reference
LM, and the best “temperature” reweighting LM) in
held-out data. Although the result is an estimated
using weight truncation at M , the improvement
holds for all reasonable M .

used to evaluate online personalization approaches.
Our task of crowdsourced reviews of a single

restaurant may not be representative of other tasks
or populations of users. However, the predictive
language model is a replaceable component, and a
stronger model that incorporates more context (e.g.,
Sordoni et al. (2015)) could improve our baselines
and extend our approach to other domains.

Future work can improve on the simple discrimi-
native language model presented here to increase
grammaticality and relevance, and thus acceptabil-
ity, of the suggestions that the customized language
models generate.
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