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Abstract

This paper proposes a reinforcing method
that refines the output layers of existing Re-
current Neural Network (RNN) language
models. We refer to our proposed method
as Input-to-Output Gate (IOG)1. IOG has
an extremely simple structure, and thus,
can be easily combined with any RNN lan-
guage models. Our experiments on the
Penn Treebank and WikiText-2 datasets
demonstrate that IOG consistently boosts
the performance of several different types
of current topline RNN language models.

1 Introduction

A neural language model is a central technol-
ogy of recently developed neural architectures in
the natural language processing (NLP) field. For
example, neural encoder-decoder models, which
were successfully applied to various natural lan-
guage generation tasks including machine transla-
tion (Sutskever et al., 2014), summarization (Rush
et al., 2015), and dialogue (Wen et al., 2015), can
be interpreted as conditional neural language mod-
els. Moreover, word embedding methods, such as
Skip-gram (Mikolov et al., 2013) and vLBL (Mnih
and Kavukcuoglu, 2013), are also originated from
neural language models that aim to handle much
larger vocabulary and data sizes. Thus, language
modeling is a good benchmark task for investigat-
ing the general frameworks of neural methods in
the NLP field.

In this paper, we address improving the perfor-
mance on the language modeling task. In particular,
we focus on boosting the quality of existing Recur-
rent Neural Network (RNN) language models. We
propose the Input-to-Output Gate (IOG) method,

1Our implementation is publicly available at
https://github.com/nttcslab-nlp/iog.

which incorporates an additional gate function in
the output layer of the selected RNN language
model to refine the output. One notable charac-
teristic of IOG is that it can be easily incorporated
in any RNN language models since it is designed to
be a simple structure. Our experiments on the Penn
Treebank and WikiText-2 datasets demonstrate that
IOG consistently boosts the performance of several
different types of current topline RNN language
models. In addition, IOG achieves comparable
scores to the state-of-the-art on the Penn Treebank
dataset and outperforms the WikiText-2 dataset.

2 RNN Language Model

This section briefly overviews the RNN language
models. Hereafter, we denote a word sequence
with length T , namely, w1, ..., wT asw1:T for short.
Formally, a typical RNN language model computes
the joint probability of word sequence w1:T by the
product of the conditional probabilities of each
timestep t:

p(w1:T ) = p(w1)
T−1∏
t=1

p(wt+1|w1:t). (1)

p(w1) is generally assumed to be 1 in this litera-
ture, that is, p(w1) = 1, and thus, we can ignore
the calculation of this term (See the implementa-
tion of Zaremba et al. (2014)2, for example). To
estimate the conditional probability p(wt+1|w1:t),
we apply RNNs. Let V be the vocabulary size, and
let Pt ∈ RV be the probability distribution of the
vocabulary at timestep t. Moreover, let Dh and De

respectively be the dimensions of the hidden state
and embedding vectors. Then, the RNN language

2https://github.com/wojzaremba/lstm
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Figure 1: Overview of computing probability dis-
tribution.

models predict Pt+1 by the following equation:

Pt+1 = softmax(st), (2)

st = Wht + b, (3)

ht = f(et, ht−1), (4)

et = Ext, (5)

where W ∈ RV×Dh is a matrix, b ∈ RV is a bias
term, E ∈ RDe×V is a word embedding matrix,
xt ∈ {0, 1}V is a one-hot vector representing the
word at timestep t, and ht−1 is the hidden state at
previous timestep t − 1. ht at timestep t = 0 is
defined as a zero vector, that is, h0 = 0. Let f(·)
represent an abstract function of an RNN, which
might be the Elman network (Elman, 1990), the
Long Short-Term Memory (LSTM) (Hochreiter
and Schmidhuber, 1997), the Recurrent Highway
Network (RHN) (Zilly et al., 2017), or any other
RNN variants.

3 Input-to-Output Gate

In this section, we describe our proposed method:
Input-to-Output Gate (IOG). As illustrated in Fig-
ure 1, IOG adjusts the output of an RNN language
model by the gate mechanism before computing
the probability of the next word. We expect that
IOG will boost the probability of the word that may
occur. For example, a word followed by a prepo-
sition such as ‘of’ is probably a noun. Therefore,
if the word at timestep t is a preposition, IOG re-
fines the output of a language model to raise the
probabilities of nouns.

Hyper-parameter Selected value
Embedding dimension Dg 300
Dropout rate 50%
Optimization method Adam
Initial learning rate 0.001
Learning rate decay 1/

√
Epoch

Max epoch 5

Table 1: Hyper-parameters in training IOG.

Formally, let xt be a one-hot vector representing
wt, IOG calculates the gate gt by the following
equations:

gt = σ(Wge
′
t + bg), (6)

e′t = Egxt. (7)

Here, Wg ∈ RV×Dg is a matrix, bg ∈ RV is a
bias term, and Eg ∈ RDg×V is a word embedding
matrix3. Then, we compute the probability distri-
bution of the RNN language model by applying the
above gate to the Equation (2) as follows:

Pt+1 = softmax(gt � st), (8)

where� represents the element-wise multiplication
of two vectors.

4 Experiments

4.1 Dataset
We conducted word-level prediction experiments
on the Penn Treebank (PTB) (Marcus et al., 1993)
and WikiText-2 (Merity et al., 2017b) datasets.
The PTB dataset consists of 929k training words,
73k validation words, and 82k test words. The
WikiText-2 dataset consists of 2,088k training
words, 217k validation words, and 245k test words.
Mikolov et al. (2010) and Merity et al. (2017b)
respectively published pre-processed PTB4 and
WikiText-25 datasets. We used these pre-processed
datasets for fair comparisons with previous studies.

4.2 Training Procedure
For the PTB dataset, we prepared a total of 5 RNN
language models as our baseline models. First, we
replicated LSTM with dropout and LSTM with
variational inference based dropout, which we re-
fer to as “LSTM” and “Variational LSTM”, respec-
tively. Following Zaremba et al. (2014) and Gal

3We prepared different embeddings from those used in an
RNN language model.

4http://www.fit.vutbr.cz/ imikolov/rnnlm/
5https://einstein.ai/research/the-wikitext-long-term-

dependency-language-modeling-dataset
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Model Parameters Validation Test
LSTM (medium) (Zaremba et al., 2014) † 20M 86.2 82.7
LSTM (medium, replication of Zaremba et al. (2014)) 20M 87.1 84.0
+ IOG (proposed) 26M 84.1 81.1
LSTM (large) (Zaremba et al., 2014) † 66M 82.2 78.4
LSTM (large, replication of Zaremba et al. (2014)) 66M 82.7 78.6
+ IOG (proposed) 72M 78.5 75.5
Variational LSTM (medium) (Gal and Ghahramani, 2016) † 20M 81.9 ± 0.2 79.7 ± 0.1
Variational LSTM (medium, replication of Gal and Ghahramani (2016)) 20M 82.8 79.1
+ IOG (proposed) 26M 81.2 78.1
Variational LSTM (large) (Gal and Ghahramani, 2016) † 66M 77.9 ± 0.3 75.2 ± 0.2
Variational LSTM (large, replication of Gal and Ghahramani (2016)) 66M 78.1 74.6
+ IOG (proposed) 72M 76.9 74.1
Variational RHN (depth 8) (Zilly et al., 2017) † 32M 71.2 68.5
Variational RHN (depth 8, replication of Zilly et al. (2017)) 32M 72.1 68.9
+ IOG (proposed) 38M 69.2 66.5
Variational RHN (depth 8, replication of Zilly et al. (2017)) + WT 23M 69.2 66.3
+ IOG (proposed) 29M 67.0 64.4
Ensemble of 5 Variational RHNs 160M 66.1 63.1
+ IOG (proposed) 166M 64.7 62.0
Ensemble of 10 Variational RHNs 320M 65.2 62.3
+ IOG (proposed) 326M 64.1 61.4
Neural cache model (Grave et al., 2017) † 21M - 72.1
Pointer Sentinel LSTM (medium) (Merity et al., 2017b) † 21M 72.4 70.9
Variational LSTM (large) + WT + AL (Inan et al., 2016) † 51M 71.1 68.5
Variational RHN (depth 10) + WT (Press and Wolf, 2017) † 24M 68.1 66.0
Neural Architecture Search with base 8 (Zoph and Le, 2017) † 32M - 67.9
Neural Architecture Search with base 8 + WT(Zoph and Le, 2017) † 25M - 64.0
Neural Architecture Search with base 8 + WT (Zoph and Le, 2017) † 54M - 62.4
AWD LSTM + WT (Merity et al., 2017a) † 24M 60.0 57.3
AWD LSTM + WT (result by code of Merity et al. (2017a)6) 24M 58.6 56.7
+ IOG (proposed) 30M 58.5 56.7
AWD LSTM + WT + cache (size = 2000) (Merity et al., 2017a) † 24M 53.9 52.8
AWD LSTM + WT + cache (size = 500) 24M 53.4 53.0
+ IOG (proposed) 30M 53.3 53.0

Table 2: Comparison between baseline models and the proposed method (represented as “+ IOG”) on
the Penn Treebank (PTB) dataset. † denotes results published in previous studies. The method with WT
shared word embeddings (E in the Equation (5)) with the weight matrix of the final layer (W in the
Equation (3)). AL denotes that the method used a previously proposed augmented loss function (Inan
et al., 2016).

Model Parameters Validation Test
LSTM (medium, replication of Zaremba et al. (2014)) 50M 102.2 96.2
+ IOG (proposed) 70M 99.2 93.8
Variational LSTM (medium, replication of Gal and Ghahramani (2016)) 50M 97.2 91.8
+ IOG (proposed) 70M 95.9 91.0
Variational LSTM (medium) + cache (size = 2000) 50M 69.6 66.1
+ IOG (proposed) 70M 69.3 65.9
Pointer Sentinel LSTM (Merity et al., 2017b) † 51M 7 84.8 80.8
Neural cache model (size = 100) (Grave et al., 2017) † 42M - 81.6
Neural cache model (size = 2000) (Grave et al., 2017) † 42M - 68.9
AWD LSTM + WT (Merity et al., 2017a) † 33M 68.6 65.8
AWD LSTM + WT (result by code of Merity et al. (2017a)) 33M 68.6 65.8
+ IOG (proposed) 53M 68.6 65.9
AWD LSTM + WT + cache (size = 3785) (Merity et al., 2017a) † 33M 53.8 52.0
AWD LSTM + WT + cache (size = 3785) 33M 53.5 51.7
+ IOG (proposed) 53M 53.6 51.7

Table 3: Comparison between baseline models and the proposed method (represented as “+ IOG”) on the
WikiText-2 dataset. † denotes results published in previous studies.
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and Ghahramani (2016), we prepared the medium
setting (2-layer LSTM with 650 dimensions for
each layer), and the large setting (2-layer LSTM
with 1500 dimensions for each layer) for each
LSTM. We also replicated “Variational RHN” with
a depth of 8 described in Zilly et al. (2017). For
the WikiText-2 dataset, we prepared the medium
setting standard and variational LSTMs as our base-
lines, which are identical as those used in Merity
et al. (2017b).

After reproducing the baselines, we incorporated
IOG with those models. Table 1 summarizes the
hyper-parameters used for training the IOG. During
training IOG, we fixed the parameters of the RNN
language models to avoid over-fitting.

4.3 Results

We show the perplexities of the baselines and those
combined with IOG for the PTB in Table 2, and
for the WikiText-2 in Table 3. These tables, which
contain both the scores reported in the previous
studies and those obtained by our reproduced mod-
els, indicate that IOG reduced the perplexity. In
other words, IOG boosted the performance of the
baseline models. We emphasize that IOG is not
restricted to a neural architecture of a language
model because it improved the RHN and LSTM
performances.

In addition to the comparison with the base-
lines, Table 2 and Table 3 contain the scores pub-
lished in previous studies. Merity et al. (2017b)
and Grave et al. (2017) proposed similar methods.
Their methods, which are called “cache mecha-
nism” (or ‘pointer’), keep multiple hidden states
at past timesteps to select words from previous se-
quences. Inan et al. (2016) and Press and Wolf
(2017) introduced a technique that shares word em-
beddings with the weight matrix of the final layer
(represented as ‘WT’ in Table 2). Inan et al. (2016)
also proposed using word embeddings to augment
loss function (represented as ‘AL’ in Table 2). Zoph
and Le (2017) adopted RNNs and reinforcement
learning to automatically construct a novel RNN
architecture. We expect that IOG will improve
these models since it can be combined with any
RNN language models. In fact, Table 2 and Table 3

6In contrast to other comparisons, we used
the following implementation by the authors:
https://github.com/salesforce/awd-lstm-lm

7The number of parameters is different from the one de-
scribed in Merity et al. (2017b). We guess that they do not
consider the increase of the vocabulary size.

demonstrate that IOG enhanced the performance
even when the RNN language model was combined
with ‘WT’ or the cache mechanism.

Table 2 also shows the scores in the ensemble set-
tings. Model ensemble techniques are widely used
for further improving the performance of neural
networks. In this experiment, we employed a sim-
ple ensemble technique: using the average of the
output probability distributions from each model as
output. We computed the probability distribution
Pt+1 on the ensemble of the M models as follows:

Pt+1 =
1
M

M∑
m=1

mPt+1, (9)

where mPt+1 represents the probability distribu-
tion predicted by the m-th model. In the ensemble
setting, we applied only one IOG to the multiple
models. In other words, we used the same IOG
for computing the probability distributions of each
language model, namely, computing the Equation
(8). Table 2 describes that 5 and 10 model ensem-
ble of Variational RHNs outperformed the single
model by more than 5 in perplexity. Table 2 shows
that IOG reduced the perplexity of the ensemble
models. Remarkably, even though the 10 Varia-
tional RHN ensemble achieved the state-of-the-art
performance on the PTB dataset, IOG improved
the performance by about 1 in perplexity8.

In addition, as additional experiments, we incor-
porated IOG with the latest method, which was
proposed after the submission deadline of IJCNLP
2017. Merity et al. (2017a) introduced various
regularization and optimization techniques such
as DropConnect (Wan et al., 2013) and averaged
stochastic gradient descent (Polyak and Juditsky,
1992) to the LSTM language model. They called
their approach AWD LSTM, which is an abbrevia-
tion of averaged stochastic gradient descent weight-
dropped LSTM. Table 2 and Table 3 indicate the
results on the PTB and the WikiText-2 respectively.
These tables show that IOG was not effective to
AWD LSTM. Perhaps, the reason is that the per-
plexity of AWD LSTM is close to the best per-
formance of the simple LSTM architecture. We
also note that IOG did not have any harmful effect
on the language models because it maintained the
performances of AWD LSTM with ‘WT’ and the

8This result was the state-of-the-art score at the submission
deadline of IJCNLP 2017, i.e., July 7, 2017, but Merity et al.
(2017a) surpassed it on Aug 7, 2017. We mention the effect
of IOG on their method in the following paragraph.
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Model Diff Test
Variational RHN (replicate) - 68.9
Variational RHN + IOG (proposed) - 66.5
Variational RHN + IOG with hidden +0.8M 75.6
Variational RHN + LSTM gate +0.7M 68.1

Table 4: Comparison among architectures for com-
puting the output gate on the PTB dataset. The
column ‘Diff’ shows increase of parameters from
IOG (proposed).

cache mechanism. Moreover, incorporating IOG is
much easier than exploring the best regularization
and optimization methods for each RNN language
model. Therefore, to improve the performance, we
recommend combining IOG before searching for
the best practice.

4.4 Discussion

Although IOG consists only of word embeddings
and one weight matrix, the experimental results
were surprisingly good. One might think that more
sophisticated architectures can provide further im-
provements. To investigate this question, we exam-
ined two additional architectures to compute the
output gate gt in the Equation (6).

The first one substituted the calculation of the
gate function gt by the following g′t:

g′t = σ(W ′g[ht, e
′
t] + bg), (10)

where W ′g ∈ RV×(Dh+Dg), and [ht, e
′
t] represents

the concatenation of the hidden state ht of RHN
and embeddings e′t used in IOG. We refer to this
architecture as “+ IOG with hidden”.

The second one similarly substituted gt by the
following g′′t :

g′′t = σ(Wgh
′
t + bg), (11)

h′t = f ′(e′t, h
′
t−1), (12)

where f ′(·) is the 1-layer LSTM in our experiments.
We set the dimension of the LSTM hidden state
to 300, that is, Dg = 300, and the other hyper-
parameters remained as described in Section 4.2.
We refer to the second one as “+ LSTM gate”.

Table 4 shows the results of the above two archi-
tectures on the PTB dataset. IOG clearly outper-
formed the other more sophisticated architectures.
This fact suggests that (1) incorporating additional
architectures does not always improve the perfor-
mance, and (2) not always become better even if it
is a sophisticated architecture. We need to carefully

Input word Top 5 weighted words
of security, columbia, steel, irs, thrift
in columbia, ford, order, labor, east
go after, through, back, on, ahead
attention was, than, 〈eos〉, from, to
whether to, she, estimates, i, ual

Table 5: Top 5 weighted words for each input word
on the PTB experiment.

design an architecture that can provide complemen-
tary (or orthogonal) information to the baseline
RNNs.

In addition, to investigate the mechanism of IOG,
we selected particular words, and listed the top 5
weighted words given each selected word as in-
put in Table 59. IOG gave high weights to nouns
when the input word was a preposition: ‘of’ and
‘in’. Moreover, IOG encouraged outputting phrasal
verbs such as “go after”. These observations gener-
ally match human intuition.

5 Conclusion

We proposed Input-to-Output Gate (IOG), which
refines the output of an RNN language model by the
gate mechanism. IOG can be incorporated in any
RNN language models due to its simple structure.
In fact, our experimental results demonstrated that
IOG improved the performance of several different
settings of RNN language models. Furthermore,
the experimental results indicate that IOG can be
used with other techniques such as ensemble.
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