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Abstract

The sequence-to-sequence (Seq2Seq)
model has been successfully applied to
machine translation (MT). Recently, MT
performances were improved by incorpo-
rating supervised attention into the model.
In this paper, we introduce supervised
attention to constituency parsing that can
be regarded as another translation task.
Evaluation results on the PTB corpus
showed that the bracketing F-measure was
improved by supervised attention.

1 Introduction

The sequence-to-sequence (Seq2Seq) model has
been successfully used in natural language genera-
tion tasks such as machine translation (MT) (Bah-
danau et al., 2014) and text summarization (Rush
et al., 2015). In the Seq2Seq model, attention,
which encodes an input sentence by generating an
alignment between output and input words, plays
an important role. Without the attention mecha-
nism, the performance of the Seq2Seq model de-
grades significantly (Bahdanau et al., 2014). To
improve the alignment quality, Mi et al. (2016),
Liu et al. (2016), and Chen et al. (2016) proposed
a method that learns attention with the given align-
ments in a supervised manner, which is called su-
pervised attention. By utilizing supervised atten-
tion, the translation quality of MT is improved.

The Seq2Seq model can also be applied to other
NLP tasks. We can regard parsing as a transla-
tion task from a sentence to an S-expression, and
Vinyals et al. (2015) proposed a constituent pars-
ing method based on the Seq2Seq model. Their
method achieved the state-of-the-art performance.
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Figure 1: S-expression format for Vinyals et al.
(2015)’s Seq2seq constituency parser. The
Seq2seq model employs “<s> (S (NP XX XX )NP
(VP XX (NP XX XX )NP )VP )S </s>” as output
tokens. <s> and </s> are start and end of sen-
tence symbols, respectively.

In their method, based on the alignment be-
tween a nonterminal and input words, the attention
mechanism has also an important role. However,
since the attention is learned in an unsupervised
manner, the alignment quality might not be opti-
mal. If we can raise the quality of the alignments,
the parsing performance will be improved. Un-
like MT, however, the definition of a gold standard
alignment is not clear for the parsing tasks.

In this paper, we define several linguistically-
motivated annotations between surface words and
nonterminals as “gold standard alignments” to en-
hance the attention mechanism of the constituency
parser (Vinyals et al., 2015) by supervised atten-
tion. The PTB corpus results showed that our
method outperformed Vinyals et al. (2015) by over
1 point in the bracketing F-measure.
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Figure 2: Network structure of our sequence-to-sequence model.

2 Sequence-to-Sequence based
Constituency Parser on Supervised
Attention Framework

The Seq2Seq constituency parser (Vinyals
et al., 2015) predicts nonterminal la-
bels y = (y1, ..., ym), for input words
x = (x1, ..., xn), where m and n are respectively
the lengths of the word and the label sequences.
As shown in Fig. 1, we use normalized labels
(Vinyals et al., 2015) in our Seq2Seq model,
which consists of encoder and decoder parts. Its
overall structure is shown in Fig. 2.

The encoder part employs a 3-layer stacked bi-
directional Long Short-Term Memory (LSTM) to
encode input sentence x into a sequence of hidden
states h = (h1, ..., hn). Each hi is a concatenation
of forward hidden layer

−→
h i and backward hidden

layer
←−
h i.

←−
h 1 is inherited by the decoder as an

initial state.
The decoder part employs a 3-layer stacked for-

ward LSTM to encode previously predicted label
yt−1 into hidden state st.

For each time t, with a 2-layer feed-forward
neural network r, encoder and decoder hidden lay-
ers h and −→s t are used to calculate the attention
weight:

αi
t =

exp(r(hi,
−→s t))∑n

i′=1 exp(r(hi′ ,
−→s t))

.

Using attention weight αi
t and 1-layer feed-

forward neural network u, label probabilities are
calculated as follows:

P (yt | yt−1, ..., y1) =
exp(u(dt)v=yt)∑V
v=1 exp(u(dt)v)

,

dt = [
n∑

i=1

αt
i · hi,

−→s t],

where V is the label size. Note that dt and the
embedding of label yt are concatenated and fed to
the decoder at time t + 1.

In a supervised attention framework, attentions
are learned from the given alignments. We denote
a link on an alignment between yt and xi as ai

t = 1
(ai

t = 0 denotes that yt and xi are not linked.).
Following a previous work (Liu et al., 2016), we
adopt a soft constraint to the objective function:

−
n∑

t=1

logP (yt | yt−1, ..., y0,x)

−λ×
n∑

i=1

m∑
t=1

ai
t × logαi

t,

to jointly learn the attention and output distribu-
tions. All our alignments are represented by one-
to-many links between input words x and nonter-
minals y.

3 Design of our Alignments

In the traditional parsing framework (Hall et al.,
2014; Durrett and Klein, 2015), lexical features
have been proven to be useful in improving pars-
ing performance. Inspired by previous work,
we enhance the attention mechanism utilizing the
linguistically-motivated annotations between sur-
face words and nonterminals by supervised atten-
tion.

In this paper, we define four types of alignments
for supervised attention. The first three methods
use the monolexical properties of heads without
incurring any inferential costs of lexicalized an-
notations. Although the last needs manually con-
structed annotation schemes, it can capture bilexi-
cal relationships along dependency arcs. The fol-
lowings are the details:
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(c) Span Word.
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(d) Lexical Head.

Figure 3: Example of our alignments. The word in [ ] is linked to each output token.

• Left word: In English, the syntactic head of
a verb phrase is typically at the beginning of
the span. Based on this notion, this method
uses the identity of the starting word of a non-
terminal span. Figure 3a shows an alignment
example where an output token is linked to
its leftmost word of the span.

• Right word: On the contrary, the syntactic
head of a simple English noun phrase is of-
ten at the end of the span. The alignment ex-
ample in Fig. 3b is produced by this method,
where an output token is linked to the right-
most word of the span.

• Span word: Here, we unify the above two
methods. All output tokens are linked to their
leftmost word, except the ending bracket to-
kens, which are linked to their rightmost
word. Figure 3c shows an alignment exam-
ple produced by this method.

• Lexical head: Lexicalization (Eisner, 1996;
Collins, 1997), which annotates grammar
nonterminals with their head words, is use-
ful for resolving the syntactic ambiguities in-
volved by such linguistic phenomena as co-

ordination and PP attachment. As shown in
Fig. 3d, this method produces alignments by
linking an output token and its head word1.

4 Experimental Evaluation

4.1 Evaluation Settings
We experimentally evaluated our methods on the
English Penn Treebank corpus (PTB), and split
the data into three parts: The Wall Street Journal
(WSJ) sections 02-21 for training, section 22 for
development and section 23 for testing.

In our models, the dimensions of the input word
embeddings, the fed label embeddings, the hidden
layers, and an attention vector were respectively
set to 150, 30, 200, and 200. The LSTM depth
was set to 3. Label set Lcon had a size of 61. The
input vocabulary size of PTB was set to 42393.
Supervised attention rate λ was set to 1.0. To use
entire words as a vocabulary, we integrated word
dropout (Iyyer et al., 2015) into our models with
smoothing rate 0.8375 (Cross and Huang, 2016).
We used dropout layers (Srivastava et al., 2014) to

1For head annotations, we used ptbconv 3.0 tool (Yamada
and Matsumoto, 2003), which is available from http://
www.jaist.ac.jp/h-yamada/.
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WSJ Section 22 WSJ Section 23
Setting P R F1 AER P R F1 AER

Seq2Seq 88.1 88.0 88.1 – 88.3 87.6 88.0 –
Seq2Seq+random 67.1 66.3 66.7 96.3 66.5 65.5 66.0 96.3
Seq2Seq+first 70.3 69.7 70.0 0.0 69.6 68.7 69.2 0.0
Seq2Seq+last 66.7 66.1 66.4 0.0 66.1 64.8 65.4 0.0

Seq2Seq+head 89.2 88.9 89.1 6.9 89.2 88.1 88.6 6.9
Seq2Seq+left 89.6 89.4 89.5 1.8 89.4 88.7 89.0 1.7
Seq2Seq+right 89.2 88.9 89.0 4.7 89.5 88.6 89.1 4.7
Seq2Seq+span 89.3 89.1 89.2 1.6 89.2 88.4 88.8 1.6

Vinyals et al. (2015) w att† – – 88.7 – – – 88.3 –
Vinyals et al. (2015) w/o att† – – < 70 – – – < 70 –
Seq2Seq+beam 89.0 88.7 88.8 – 89.1 88.3 88.7 –
Seq2Seq+beam+random 71.0 69.9 70.4 96.3 69.4 68.1 68.7 96.3
Seq2Seq+beam+first 73.9 73.0 73.5 0.0 73.2 71.8 72.5 0.0
Seq2Seq+beam+last 70.5 69.6 70.0 0.0 69.7 68.1 68.9 0.0

Seq2Seq+beam+head 89.6 89.2 89.4 6.9 89.6 88.4 89.0 6.9
Seq2Seq+beam+left 89.9 89.6 89.8 1.8 89.8 89.0 89.4 1.7
Seq2Seq+beam+right 89.6 89.2 89.4 4.7 89.7 88.9 89.3 4.7
Seq2Seq+beam+span 89.6 89.4 89.5 1.6 90.0 89.0 89.5 1.6

Seq2Seq+ens(base) 90.5 90.1 90.3 – 90.6 89.6 90.1 –

Seq2Seq+ens(feat) 91.3 90.7 91.0 – 91.5 90.5 91.0 –

Vinyals et al. (2015) w att+ens† – – 90.7 – – – 90.5 –
Seq2Seq+beam+ens(base) 91.4 90.9 91.1 – 91.5 90.5 91.0 –

Seq2Seq+beam+ens(feat) 91.9 91.4 91.7 – 92.1 91.0 91.5 –

Table 1: Results of parsing evaluation: Seq2Seq indicates the Seq2Seq model on a single model with
greedy decoding. +beam shows the beam decoding results. +lex, +left, +right and +span respectively
show the results on our proposed lexical head, left word, right word, and span word alignments. +random,
+first, and +last respectively show the results on the alignment of baselines random, first word, and last
word. +ens(base) shows the ensemble results of five Seq2Seq models without the given alignments.
+ens(feat) shows the ensemble results of a Seq2Seq model without a given alignment and Seq2Seq
models with lexical head, left word, right word and span word alignments. † denotes the scores reported
in the paper.

each LSTM input layer (Vinyals et al., 2015) with
a dropout rate of 0.3.

The stochastic gradient descent (SGD) was used
to train models on 100 epochs. SGD’s learning
rate was set to 1.0 in the first 50 epochs. After the
first 50 epochs, the learning rate was halved after
every 5th epoch. All gradients were averaged in
each mini-batch. The maximum mini-batch size
was set to 16. The mini-batch order was shuffled
at the end of every epoch. The clipping threshold
of the gradient was set to 1.0.

We used greedy and beam searches for the de-
coding. The beam size was set to ten. The de-
coding was performed on both a single model and
five-model ensembles. We used the products of
the output probabilities for the ensemble.

All models were written in C++ on Dynet (Neu-
big et al., 2017).

We compared Seq2Seq models with and with-

out our alignments. To investigate the influence
of the supervised attention method itself, we also
compared our alignments to the following align-
ments:

• Random: Based on uniform distribution,
each output token was randomly linked to at
most one input token.

• First word: All output tokens were linked to
the start of the sentence tokens in the input
sentence.

• Last word: All output tokens were linked to
the end of the sentence tokens in the input
sentence.

We evaluated the compared methods using
bracketing Precision, Recall and F-measure. We
used evalb2 as a parsing evaluation. We also eval-

2http://nlp.cs.nyu.edu/evalb/
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uated the learned attention using alignment error
rate (AER) (Och and Ney, 2003) on their align-
ments. Following a previous work (Luong et al.,
2015), attention evaluation was conducted on gold
output.

4.2 Results

Table 1 shows the results. All our lexical head,
left word, right word and span word alignments
improved bracket F-measure of baseline on ev-
ery setting. From the +random, +first, and +last
results, only supervised attention itself did not
improve the parsing performances. Furthermore,
each AER indicates that the alignments were cor-
rectly learned. These results support our expecta-
tion that our alignments improve the parsing per-
formance with Seq2Seq models.

5 Discussion

All of the baseline alignments random, first word
and last word, largely degraded the parsing per-
formances. random prevented the learning of at-
tention distributions, and first word and last word
fixed the attention distributions. These resemble
disable the attention mechanism. Vinyals et al.
(2015) reported that the bracket F-measure of
Seq2Seq without an attention mechanism is less
than 70. Our evaluation results, which are con-
sistent with their score, and it supports our expec-
tation that the attention mechanism is critical for
Seq2Seq constituency parsing.

Comparing the results of our proposed align-
ments in Table 1, even though the bracket F-
measure of the lexical head is lower than that of
the left word, right word and span word, the lex-
ical head is the most intuitive alignment. Except
for random, the AER of lexical head is the highest
in all the alignments. This means that lexical head
is difficult to learn on attention distribution. The
prediction difficulty may degrade the parsing per-
formances. Our analysis indicates that an align-
ment which can be easily predicted is suitable for
the supervised attention of Seq2Seq constituency
parsing.

6 Conclusion

We proposed methods that use traditional pars-
ing features as alignments for the sequence-to-
sequence based constituency parser in the super-
vised attention framework. In our evaluation, the
proposed methods improved the bracketing scores

on the English Penn Treebank against the baseline
methods. These results emphasize, the effective-
ness of our alignments in parsing performances.
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