
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 1006–1014,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Generating a Training Corpus for OCR Post-Correction Using
Encoder-Decoder Model

Eva D’hondt
LIMSI, CNRS, Univ. Paris-Saclay

F-91405 Orsay
eva.dhondt@gmail.com

Cyril Grouin
LIMSI, CNRS, Univ. Paris-Saclay

F-91405 Orsay
cyril.grouin@limsi.fr

Brigitte Grau
LIMSI, CNRS, ENSIIE, Univ. Paris-Saclay

F-91405 Orsay
bg@limsi.fr

Abstract

In this paper we present a novel ap-
proach to the automatic correction of
OCR-induced orthographic errors in a
given text. While current systems depend
heavily on large training corpora or exter-
nal information, such as domain-specific
lexicons or confidence scores from the
OCR process, our system only requires
a small amount of relatively clean train-
ing data from a representative corpus to
learn a character-based statistical language
model using Bidirectional Long Short-
Term Memory Networks (biLSTMs). We
demonstrate the versatility and adaptabil-
ity of our system on different text corpora
with varying degrees of textual noise, in-
cluding a real-life OCR corpus in the med-
ical domain.

1 Introduction

Recently, Optical Character Recognition (OCR)
technology has improved substantially, which has
allowed for a large-scale digitization of textual
resources such as books, old newspapers, an-
cient hand-written documents, etc. (Romero et al.,
2011). The quality of the subsequent digital cor-
pora can vary substantially, depending on factors
such as quality of the original paper, ink quality,
differences in fonts, etc. The amount of noise in
digital collections can have a severe negative im-
pact on the accuracy of subsequent text mining
processes (e.g., Named Entity Recognition, Infor-
mation Extraction, etc.).

OCR post-correction techniques are used to
improve the text quality of OCR output. Tra-
ditionally, they rely on domain-specific lexi-
cons (de Does and Depuydt, 2013) and character-
based errors statistics obtained from a corrected

training set (Kumar and Lehal, 2016). However,
they have some drawbacks that limit their useful-
ness for specific, low-resource domains. Such re-
sources are expensive to create and for highly spe-
cialized texts (e.g., medical domain) not always
possible to obtain. The recent advances in neu-
ral network models, based on textual context and
needing no external resources, provide new oppor-
tunities for OCR post-correction. Character-level
sequence modeling architectures are especially
suited for this task (Chrupała, 2014; Schmaltz
et al., 2016), as they reduce the complexity at
output time. Moreover, current systems are of-
ten limited to processing texts with a limited de-
gree of OCR corruption, i.e., so-called single-error
word corrections (Kissos and Dershowitz, 2016)
and correction of OCRed corpora that have been
generated by older OCR engines can prove too
challenging. The correct recognition of historical
texts remains an open challenge (Kluzner et al.,
2009). A general-purpose OCR post-correction
tool should be adaptable to the ratio of error that
is present in the OCR output in order to deal with
both types of errors.

In this paper, we propose a novel approach
to OCR post-correction using bidirectional re-
current neural networks for learning a robust
character-based language model that (i) captures
the domain-specific vocabulary of a text and
(ii) which is able to detect and correct noise in
corrupted text in the same time. In order to over-
come the problem of producing manually anno-
tated data, our system requires zero pre-annotated
training material. Rather than using a large cor-
rected training corpus to learn an error model, we
propose a method of generating our own training
material from clean text. This has multiple advan-
tages: it allows us complete control over the learn-
ing process, and we can train on larger and more
diverse corpora.

1006

First, we demonstrate the flexibility of the pro-
posed model by evaluating it on artificially cre-
ated test sets with varying degrees of noise. We
also show how variation inherent in the texts influ-
ences training rates. Second, we explore a more
realistic setting in which very little clean training
data is available to learn a language model. We
test our method on a real-life OCRed corpus of
French medical reports. Our method outperforms
the baseline by 14.3% on domain-specific noisy
data, even when the latter is supplemented with a
domain-specific lexicon.

2 Background

The problem of OCR post-correction has been
studied since the seventies (Kukich, 1992). While
traditional OCR error detection systems focused
on constructing ‘confusion matrices’ of likely
character (pairs) to detect corruptions of existing
words into non-words, recent systems improve ac-
curacy using information on the language context
in which the error appears (Evershed and Fitch,
2014), using bigrams (Kissos and Dershowitz,
2016), large-scale word n-grams and character n-
grams from the web (Bassil and Alwani, 2012)
or associating confusion scores into a Bayesian
model (Tong and Evans, 1996) or a HMM model
(Borovikov et al., 2004) to select the optimal word
candidate. These systems are explicitly or implic-
itly limited to cases in which an erroneous word
appears in an otherwise clean context. For serious
degrees of corruption (e.g., historical texts), the
common approach aims to optimally combine an
ensemble of multiple OCR engines (Nakano et al.,
2004; Lund and Ringger, 2009).

‘Noisy channel paradigm’ aims to learn er-
ror models describing the OCR output genera-
tion from the reference text, and as such com-
bine error and language models. Kolak and Resnik
(2005) used finite state machines on a small set
of training material while Llobet et al. (2010)
combined all OCR process hypotheses for each
recognized character. Such models need a large
amount of training material which is costly and
not always easily available. In response, the Text-
Induced Corpus Clean-up (TICCL) system (Rey-
naert, 2011) was developed to run with no anno-
tated training data. It takes noisy texts and extracts
the high-frequency word variants through statisti-
cal analysis and clusters typographical word vari-
ants within a user-defined Levenshtein distance.

Recently, Neural Network Language Models
have proven to be extremely effective in complex
NLP tasks. For spelling errors correction, sys-
tems either include auto-encoders to detect near-
est neighbor matches of spelling errors with cor-
rect words (Raaijmakers, 2013) or learn edit oper-
ations from labeled data while incorporating fea-
tures induced from unlabelled data via character-
level neural text embeddings (Chrupała, 2014).
Contrary to Azawi (2015) which makes use of
LSTM based on character-aligned strings, our
method does not require annotated training data
(gold standard) to learn the character-based lan-
guage model. Moreover, our method does not cap-
italize on learning character transformation rules
based on frequently occurring errors, as done in
Azawi (2015), but learns a robust character-based
language model.

3 Method

The model we proposed consists of a many-to-
many character sequence learning network using
long short term memory (LSTM) nodes.

3.1 Definition

LSTM are a special type of Recurrent Neural Net-
work (RNN), a neural network hierarchy designed
to model times series or other sequences. Stan-
dard RNNs have trouble capturing long-distance
sequential dependencies, as the error signal during
back propagation tends to disperse or blow up over
time, which is known as the problem of vanishing
or exploding gradients (Hochreiter, 1991; Bengio
et al., 1994). This problem is typically addressed
by replacing the standard RNN cell with a long
short-term memory cell, which allows for a con-
stant error flow along the input sequence (Hochre-
iter and Schmidhuber, 1997).

Technically, the LSTM architecture is given by
the following equations,

i(t) = σ(W ix.x(t)) +W ih.h(t−1) + bi)
f (t) = σ(W fx.x(t)) +W fh.h(t−1) + bf)
o(t) = σ(W ox.x(t) +W oh.h(t−1) + bo)
g(t) = tanh(W gx.x(t) +W gh.h(t−1) + bg)
c(t) = f (t) � c(t−1) + i(t) � g(t)

h(t) = tanh(c(t))� o(t)

in which σ is the sigmoid function, i stands for
the input gate (a selection of information coming
from a previous cell state, given the new informa-

1007

tion contained in x); f stands for the forget gate,
which select which parts of the information to for-
get and which to retain; g creates a vector of new
candidate values that are used to update the cell
state; o stands for the output gate which decides
what parts of the cell state should be outputted.

A bidirectional LSTM (biLSTM) is a combina-
tion of two unidirectional LSTM layers, the first of
which encodes the input string from left-to-right,
the second from right-to-left. This ensures that er-
rors that occur at the beginning of the input string
have enough context (on the right-hand side) to be
corrected.

3.2 Encoder-Decoder Model: biLSTM model
We stack two bidirectional LSTM layers on top of
each other: the first hidden level is an encoder that
reads the source character sequence and the other
is a decoder that functions as a language model
and generates the output. Figure 1 shows the lay-
ers in their unrolled forms as they read in the input.

Figure 1: Hierarchy of bidirectional 2-layer many-
to-many sequence learning network; lighter nodes
in the hidden layers refer to disconnected nodes
due to dropout

Architecture We first define a character vocabu-
lary V =

{
v1, v2, ..., v|V |

}
which contains all the

characters that are present in the training corpus.
Each input string of 20 characters is padded on the
right-hand side to a maximum length of 23, which
allows for differences in string length due to inser-
tions in the training phase (see Section 3.3). For an
input string we define a 23-dimensional vector x
in which each element corresponds to the index of
the corresponding character in vocabulary V , thus
preserving the order. The input x is then passed
to an embedding layer that returns the sequence
S =

{
cj |j = x1, x2..., x23

}
where cj is the char-

acter embedding (by a hyperparameter d = 64) for

the characters in the initial string. This sequence is
then passed to the first biLSTM, which combines
two unidirectional LSTM layers that process the
input from the left-to-right and right-to-left hand
side, respectively. Each LSTM layer H consists
of k LSTM memory units, and its output is a ma-
trix H =

{
htεRk | t = 1, 2, ..., 23

}
. We set k

at 512. The output of the individual LSTM layers
is concatenated and given as input for the second
biLSTM layer. The last hidden layer then projects
unto a |V |-dimensional output layer. Finally, we
apply the softmax function to select the character
with the highest probability for a given timestep
and obtain a 23-dimensional vector y with the
characters indices for the corrected string.

We also added two drop-out layers to the hidden
layers, each set at 0.5, since this has been shown
to improve performance (Srivastava et al., 2014).
The model was implemented in Keras, a python
library for deep learning.

3.3 Training strategy

During training, the neural network is fed cor-
rupted input strings and provided the original non-
corrupted string as output labels. In this way,
the network learns the domain-specific character-
based language model that underlies the text in
the training documents, while at the same time
it learns to detect and eliminate noise introduced
by OCR errors. Following the observations that
OCR-induced variation is generally much less sys-
tematic than spelling errors (Reynaert, 2008), we
generate corrupted strings by randomly deleting,
inserting and substituting one or two characters for
a given string (cf. algorithm 3.1).

We used a random number generator to deter-
mine if and which edit operations were selected.
Character substitutions were performed at random
with characters from the character set. Since a
string could be submitted to multiple corrupting
edits, this results in both single-error as well
as multi-error words and environments in the
corrupted string. Since the if-statements are
independent, multiple edits on one string are
possible, which can result in longer consecutive
errors (three or more consecutive characters can
be corrupted for a given string). In our script, the
ratio of noise is set by the user, which corresponds
to a fixed level of corruption in the training data.

1008

Algorithm 3.1: CORRUPTSTRING(str, noiseRatio)

len = len(str)
chars = set of characters in corpus

comment: Randomly delete a character

if rand() < (noiseRatio ∗ len) :

then
{

pos = randInt(len)
str = str[: pos] + str[pos + 1 :]

comment: Randomly insert a character

if rand() < (noiseRatio ∗ len) :

then

pos = randInt(len)
str = str[: pos] + randChoice(chars)

+str[pos :]

comment: Randomly replace 1 or 2 characters

if rand() < (noiseRatio ∗ len) :

then

numChars = randChoice([1, 2])
pos = randInt(len)

do numChars time

str = str[: pos]

+(randChoice(chars))
+str[pos + 1 :]

pos + +

Table 1 shows the generated input strings for a
given string for the different noise ratios we used.
In this table, the second row shows the percentage
of strings with at least one OCR error in the real-
life test set. We split the initial text into windows
of 20 characters with an overlap per 3 characters.
This length was empirically determined on train-
ing experiments w.r.t. accuracy and training speed.

Table 1: Percentage and examples of corrupted
strings w.r.t. the noise ratio on the clean corpus.
Bold highlights generated errors
noise corrupted strings (20 characters length)
ratio strings original: n oven for 15 minute
0.001 5%
0.003 17%
0.005 30%
0.01 48% n o5en for 15 minute
0.02 76%
0.03 92% noven fQr 15 minute#
0.04 99% n oeen for 1% minüte

4 Corpora

In our experiments, we used a few corpora, both
‘clean’ (digital corpora that contain no OCR or
orthographic errors) and ‘real-life’ corpora (that
contain varying degrees of OCR errors). They
were selected according to two criteria: (i) text
genre, either ‘structured text’ or ‘free text’, and

(ii) domain, ‘general domain’ or ‘specialized do-
main’, more particularly the medical domain.

Table 2 gives an overview of the different cor-
pora and their attributes. We give the sizes of the
corpora in number of characters, rather than words
since the varying degrees of OCR errors make the
latter an unreliable metric.

Table 2: Overview of used corpora
text style

domain
size

& language train/test

CURD
structured

general
150K

English 44K

LM
free text

general
2M

French 100K

Handbook
free text

foetopath
1M

French -
medical structured other 1M
reports French medical -
foetopath structured

foetopath
500K

reports French 57K

We generate several artificial test sets for two
clean corpora. Artificially corrupted strings are
created using the same methodology as used for
training. We generated two types of artificial test
sets:

• test sets with a set noise ratio, which contain
both corrupted and uncorrupted strings

• and test sets that contain only corrupted
strings of a set Levenshtein Distance (LD)

4.1 Clean corpora

CURD corpus The Carnegie Mellon University
Recipe Database corpus (Tasse and Smith, 2008)
contains 260 structured cooking recipes in En-
glish: a list of ingredients followed by short de-
scriptive sentences. This corpus closely resembles
the real-life OCRed corpus of medical reports pre-
sented in the next section. Unlike medical reports,
we consider it to be ‘general domain’. We did not
use the semantic annotations in the original CURD
corpus but extracted only the plain text.

LM corpus We used documents from the Le
Monde newspaper from 2000 to 2005 on as train-
ing material, and created test sets on a subset of
articles from 2006.

1009

Handbook on foetopathology We used an elec-
tronic copy of a comprehensive French handbook
of foetopathology (Bouvier et al., 2008) to train
a domain-specific language model of free text for
the foetopathological domain.

Medical reports This set of in-house French
medical reports were written in the same report-
ing style as the real-life OCRed foetopathological
reports presented in Section 4.2. While medical,
they do not treat the foetopathological domain but
rather cancer and gastro-internal illnesses.

4.2 Real-life OCR corpora
The foetopathological reports corpus is a data set
of French patient notes from the domain of foe-
topathology, spanning 22 years. In total, the cor-
pus contains the files from 2476 individual pa-
tients. The files were processed with a custom-
trained commercial OCR engine, and later de-
identified with an in-house de-identification tool
(Grouin and Zweigenbaum, 2013).

Since the model of the OCR engine used to con-
vert the entire corpus was trained on a subset of
documents of more recent years (implying good
paper quality, clear font, etc.), the OCR quality of
the OCRed documents decreases substantially for
the older documents (D’hondt et al., 2016).

All evaluations in this paper were carried out on
an annotated set of 53 files, for which reference
texts have been created manually by one annotator
in two passes.1 We extracted two sets of training
material from the corpus. One set has a reasonable
OCR quality,2 the second set is taken randomly
from the corpus and contains texts with varying
degrees of OCR quality. Both training sets have
the same size.

5 Evaluation

5.1 Evaluation metrics
For evaluation, we use the CER metric (for-
mula 1), as defined in OCR post-correction eval-
uations:

CER =
S +D + I

S +D + C
(1)

where S refers to the number of substituted
characters in the OCR text (w.r.t. the reference

1These reference texts were later verified by a second an-
notator. The role of the second annotator was to check that
the existing annotations were correct and consistent. Ergo the
annotations were not done independently.

2Based on the proportion of out-of-vocabulary words
present in a document for a given lexicon.

texts), D to the number of deleted characters, I
to the number of inserted characters and C to the
number of ‘correct’ characters. We use the CER
metric when comparing to the baseline system (see
Section 6.4), using the ocrevalUAtion3 pack-
age (Carrasco, 2014).

Since our models use overlapping4 windows of
20 characters, a purely character-based metric is
not ideal to evaluate. We want to measure the sys-
tems performance per input, rather than per char-
acter. We therefore introduce two complementary
accuracy-based evaluation metrics, which evaluate
on the level of the character window:

• detection accuracy (detAcc) shows the pro-
portion of correctly detected errors and non-
errors in the evaluated set of 20-character
strings

• correction accuracy (corrAcc) reflects the
ability of the language model to accurately
correct corrupted strings without overgener-
ating and editing non-corrupted strings

These metrics are calculated as follows:

detAcc =
(TP + TN + incorrectEdit)

(TP + TN + FP + FN + incorrectEdit)

corrAcc =
(TP + TN)

(TP + TN + FP + FN + incorrectEdit)

Table 3 illustrates the different elements of the
formulae.

5.2 Baseline model

We compare our system against the only other ap-
proach which requires zero annotated training ma-
terial and no external resources, the TICCL sys-
tem (Reynaert, 2011). As explained in Section 2,
this system is word-based and uses anagram hash-
ing to handle lexical variation in a large, noisy text
collection. The system analyses a corpus to se-
lect high-frequency word variants, and then aims
to map near-neighbours (in terms of edit distance)
to those forms in order to reduce global variation
in the corpus.

3https://github.com/impactcentre/
ocrevalUAtion

4Allowing this overlap is a deliberate choice to maximize
the ability to learn language models over a small corpus.

1010

Table 3: Example of evaluation categories for the
detection accuracy (detAcc) and correction accu-
racy (corrAcc) metrics, given the reference string
‘n oven for 15 minute’

input
string

output
string

True Positive (TP) n o5en
for 15
minute

n oven
for 15
minute

incorrectEdit n o5en
for 15
minute

n oven
for 15
mlnute

True Negative (TN) n oven
for 15
minute

n oven
for 15
minute

False Positive (FP) n oven
for 15
minute

n oven
for 15
mlnute

False Negative (FN) n o5en
for 15
minute

n o5en
for 15
minute

We used the system available for French with
pretrained character confusion models with its de-
fault settings.5 For the foetopathological reports
test corpora, we provided TICCL with the full
available corpora to extract word variants but cal-
culated CER only on the test sets. TICCL per-
forms specific preprocessing to limit the size of its
character vocabulary (all numbers and digits are
mapped unto the character ‘3’).

6 Experiments and Discussion

Since our system does not use annotated data, the
language and error models learned from the train-
ing data are approximations of what will be en-
countered in the test set. In Sections 6.1 and 6.2,
we examine how the error model (the prior prob-
ability of encountering an error in a given input
string) learned during training corresponds to the
(expected) noise ratio in the test set, and how the
text genre and size of the training corpus influence
performance. Section 6.3 presents how Language
Models can be learned when no clean training ma-
terial is available for a given test set. Section 6.4
shows a comparison with the word-based baseline.

5Online TICCL interface for French with default settings:
http://ticclops.clarin.inl.nl/ticclops/

6.1 Adaptability to different degrees of noise

One of the advantages of our approach is its adapt-
ability to different levels of expected noise. It suf-
fices to train the model with a noise ratio that cor-
responds to the noise found in the test set.

The upper subfigure in Figure 2 shows the de-
tection accuracy (full line) and correction accuracy
(dotted line) on a test set with a 0.005 noise ratio
for three different models which were trained in 30
iterations on the CURD training data with 0.003,
0.01 and 0.03 noise ratio, respectively.

(a) 0.005 noise ratio

(b) 0.03 noise ratio

Figure 2: Performance of models trained with dif-
ferent noise ratios on the CURD corpus for the
0.005 noise ratio test (upper) and 0.03 noise ratio
test (lower), in terms of detection accuracy (full
line) and correction accuracy (dotted line)

A 0.005 noise ratio is a fairly easy test set,
with few errors, as is evidenced by the overall
high scores. We do see that the model which was
trained to expect a lot of noise (0.03) underper-
forms compared to its more conservative counter-
parts. For the same models on the 0.03 test set,

1011

however, the more aggressively trained model per-
forms the best. The high detection accuracy scores
in both figures (full lines) show that the models
are correctly identifying errors (i.e., unlikely char-
acter sequences) and have little tendency to ig-
nore errors (FN) or incorrectly edit a correct string
(FP). The difference between the detection accu-
racy (full lines) and correction accuracy (dotted
lines) in Figure 2 shows the increased difficulty for
the language models to make correct edits when
the input strings have multiple corruptions.

Figure 3 examines this more closely. Here, the
training model has been fixed (trained with noise
ratio 0.03) and we examine its performance on test
sets were each corrupted string has the same Lev-
enshtein distances to its reference string. Here as
well, overall detection accuracy is quite high, but
the increasingly lower correction accuracy scores
show the increased difficulties of the language
model to propose correct edits for a given cor-
rupted string. Since the 0.03 model is trained to
expect moderate corruption, it performs best on
corrupted strings with a Levenshtein distance of 2.

Figure 3: Performance of best model (ratio 0.03)
on test sets which contain only corrupted sub-
strings, with a fixed Levenshtein Distance (LD),
in terms of detection accuracy (full line) and cor-
rection accuracy (dotted line)

6.2 Impact of text variability on training

The previous experiments were carried out on the
CURD corpus, a small corpus with relatively fixed
vocabulary and structured text, which makes it
easy to learn a comprehensive model. Figure 4
shows the performance of a corpus with more in-
herent variation, the journalistic LM corpus.

Figure 4: Performance of best-performing models
on the CURD and LM 0.005 test set, in terms of
detection accuracy (full line) and correction accu-
racy (dotted line)

As expected, the language model of a more vari-
able corpus has a slower learning rate and needs
more training data to achieve good performance.
The green lines (lemonde (small)) refer to a subset
of the LM corpus of exactly the same size as the
CURD corpus (150K characters), which is clearly
not enough training material to learn a language
model on free text.

6.3 Adaptation to a real-life corpus

While the previous experiments only used artifi-
cial test sets, a more realistic setting is that in
which an OCRed test set needs to be corrected but
no clean data is available to train the system on.

Table 4 presents the results we achieved on the
real life test set while training our model on dif-
ferent types of text that are either similar to the
test set w.r.t. text genre or domain. We also com-
pared these to the performance of models that
were trained on noisy training data from the same
corpus as the test set. For the foetopathological
reports, we trained models on two test sets of sim-
ilar size, one which contained data with relatively
few OCR errors, and one whose text quality was
mixed.

Overall, we find that the language model of
the structured foetopathological reports is fairly
easy to learn, as evidenced by the high correction
scores. The scores in the first two rows of Table 4
show the impact of noisy training data. While rela-
tively clean training data pose little problem, train-
ing on the mixed set leads to a more corrupted lan-
guage model. Interestingly, we find that training

1012

Table 4: Performance of different models trained
on different training data (with 0.003 noise ratio)
on real-life test set of foetopathological reports

detAcc corrAcc
foet. reports (fairly clean) 0.87 0.82
foet. reports (mixed) 0.86 0.76
medical reports (clean) 0.85 0.79
foet. handbook (clean) 0.87 0.81
LM corpus (clean) 0.60 0.52

on similar corpora, both in text genre (medical re-
ports) and domain (Handbook) leads to almost as
good correction accuracy as training on the orig-
inal corpus. The language model trained on the
LM corpus, whilst having seen the most training
data, has the worst performance since the text in
this corpus is too far removed from foetopatholog-
ical reports, both in domain and text genre.

6.4 Comparison with baseline

To compare against our baseline system, we trans-
formed the output of the two best performing sys-
tems from the experiments in Section 6.3 to a sin-
gle final output string. Where two characters dif-
fered in the overlapping output strings from our
system, we used majority vote to construct the fi-
nal output string.

Table 5 shows the results against the TICCL
baseline system, using the CER metric. TICCL-
lex refers to a setting in which it was provided
with a French, domain-specific lexicon of frequent
terms in the foetopathology domain. We find that
our system significantly outperforms the baseline
on the structured, domain-specific data, by 14.3%.

Table 5: Comparison of baseline system (TICCL)
with best performing systems on the foetopatho-
logical real-life test set

Character Error Rate (CER)
original text 34.3
biLSTM 7.1
TICCL 34
TICCL-lex 21.4

7 Conclusion

In this paper we proposed a novel zero-annotated
data approach to OCR post-correction. We used
biLSTMs to build an encoder-decoder model.

Rather than learning from annotated data, we de-
veloped a method to generate our own training ma-
terial. Our model is trained on clean or moderately
clean data in order to produce a robust character-
based language model.

We have evaluated our method on different text
genres and domains. We found that our method is
especially suited to correct domain-specific, struc-
tured text, even when no training text from the
same corpus is available.

Acknowledgments

This work was partially supported by the French
National Agency for Research under the grant Ac-
cordys6 ANR-12-CORD-0007.

References
Mayce Ibrahim Ali Al Azawi. 2015. Statistical Lan-

guage Modeling for Historical Documents using
Weighted Finite-State Transducers and Long Short-
Term Memory. Ph.D. thesis, University of Kaiser-
slautern.

Youssef Bassil and Mohammad Alwani. 2012. OCR
context-sensitive error correction based on Google
web 1t 5-gram data set. American Journal of Scien-
tific Research.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi.
1994. Learning long-term dependencies with gradi-
ent descent is difficult. IEEE transactions on neural
networks, 5(2):157–166.

Eugene Borovikov, Ilya Zavorin, and Mark Turner.
2004. A filter based post-OCR accuracy boost sys-
tem. In Proc of ACM Work. on Hardcopy document
processing, pages 23–28.

Raymonde Bouvier, Dominique Carles, Marie-
Christine Dauge, Pierre Déchelotte, Anne-Lise
Delézoide, Bernard Foliguet, Dominique Gaillard,
Bernard Gasser, Marie Gonzalès, and Férechté
Encha-Razavi. 2008. Pathologie fœtale et placen-
taire pratique. Sauramps Médical.

Rafael C Carrasco. 2014. An open-source OCR evalu-
ation tool. In Proc of Digital Access to Textual Cul-
tural Heritage, pages 179–184.

Grzegorz Chrupała. 2014. Normalizing tweets with
edit scripts and recurrent neural embeddings. In
Proc of ACL, volume 2, pages 680–686.

Eva D’hondt, Cyril Grouin, and Brigitte Grau. 2016.
Low-resource OCR error detection and correction in
French Clinical Texts. In Proc of LOUHI, pages 61–
68, Lisbon, Portugal.

6Agrégation de Contenus et de COnnaissances pour
Raisonner à partir de cas dans la DYSmorphologie foetale

1013

Jesse de Does and Katrien Depuydt. 2013. Lexicon-
supported OCR of eighteenth century Dutch books:
a case study. In Proc. of SPIE, volume 8658 of Doc-
ument Recognition and Retrieval.

John Evershed and Kent Fitch. 2014. Correcting noisy
OCR: Context beats confusion. In Proc of ICDAR,
pages 45–51.

Cyril Grouin and Pierre Zweigenbaum. 2013. Auto-
matic de-identification of French clinical records:
Comparison of rule-based and machine-learning ap-
proches. In Stud Health Technol Inform, volume
192, pages 476–80, Copenhagen, Denmark.

Sepp Hochreiter. 1991. Untersuchungen zu dynamis-
chen neuronalen Netzen. Ph.D. thesis, Technische
Universität München.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ido Kissos and Nachum Dershowitz. 2016. OCR er-
ror correction using character correction and feature-
based word classification. In Proc of Document
Analysis Systems Work, Santorini, Greece.

Vladimir Kluzner, Asaf Tzadok, Yuval Shimony, Eu-
gene Walach, and Apostolos Antonacopoulos. 2009.
Word-based adaptive OCR for historical books. In
Proc of ICDAR, pages 501–505.

Okan Kolak and Philip Resnik. 2005. OCR post-
processing for low density languages. In Proc of
EMNLP, pages 867–874.

Karen Kukich. 1992. Techniques for automatically
correcting words in text. ACM Computing Surveys
(CSUR), 24(4):377–439.

Atul Kumar and Gurpreet Singh Lehal. 2016. Auto-
matic text correction for Devanagari OCR. Indian
Journal of Science and Technology, 9(45).

Rafael Llobet, Jose-Ramon Cerdan-Navarro, Juan-
Carlos Perez-Cortes, and Joaquim Arlandis. 2010.
OCR post-processing using weighted finite-state
transducers. In Proc of ICPR, pages 2021–2024.

William B Lund and Eric K Ringger. 2009. Improving
optical character recognition through efficient mul-
tiple system alignment. In Proc of Digital libraries,
pages 231–240.

Yasuaki Nakano, Toshihiro Hananoi, Hidetoshi Miyao,
Minoru Maruyama, and Kenichi Maruyama. 2004.
A document analysis system based on text line
matching of multiple OCR outputs. Lecture Notes
in Computer Science, pages 463–471.

Stephan Raaijmakers. 2013. A deep graphical model
for spelling correction. In Proc of Benelux Con-
ference on Artificial Intelligence, Delft, The Nether-
lands.

Martin Reynaert. 2008. Non-interactive OCR post-
correction for giga-scale digitization projects. In
Proceedings of the 9th International Conference on
Computational Linguistics and Intelligent Text Pro-
cessing, CICLing’08, pages 617–630, Berlin, Hei-
delberg. Springer-Verlag.

Martin WC Reynaert. 2011. Character confusion ver-
sus focus word-based correction of spelling and
OCR variants in corpora. International Journal
on Document Analysis and Recognition, 14(2):173–
187.

Verónica Romero, Nicolás Serrano, Alejandro H.
Toselli, Joan Andreu Sánchez, and Enrique Vidal.
2011. Handwritten text recognition for historical
documents. In Proceedings of the Language Tech-
nologies for Digital Humanities and Cultural Her-
itage Workshop, pages 90–96, Hissar, Bulgaria.

Allen Schmaltz, Yoon Kim, Alexander M Rush, and
Stuart M Shieber. 2016. Sentence-level grammatical
error identification as sequence-to-sequence correc-
tion. arXiv preprint arXiv:1604.04677.

Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(1):1929–1958.

Dan Tasse and Noah A Smith. 2008. SOUR CREAM:
Toward semantic processing of recipes. Carnegie
Mellon University, Pittsburgh, Tech. Rep. CMU-LTI-
08-005.

Xiang Tong and David A Evans. 1996. A statistical ap-
proach to automatic OCR error correction in context.
In Proc of Very Large Corpora Work, pages 88–100.

1014

