
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 906–914,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Dataset for a Neural Natural Language Interface for Databases (NNLIDB)

Florin Brad1, Radu Iacob2, Ionel Hosu2, and Traian Rebedea2

1Bitdefender Romania
fbrad@bitdefender.com

2University Politehnica of Bucharest
{radu.iacob23, ionel.hosu, traian.rebedea}@gmail.com

Abstract

Progress in natural language interfaces to
databases (NLIDB) has been slow mainly
due to linguistic issues (such as language
ambiguity) and domain portability. More-
over, the lack of a large corpus to be used
as a standard benchmark has made data-
driven approaches difficult to develop and
compare. In this paper, we revisit the
problem of NLIDBs and recast it as a se-
quence translation problem. To this end,
we introduce a large dataset extracted from
the Stack Exchange Data Explorer web-
site, which can be used for training neural
natural language interfaces for databases.
We also report encouraging baseline re-
sults on a smaller manually annotated test
corpus, obtained using an attention-based
sequence-to-sequence neural network.

1 Introduction

Natural language interfaces have received atten-
tion as tools for simplifying the interaction be-
tween users and computers. These interfaces often
exclude or complement input devices, such as key-
board or touch screens, or even specific languages
used for interacting with an application. A more
focused area is composed of Natural Language In-
terface to Databases (NLIDB), which would allow
a person to retrieve useful information from any
database without knowledge of specific query lan-
guages such as structured query language (SQL)
for relational databases.

Despite initial efforts into NLIDBs started
decades ago, research has advanced slowly and at
this moment there are no commercial solutions or
widespread prototypes. The main difficulties in
solving this problem stem from linguistic failures
and the inability to develop general-purpose solu-

tions that are portable to different databases and
schemas.

Due to the recent success of deep neural ap-
proaches in natural language processing, our aim
is twofold. First, we hope to rejuvenate interest in
the NLIDB problem by proposing a large dataset,
called the Stack Exchange Natural Language In-
terface to Database (SENLIDB) corpus, for de-
veloping data-driven machine learning models and
for reporting progress. The training set consists
of 24, 890 pairs (textual description, SQL snippet)
crawled using the Stack Exchange API that we fil-
tered and cleaned. A smaller test set consisting of
780 pairs that were manually created by two anno-
tators is also available for comparing solutions.

Second, we report results on a neural base-
line that uses an attention-enhanced sequence-
to-sequence (SEQ2SEQ) architecture (Bahdanau
et al., 2014) to model the conditional probability
of an SQL query given a natural language descrip-
tion. This model is trained on the aforementioned
dataset and its performance is computed both us-
ing cross-validation and on the manually labeled
test set. Qualitative results reveal code that is syn-
tactically correct most of the times and closely re-
lated to the user’s intention. Moreover, we report
results on two smaller tasks, which we call the ta-
bles and columns identification tasks. These re-
sults suggest that our dataset is indeed valuable for
training end-to-end neural natural language inter-
faces for databases (NNLIDB).

The paper continues with a short overview of
related work in natural language interfaces for
databases and in similar tasks where deep net-
works have been successfully employed. Section
3 contains a detailed description of the large SEN-
LIDB dataset created for training, together with
the smaller dataset used for testing and comparing
various NLIDB systems. Preliminary results using
a SEQ2SEQ neural model with attention trained

906

on the dataset proposed in this paper are presented
in Section 4. We then propose alternative indi-
cators for assessing the correctness of generated
SQL queries in Section 5, while Section 6 con-
cludes the paper by highlighting the key insights
and future work.

2 Related Work

As all current NLIDB solutions are using mainly
dependency and semantic parsing together with
rule-based or constraint-based algorithms, we also
present similar problems which inspired our ap-
proach, where deep networks have achieved state
of the art results. In the last part of the section,
we introduce the most frequently used corpora for
evaluating the performance of NLIDB systems.

2.1 Current approaches for NLIDB

Natural language interfaces for databases have
been studied for decades. Early solutions pro-
posed using dictionaries, grammars and dialogue
systems for guiding the user articulate the query
in natural language on a step by step basis (Codd,
1974; Hendrix et al., 1978). Most systems devel-
oped until mid-90s used a mix of pattern matching,
syntactic parsing, semantic grammar systems, and
intermediate representation languages for generat-
ing the query from text (Androutsopoulos et al.,
1995). The most important problems encoun-
tered by NLIDBs were related to ambiguity in
semantics and pragmatics present in natural lan-
guage: modifier attachment, understanding quan-
tifiers, conjunction and disjunction, nominal com-
pounds, anaphora, and elliptical sentences (An-
droutsopoulos et al., 1995).

In more recent studies, Popescu et al. (2004)
combine syntactic parsing and semantic interpre-
tation for natural language queries to change parse
trees such that, by changing the order of some
nodes in a tree, it will be correctly interpreted
by the semantic analyzer. Then they use a maxi-
mum flow algorithm and dictionaries for semantic
alignment between the text and several SQL can-
didates. One of their main contributions is that
they introduce a subset of semantically tractable
text queries, for which the proposed method gen-
erates correct SQL queries in most cases.

NaLIR (Li and Jagadish, 2014) uses depen-
dency parse trees generated with CoreNLP (Man-
ning et al., 2014) and several heuristics and rules to
generate mappings from natural language to can-

didate SQL queries. Given the dependency tree,
the database schema and associated semantic map-
pings, the system proceeds in building alternative
query trees which can be easily translated to SQL.
To determine the best query tree, the system com-
bines a scoring mechanism and an interaction with
the user to select the best choice (from a list of
reformulations of the query tree into natural lan-
guage). The scoring for each query tree takes into
account the number of alterations performed on
the dependency tree in order to generate it, the
database similarity/proximity between nodes adja-
cent in the query tree, and the syntactic correctness
of the generated SQL query.

The most promising results reported on several
databases used for validating NLIDBs have been
recently achieved by Sqlizer (Yaghmazadeh et al.,
2017). Its main contributions are related to the fact
that it uses a semantic parser to generate a query
sketch, which is then completed using a rule based
system, and iteratively refined and repaired using
rules and heuristics until the score of the generated
SQL query cannot be improved. Sqlizer is one of
the few systems which employs machine learning
and Word2Vec (Mikolov et al., 2013) for generat-
ing the query sketch - a general form of the query,
including clauses, but which does not contain any
specific database schema information (e.g. table
and column names).

2.2 Deep learning solutions for NLIDB and
related problems

Mou et al. (2015) introduced a case study for code
generation from problem descriptions using re-
current neural networks (RNN). They trained a
SEQ2SEQ architecture with a character-level de-
coder and produced program snippets that are syn-
tactically correct most of the times and retain func-
tionality. Moreover, they showed that the RNN
generates novel code alternatives compared to the
programs seen during training, thus ruling out the
possibility that the network merely memorizes the
input examples. Ling et al. (2016) combined the
SEQ2SEQ approach with a pointing mechanism
(Vinyals et al., 2015) in order to generate Python
and Java code using textual descriptions auto-
matically extracted from collectible trading card
games.

More recently, Yin and Neubig (2017) proposed
a syntax-aware neural model that generates Ab-
stract Syntax Trees from natural language descrip-

907

tions, which then get mapped deterministically to
the target source code. The decoder is guided by
a predefined grammar, so their solution is agnostic
of the target programming language. Using this
syntax aware decoding mechanism, they show to
improve the SEQ2SEQ baseline for code genera-
tion.

Another related topic is semantic parsing using
deep neural networks. Semantic parsing focuses
on converting natural language into logical forms
which are used for querying knowledge bases (Be-
rant et al., 2013). Neural approaches for seman-
tic parsing use a SEQ2SEQ network to map natu-
ral language text to logical forms (Dong and La-
pata, 2016; Herzig and Berant, 2017). Other so-
lutions bypass the need for ground truth logical
forms and instead train a supervised neural model
from query-answer pairs (Yin et al., 2015; Nee-
lakantan et al., 2016). Iyer et al. (2017) are the
first to use a SEQ2SEQ network to map natural
language directly to SQL language. They leverage
feedback-based learning to continuously improve
the parser accuracy.

2.3 Existing corpora for NLIDB evaluation

Solutions to the NLIDB problem have been tradi-
tionally evaluated against databases with few ta-
bles and on validation datasets with a small num-
ber of entries.

One of the most complex databases for NLIDB
evaluation is ATIS (Air Travel Information Cor-
pus) (Hemphill et al., 1990), which stores in-
formation about data flights and features 27 ta-
bles. However, it only has 2,886 natural language
queries and no corresponding SQL statements,
making it unsuitable for a data-driven approach.
Most recent systems have moved to validation
datasets which contain both the natural language
query and the corresponding SQL snippet, such as
MAS (Microsoft Academic Search), IMDB, and
Yelp. For example, Sqlizer (Yaghmazadeh et al.,
2017) achieves 80% accuracy on MAS, while
NaLIR (Li and Jagadish, 2014) obtains only 32%
accuracy on the same data. There also exist some
slightly larger corpora for querying geolocation
databases, the largest being NLmaps (Haas and
Riezler, 2016) which contains 2,380 text queries
but with no corresponding SQL code (instead they
use machine readable language - MRL for ex-
pressing queries).

The training set (SENLIDB Train) proposed in

this paper is by far larger than any of the existing
datasets, as can be seen from Table 1. This makes
it extremely useful for training solutions using ma-
chine learning, including neural NLIDBs. More,
the test set (SENLIDB Test), which has been man-
ually annotated by two experts, is twice as large
as current validation corpora and contains several
text formulations for the same SQL query.

3 Dataset construction

A deep neural architecture, such as SEQ2SEQ,
requires a large number of input-output pairs to
produce qualitative results. The next subsections
describe the steps taken to build the SENLIDB
dataset, including our attempts to correct some of
the problems inherent with crowdsourced data.

3.1 Data crawling and preprocessing

The Stack Exchange Data Explorer allows users
to query the entire database of the well-known
question-answering platform through a public API
1. The database uses Microsoft SQL Server, there-
fore users query it using the SQL extension devel-
oped by Microsoft, called Transact-SQL (T-SQL).
For each query to the Stack Exchange database is-
sued by a user, the web interface enforces the user
to add a title and also an optional longer descrip-
tion. The main rationale for these two fields is
for users to provide an accurate textual descrip-
tion for each query they make. However, there is
no method to ensure that the title or the description
entered for a query are actually relevant in describ-
ing it.

The list of all user queries is available online
2 and Stack Exchange offers various sorting and
filtering capabilities including most upvoted or
viewed queries. An important characteristic is that
all available queries are correct, meaning that they
do not throw any errors when querying the Stack
Exchange database. Moreover, some of them are
”interactive” - users can input values in the web
interface for temporary variables enclosed by ’##’
or ’#’ in the SQL query.

In order to build the proposed dataset, we
started by crawling all user queries from Stack Ex-
change, as they appear in the section ’Everything’
in descending order by creation date.

1http://data.stackexchange.com/
stackoverflow/query/new

2http://data.stackexchange.com/
stackoverflow/queries

908

Dataset # Tables # Columns # Text queries # SQL queries
ATIS 27 - 2,866 N/A
NLmaps N/A N/A 2,380 N/A
MAS 17 53 196 196
IMDB 16 65 131 131
Yelp 7 38 128 128
SENLIDB Train 29 204 24,890 24,890
SENLIDB Test 15 98 780 296

Table 1: Comparison of existing datasets and the SENLIDB corpora for NLIDB systems

First of all, we discarded SQL snippets longer
than 2, 000 characters as we considered them to
be too complex. This step resulted in about
2, 000, 000 queries. The next step was to create
pairs of textual description (which included the ti-
tle and the actual description of a query) and cor-
responding SQL snippet. We then removed du-
plicate pairs (identical SQL code and description)
and approximately 600,000 pairs were left. After
this step, we removed items with SQL code in the
description using simple empirical rules (descrip-
tions starting with ’select’ and containing ’from’).
The remaining dataset was reduced to roughly
170,000 pairs.

Afterwards, we removed the comments from
the SQL snippets and eliminated the entries that
now had void snippets. Finally, we took away
items with identical textual descriptions and dif-
ferent SQL snippets. For description d and cor-
responding SQL snippets s1, ..., sn, we kept the
code snippet si of median length, as we consider
that an average length description is probably bet-
ter than very long and very short ones which are
probably outliers. This resulted in a dataset with
24,890 items, each having an unique textual de-
scription and an associated SQL query.

Although descriptions in this dataset are unique,
there are 2, 225 identical SQL queries with differ-
ent descriptions.

3.2 Large dataset for training and validation

We consider that the previously described dataset
can be used effectively for training machine learn-
ing models for NLIDB, including more data-
hungry models such as neural NLIDBs. As this
corpus was created by a large number of users
from the Stack Exchange data portal, one might
expect that the quality of the entries to be simi-
lar to other corpora created using various crowd-
sourcing mechanisms. To this extent, although this

dataset can also be used for validation (using ei-
ther cross-validation or a hold-out set), the results
will be impacted by the inherent biases, noise and
errors collected through crowdsourcing. Some of
the particularities of these data are addressed next.

First, most of the SQL snippets are relatively
simple, containing at most 10 distinct tokens, as
can be easily seen in Table 2. In contrast, textual
descriptions are more evenly distributed, based
on the number of tokens, with 2, 003 of the en-
tries in the dataset having more than 100 tokens.
Thus although some queries might have an incom-
plete textual description, most of them are well ex-
plained.

Second, the Stack Exchange database schema
available in the dataset contains 29 tables. Inter-
estingly, their actual appearances in the dataset,
judging by the number of occurrences in individ-
ual queries, follows Zipf’s law (Zipf, 1949) as it
can be observed in Table 3. We note that a large
majority of queries refer to the ’Posts’ and ’Users’
tables, while other tables make almost no appear-
ance in the dataset (e.g. ’PostNotices’, ’PostNo-
ticeTypes’). In Table 4 we present the most fre-
quent SQL expressions in the datasets. Half of
the queries contain ordering clauses and almost a
third include multiple joined tables and group by
clauses.

Third, the dataset contains samples of varied
difficulty, from simple select operations to com-
plex nested queries. We computed the Halstead
complexity metrics (Halstead, 1977) to gain an in-
sight into the difficulty of the SQL snippets in our
datasets. To measure the difficulty of a snippet we
used the formula (Halstead, 1977):

Difficulty =
η1

2
· N
η2

(1)

where η1 is the number of distinct operators, η2 is
the number of distinct operands and N is the total

909

SQL query tokens
text tokens 1-10 11-25 26-50 51-100 100+ Total

2-4 2094 3321 2634 1536 605 10190
5-10 641 2547 3182 2306 742 9418
11-20 121 724 1150 876 318 3189
21-50 21 239 470 584 266 1580
51+ 1 10 35 99 72 217
Total 2878 6841 7471 5401 2003

(a) Length statistics for the training dataset

#SQL query tokens
text tokens 1-10 11-25 26-50 51-100 Total

2-4 88 1 0 0 89
5-10 270 69 8 4 351
11-20 77 181 23 4 285
21-50 1 34 18 2 55
Total 436 285 49 10

(b) Length statistics for the test dataset

Table 2: Overview of the number of tokens from the SQL snippet and the textual description for the
SENLIDB corpora

Table name # occur. train # occur. test
Posts 15159 383
Users 7672 229
Tags 4765 134
Posttags 3370 39
Votes 2476 22
Comments 1583 41
Posthistory 1214 2
Badges 625 16
Posttypes 616 4
Votetypes 336 6
Other tables 1080 16

Table 3: Most frequent table names in SENLIDB
sorted descending by occurrences in training set

SQL expr. # occur. train # occur. test
select 22145 295
from 21982 295
where 18894 203
order 13114 77
count 8294 57
join 7943 29
group 7366 27

Table 4: Most frequent SQL expressions in
SENLIDB

number of operands.
Finally, we used an off-the-shelf library 3 to de-

tect the language of the query descriptions. More
than 95% were classified as English, followed at
a great distance by French and Russian with less
than 100 entries each. We remarked that some of
the descriptions contain table and column names,
which could affect the language identification per-
formance (with a small bias towards English).

3.3 Manually annotated test dataset

In order to have a reliable test and validation
dataset for the Stack Exchange database, we also
developed a smaller corpus which was manually
annotated by two senior undergraduate students in
Computer Science. The SQL queries included in
the test dataset are a subset of the data collected
from the Stack Exchange Data Explorer as previ-
ously described. Each query has been labelled by
at least one annotator using between 1 and 3 differ-
ent textual descriptions that describe the respective
SQL snippet in natural language (English). The
annotators then ran the query in the interface and
verified that the returned results are correct and
correspond to the description. The total number
of distinct queries is 296, while the number of tex-

3https://pypi.python.org/pypi/polyglot

910

(a) Training dataset difficulty

(b) Test dataset difficulty

Figure 1: Histograms of the Halstead difficulty
measure for the training (a) and test (b) sets

tual annotations is 780, averaging to 2.63 textual
reformulations per query.

In order to facilitate the annotation process, the
annotators used an application which allowed the
user to view a SQL query from the original dataset
and add one or more possible descriptions. The
SQL queries chosen for manual annotation were
randomly selected from those with a very short
textual description in the original corpus, consist-
ing of only 1-2 tokens. These items were con-
sidered not informative enough to be included in
the training set and were thus added to the human-
annotated test set.

In order to achieve a better understanding of
how similar or different the produced annotations
are, for each sample we computed the BLEU score
(Papineni et al., 2002), with the smoothing func-
tion proposed in Chen and Cherry (2014), between
the descriptions of one annotator and those pro-
duced by the other annotator. The average of the
scores obtained for each sample was 57.10, which

Dataset Perplexity BLEU
Validation 1.16 16.9
Test-original 1.24 13.5
Test-annotated 1.23 18.2

Table 5: Perplexity and BLEU score of the gener-
ated SQL statements on the validation set, original
test set and annotated test set descriptions

is consistent with inter-translator BLEU scores ob-
served in machine translation. It is important to
notice that there are some differences between the
train and test dataset. The most important one is
highlighted in Figure 1 where the Halstead diffi-
culty score for the test set is concentrated between
0-5 as opposed to the train dataset where the mode
is at 8. This means that the queries in the test
dataset are slightly less complex than the queries
in the train dataset. There are also some other dif-
ferences between the two datasets, such as the dis-
tribution of query and description sizes (see Table
2) and most frequent table names (see Table 3);
these arise from how the test SQL queries were
subsampled and annotated.

4 Model and experiments

We trained a SEQ2SEQ model with attention on
the (description, SQL) pairs in the SENLIDB
train set. We used the open-source neural ma-
chine translation toolkit OpenNMT (http://
opennmt.net/) (Klein et al., 2017). This
system implements a standard SEQ2SEQ model
with global-general-attention (Luong et al., 2015).
Both the encoder and the decoder are long short-
term memory (LSTM) cells with two hidden lay-
ers and 500 neurons. The word embedding layer
has 500 neurons. We used batches of maximum
size 64. We trained the models with Stochas-
tic Gradient Descent (SGD) for 25 epochs with a
learning rate of 1.0 and a learning decay of 0.5 if
perplexity did not decrease on the validation set.
We generated SQL statement using a beam search
of size 5.

Similarly to Ling et al. (2016), we report the
BLEU score between the generated SQL queries
and the ground truth SQL snippets in Table 5.
While the BLEU score could penalize differently
written, but otherwise correct, code snippets, it is
still useful to measure the degree of token overlap.
The results are reported for a validation set (hold-
out of 4, 000 random samples from the train set)

911

Natural language description Predicted SQL query
top 50 users from india select top 50 id , displayname , reputation , web-

siteurl , location from users where location like
india order by reputation desc

top 100 users with no of gold badge select top 100 b . userid , u . displayname , count
(*) as gold from badges b inner join users u
on u . id = b . userid group by b . userid , u .
displayname order by count (b . name) desc

user rep select reputation , count (*) from users group by
reputation order by reputation

text of highest - scored comment select top 100 id as [comment link] , score , text
from comments order by score desc

questions with most view select top 500 id as [post link] , viewcount from
posts order by viewcount desc

Table 6: Examples of SQL queries generated by the SEQ2SEQ model with attention

Dataset Precision Recall F1 score
Validation 0.71 0.55 0.62
Test-original 0.51 0.41 0.45
Test-annotated 0.82 0.72 0.76

Table 7: Precision, recall and F1 score for the
tables identification task

Dataset Precision Recall F1 score
Validation 0.65 0.47 0.54
Test-original 0.35 0.29 0.31
Test-annotated 0.55 0.47 0.50

Table 8: Precision, recall and F1 score for the
columns identification task

and for the test set, using both the original and the
manually annotated texts. We notice similar per-
plexities for SQL code generated from the original
test titles and from the manually annotated ones,
which means that both generate likely code. This
is to be expected as the decoder is trained on SQL
select statement therefore it will probably gener-
ate some sort of select statement even for short in-
put texts given to the encoder. However, the orig-
inal titles are much shorter compared to the an-
notated titles, and so the more informative natural
language descriptions yield a SQL query that re-
sembles more closely the ground truth SQL under
a BLEU score. Thus, although both shorter (in-
complete) and longer (and more descriptive) texts
generate likely SQL statements, the manually an-
notated texts generate queries significantly more
similar to the ground truth (BLEU score 18.2 vs

13.5, as reported in Table 5) than the original de-
scriptions.

The initial vocabulary for the encoder (text de-
scriptions) had 6, 000 tokens, while the vocabulary
of the decoder (SQL queries) consisted of 16, 000
tokens. This resulted in a very large embedding
matrix, thus we decided to restrict the number of
tokens for both encoder and decoder to 500 and
2, 000, respectively, by keeping only the most fre-
quent tokens and replacing the others with the
UNK token. Reducing the size of the vocabular-
ies for both encoder and decoder resulted in a sig-
nificant improvement for the performance of the
model (BLEU score 18.2 vs 13.06 for the anno-
tated test set).

From a qualitative perspective, Table 6 provides
several examples of SQL queries generated for the
validation set. The generated SQL statement are
syntactically correct most of the time even when
the textual description is incomplete or use abbre-
viations (e.g. ”no” for ”number). More, in the sec-
ond example, we can also observe that the model
learns to use table aliases correctly in complex
queries with joined tables. On another hand, al-
though the generated queries are syntactically cor-
rect, in most cases they fail to return the desired re-
sults when they are executed against the database.
When the system fails to generate the correct SQL
query for a description, it still generates a query
related to the natural language description.

It is important to mention that, in order to cor-
rectly write an SQL statement, one needs to know
the schema of the database. This is an aspect that
we did not take into consideration when training

912

the baseline model. Thus the model is not explic-
itly provided with the database schema, however it
can infer it from the training set. However, we be-
lieve that more complex approaches that integrate
schema information and are syntax-aware can pro-
duce better results than a SEQ2SEQ model.

5 Discussion

Generating SQL queries from natural language
can be broken down to a number of independent
sub-problems. For example, in order to retrieve
the desired information from a database, the ap-
propriate table columns need to be instantiated in
the SELECT clauses, and the correct tables need
to be instantiated in the FROM clause. Breaking
down the complex task of automatically generat-
ing SQL in multiple simpler tasks and working on
each task separately can, in our opinion, yield sig-
nificant improvements faster.

Apart from the BLEU score, we propose two
new tasks that are easier than the NLIDB problem.
This approach stemmed from the difficulty of the
problem and the need for a more structured grasp
of the performance of a certain system on this task.
Therefore, we chose to also evaluate the ability of
the proposed NNLIDB to correctly instantiate ta-
bles and columns from the database schema. For
these two tasks, the most important metrics are
precision and recall. For example, given a sam-
ple from the dataset, we compare the SQL query
generated by the neural network architecture with
the correct SQL statement and count existing and
missing table and column names.

In Tables 7 and 8 we evaluate the performance
of our baseline on the tables and columns identi-
fication tasks. We observe that on the validation
and annotated test set, precision and recall scores
are significantly higher, due to the fact that these
are more informative than the original test set de-
scriptions. Given the fact that the database schema
contains a total of 29 entities (table names) and
204 attributes (column names), the precision and
recall scores prove that the baseline model delivers
decent performance on these tasks and moreover,
that both tasks are representative for measuring the
performance of a system on the NLIDB problem.
It is important to mention that, for the sake of sim-
plicity, for the columns identification task we ig-
nored the fact that in different tables there may be
columns with the same name (e.g. ”id”).

Both the tables and columns identification tasks

can be made more difficult using stricter eval-
uation. For example, for the table task, one
could consider only the entities that are instanti-
ated strictly in the FROM clause and the attributes
that are instantiated in the SELECT clause.

6 Conclusions

In this paper we have introduced new datasets for
training and validating natural language interfaces
to databases. The SENLIDB train dataset is the
first large corpus designed to develop data-driven
NLIDB systems and it has been successfully used
to train an end-to-end neural NLIDB (NNLIDB)
using a SEQ2SEQ model with attention. Although
the generated SQL output may sometimes be syn-
tactically invalid and is rarely the desired SQL
statement for the given textual query, we hope the
dataset will prove valuable for future research.

The pursuit of a successful NNLIDB is still at
the beginning and we hope that the current re-
search will provide the first steps needed to in-
vestigate more complex solutions. Future research
will investigate whether using a stacked decoder -
one for generating a query sketch (e.g. subclauses)
and one for the elements related to the database
schema - will provide a better solution.

In comparison with existing approaches for
NLIDB systems, our solution does not use any
rules, heuristics or information about the underly-
ing database schema or SQL syntax. On the other
hand, the generated SQL queries are more often
than not inaccurate and thus we have not com-
pared the accuracy of the NNLIDB with existing
solutions. However, we have focused on verify-
ing how similar the generated SQL queries are to
the annotated ones using measures from machine
translation (BLEU) and also precision and recall
for simpler tasks, such as generating the correct
table and column names in a SQL statement.

Acknowledgments

We would like to thank Laurenţiu Pantelimon and
Alexandru-Robert Velcu for their help in annotat-
ing the test set. This work has been funded by the
project Text2NeuralQL (PN-III-PTE-2016-0109).

References
I. Androutsopoulos, G.D. Ritchie, and P. Thanisch.

1995. Natural language interfaces to databases –
an introduction. Natural Language Engineering,
1(1):29–81.

913

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2014. Neural machine translation by
jointly learning to align and translate. CoRR,
abs/1409.0473.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2013, 18-21 October
2013, Grand Hyatt Seattle, Seattle, Washington,
USA, A meeting of SIGDAT, a Special Interest Group
of the ACL, pages 1533–1544.

Boxing Chen and Colin Cherry. 2014. A systematic
comparison of smoothing techniques for sentence-
level bleu. ACL 2014, page 362.

E. F. Codd. 1974. Seven steps to rendezvous with the
casual user. In IFIP Working Conference Data Base
Management, pages 179–200. IBM Research Re-
port RJ 1333, San Jose, California.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. CoRR, abs/1601.01280.

Carolin Haas and Stefan Riezler. 2016. A corpus
and semantic parser for multilingual natural lan-
guage querying of openstreetmap. In Proceedings
of NAACL-HLT, pages 740–750.

Maurice Howard Halstead. 1977. Elements of software
science, volume 7. Elsevier New York.

Charles T Hemphill, John J Godfrey, George R Dod-
dington, et al. 1990. The atis spoken language sys-
tems pilot corpus. In Proceedings of the DARPA
speech and natural language workshop, pages 96–
101.

Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalow-
icz, and Jonathan Slocum. 1978. Developing a natu-
ral language interface to complex data. ACM Trans.
Database Syst., 3(2):105–147.

Jonathan Herzig and Jonathan Berant. 2017. Neu-
ral semantic parsing over multiple knowledge-bases.
CoRR, abs/1702.01569.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung,
Jayant Krishnamurthy, and Luke Zettlemoyer. 2017.
Learning a neural semantic parser from user feed-
back.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
CoRR, abs/1701.02810.

Fei Li and H. V. Jagadish. 2014. Constructing an
interactive natural language interface for relational
databases. VLDB, 8(1):73–84.

Wang Ling, Edward Grefenstette, Karl Moritz Her-
mann, Tomas Kocisky, Andrew Senior, Fumin
Wang, and Phil Blunsom. 2016. Latent predictor
networks for code generation. Acl, pages 1–13.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015. Effective approaches to attention-
based neural machine translation. arXiv preprint
arXiv:1508.04025.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J. Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In Association for Compu-
tational Linguistics (ACL) System Demonstrations,
pages 55–60.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems,
NIPS13, pages 3111–3119, USA. Curran Associates
Inc.

Lili Mou, Rui Men, Ge Li, Lu Zhang, and Zhi Jin.
2015. On End-to-End Program Generation from
User Intention by Deep Neural Networks. Arxiv,
(March 2016).

Arvind Neelakantan, Quoc V. Le, Martin Abadi, An-
drew McCallum, and Dario Amodei. 2016. Learn-
ing a natural language interface with neural pro-
grammer. CoRR, abs/1611.08945.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,
David Ko, and Alexander Yates. 2004. Modern nat-
ural language interfaces to databases: Composing
statistical parsing with semantic tractability. In Pro-
ceedings of the 20th International Conference on
Computational Linguistics, COLING ’04, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. pages 1–9.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Type and content-driven syn-
thesis of sql queries from natural language. CoRR,
abs/1702.01168.

Pengcheng Yin, Zhengdong Lu, Hang Li, and Ben Kao.
2015. Neural enquirer: Learning to query tables.
arXiv preprint arXiv:1512.00965.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.

George Kingsley Zipf. 1949. Human behavior and the
principle of least effort: An introduction to human
ecology. Ravenio Books.

914

