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Abstract

In this paper we investigate the perfor-
mance of event argument identification.
We show that the performance is tied to
syntactic complexity. Based on this find-
ing, we propose a novel and effective sys-
tem for event argument identification. Re-
current Neural Networks learn to produce
meaningful representations of long and
short dependency paths. Convolutional
Neural Networks learn to decompose the
lexical context of argument candidates.
They are combined into a simple system
which outperforms a feature-based, state-
of-the-art event argument identifier with-
out any manual feature engineering.

1 Introduction

Event extraction is a difficult information extrac-
tion task. The 2005 Automatic Content Extrac-
tion evaluation (ACE 2005) defines three challeng-
ing sub-tasks: Entity mention detection, the task
of finding mentions of predefined entity types like
persons and organizations; event trigger detection,
the task of finding words, mostly verbs or nomi-
nalizations, indicating an event from a set of pre-
defined event types; and event argument identifi-
cation, the identification of entity mentions1 play-
ing a role in the events, as well as the identification
of the roles they play.

When we look at the evaluations in three of
the most influential recent event extraction papers
(Li et al., 2013, 2014; Chen et al., 2015; Nguyen
et al., 2016) we note that argument identification
performance is low, ranging from 52.7 to 55.4
F1. There are multiple reasons for the low perfor-
mance. First, argument identification suffers from

1In this work we make no distinction between ‘entity’,
‘time’, and ‘place’ for the sake of simplicity.

error propagation. Missed or spurious event trig-
gers or entity mentions may lead to missed or spu-
rious event arguments. Second, event structure is
complex. Multiple entities can play the same role
in the same event. Additionally, one entity can
play different roles across events (and thus cause
multiple event arguments). Consider the following
example.

A Palestinian boy as well as his brother
and a sister were wounded late Wednes-
day by Israeli gunfire.

Here, the three entity mentions (in bold) are
all Victims of the INJURE event triggered by
‘wounded’ as well as Targets of the ATTACK

event triggered by ‘gunfire’. Such structures can
become even more complex when more events and
more entities are involved.

The third reason for low argument identification
performance is syntactic complexity. Many argu-
ments are syntactically far away from their trig-
gers, making it hard to construct meaningful syn-
tactic features. Section 3 shows that performance
is tied to the length of the shortest dependency
path connecting trigger and argument.

Error sources one and two were already targeted
by systems which jointly infer triggers and their
arguments. To the best of our knowledge, no pre-
vious work identified syntactic complexity as the
third key problem for argument identification per-
formance, and no previous system aimed to de-
compose syntactic structure in order to learn better
classifiers for the task. The contributions of this
paper are the following.

1. We observe that syntactic complexity is a cru-
cial factor for argument identification. Argu-
ment identification performance highly cor-
relates with dependency path length (Section
3.1).
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2. We propose to represent dependency paths
with bidirectional Long Short-term Mem-
ory networks (biLSTMs) in order to account
for their sequential and compositional na-
ture. Using LSTMs to learn dependency path
representations proved effective in other ar-
eas like relation extraction (Xu et al., 2015)
and semantic role labeling (Roth and Lapata,
2016). We investigate their use for argument
identification.

3. We propose to represent lexical contexts of
event arguments with Convolutional Neural
Networks. Together with LSTMs, they form
an effective and simple argument identifier
which beats a state-of-the-art, feature-based
system without any manual feature engineer-
ing, especially for long dependency paths.

2 Baseline

2.1 Baseline Argument Extraction
Our baseline is a re-implementation of Li et al.
(2013). It is a state-of-the-art event extractor that
predicts event triggers and arguments jointly. Be-
cause of this joint inference, it avoids error propa-
gation and can draw features based on joint event
extraction decisions, e.g., how many arguments of
a specific type does a specific trigger have?

The system uses a structured perceptron with
beam search. It processes a sentence from left to
right and token by token. With each position it
advances, it constructs new hypotheses containing
event trigger and argument assignments. Then, it
prunes the hypotheses spaces to the n best alterna-
tives and processes the next token position. After
the last token was processed, the hypothesis with
highest score is selected as the final prediction.
This hypothesis contains trigger and argument as-
signments for the entire sentence.

2.2 Baseline Argument Extraction Features
Our baseline system uses a rich, hand-engineered
feature set. Feature templates can be divided into
local templates and global templates. Local tem-
plates characterize single arguments, and they in-
volve only the mentions and triggers of this argu-
ment. They capture, e.g., the trigger and entity
types, the mention context, and the dependency
path between trigger and mention.

Global templates on the other hand characterize
multiple arguments, either in terms of shared men-
tions, or in terms of shared roles. Global templates

Argument type Supporttrain F1dev
Victim 578 79.0
Instrument 256 77.1
Artifact 605 75.6
Attacker 574 47.3
Target 438 42.6
Giver 94 32.9

Table 1: Training set support and development set
baseline F1 for the three best and three worst per-
forming argument types.

can be divided into segment level templates and
sentence level templates. Segment level templates
capture characteristics of the mentions within one
event, e.g., the words between two mentions shar-
ing a role in one event, or the head and modifier of
nominal modifications like ‘IBM CEO’. Sentence
level templates capture characteristics of events
sharing mentions, e.g., the roles such a mention
fills, or the dependency path connecting the two
triggers. The system uses two dozen feature tem-
plates, resulting in 150,000 features for argument
identification.

3 Performance Analysis

3.1 Analysis of Baseline Performance
We start the analysis of argument identification
performance with the observation that despite the
low overall performance, some argument types
perform reasonably well. Table 1 reports deve-
lopment set precision, recall, and F1 of our base-
line for the three best and the three worst perform-
ing argument types in the development set.2 As
we can see, the difference between the best type
(Victim) and the worst type (Giver) is 46.1 F1

points. What is the reason for this big difference?
Our first assumption is that the best perform-

ing types have more training samples. Indeed,
Victim has considerably more samples than
Giver. Attacker however has nearly the same
amount of training samples but a much lower
performance (-31.7 F1). Instrument on the
other hand has only half the training samples of
Attacker, but a better performance (+29.8 F1).

To further investigate this, Figure 1a plots train-
ing set support in decreasing magnitude against
development set F1 for the 12 most frequent ar-
gument types. The plot is not conclusive: More

2We excluded types with less than 20 samples in the deve-
lopment set.
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(a) Training set support in decreasing magnitude plotted against
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(b) Increasing dependency path length plotted against baseline
devset F1.
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(c) Increasing lexical distance plotted against
baseline devset F1.

Figure 1: Training set support, lexical distance of trigger and argument, and dependency path length
plotted against development set performance.

training data does not automatically lead to better
performance. The most frequent argument type
Place with 881 training samples has an F1 of
61.1, whereas Victim with 34% less training
samples has an F1 of 79.0. Instrument has
about 70% less training samples and an F1 of 77.1.
If the number of training samples is not an impor-
tant factor for performance, what else could be?

One important factor is semantic variety: Some
roles can only be filled by one or two entity types,
and most of their mentions are role fillers. This
is especially true for Instrument which can
only be filled by vehicles and weapons in ACE
2005; in turn, most weapons are Instruments.
This is reflected in the good performance of
Instrument in Table 1 and Figure 1a.

However, most roles can be filled by more than
two entity types, and their potential fillers are more
frequent than vehicles and weapons: Entity for
example can be filled by persons, organizations,
and geopolitical entities. At the same time, most
of the respective mentions are not Entities.
Even if a role can only be filled by one entity type,
it may be that most occurrences are not role fillers,
making the task to correctly fill those roles harder.
Consider Time for example, which can only be
filled by time mentions, yet it has only a mediocre
performance of 67.7 F1 points on the development
set. Semantic variety alone cannot explain the big
performance differences between argument types.

Another important factor is syntactic complex-
ity: How long and diverse are dependency paths
connecting arguments and triggers? To inves-
tigate the effect of syntactic complexity, Figure
1b depicts length of dependency paths connecting
triggers and arguments in decreasing magnitude
against development set F1. In this plot, we see
a much clearer trend: Shorter syntactic distance
leads to better performance. Length-1 paths (di-
rect trigger-argument dependency) have an F1 of
78.2. Length-2 path F1 drops to 56.4, and to 30.8
for length-3 paths. Length-4 and length-5 paths
have an F1 of 21.3 and 12.5, respectively.

This trend is also reflected in the performance
of individual argument types. The most frequent
type Place has a high average path length of 2.2
and a low F1 of 61.1. Victim on the other hand
has considerably less training data, but an average
path length of 1.5 and an F1 of 79.0. For the three
best performing types, the average path length is
1.7 vs. 2.3 for the three worst performing types.

Dependency path length is related to lexical
distance – the longer a dependency path, the
more words are usually between trigger and ar-
gument. To investigate the effect of lexical dis-
tance, Figure 1c depicts the number of words be-
tween trigger and argument against development
set performance. Here, we see a somewhat
less clearer trend: Increasing lexical distance
leads to lower performance; however, with a
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considerable increase between distances 4 and
5, and a performance plateau between 8 and
11. Word sequences are much more diverse
than dependency paths. A dependency path

like returning
nmod:from−−−−−−−→summit nmod:in−−−−−→Ireland

abstracts from actual word sequences and ignores
many words which are less relevant for argument
identification, like adjectives and adverbs. This in
turn alleviates data sparsity.

Syntactic complexity is a crucial factor for argu-
ment identification, both in terms of overall per-
formance as well as and in terms of individual
argument type performance. Therefore, it is in-
evitable to reduce or better handle syntactic com-
plexity. Most systems incorporate dependency
paths merely as strings, or rely on direct depen-
dencies of triggers and arguments. They do not
decompose or further analyze dependency paths
in order to find relevant substructures, or to deal
with data sparsity of long paths. In Section 4,
we present a simple but efficient system which di-
rectly addresses syntactic complexity.

3.2 Dependency Paths

We now illustrate the benefits and difficulties of
using dependency paths for argument identifica-
tion. Our dependency paths are lexicalized; they
always start with the trigger word and end with a
mention word.3 We say that a path has length 1 if
trigger and argument are directly related, length 2
if the path includes one intermediate dependency,
etc.

Often, short dependency paths directly reflect
event argument structure:

killed
nsubj−−−→ father-in-law

killed
dobj−−→ him

The trigger (‘killed’, a DIE event) has two de-
pendencies, ‘father-in-law’ being the subject and
‘him’ being the object. Even without looking at
more context we can say with confidence that the
subject must be the Agent of the event and the
object must be the Victim. Even longer paths
may be quite clear:

returning
nmod:from−−−−−−−→summit nmod:in−−−−−→Ireland

Here, ‘returning’ indicates a TRANSPORT event.
The path conveys the information that some entity

3For multiword expressions, the path connects trigger and
entity mention head.

returns from a summit in Ireland, making ‘Ireland’
the Origin of the event.

Of course, not all dependency paths are as easy
to interpret. The following examples show the ne-
cessity to decompose dependency paths in order to
catch similarities between them.

war
dobj←−− fight

nsubj−−−→ U.S.

war nmod:to←−−−−− go
nsubj−−−→ we

These paths are more complex than previous
ones because trigger and argument are governed
by other words, namely by ‘fight’ and ‘go’. In
both cases, ‘war’ triggers an ATTACK event and the
subject is an Attacker argument. Humans can
easily spot similarities in the two paths. The argu-
ments are in both cases the subjects of the govern-
ing verbs: ‘U.S.’ is the entity fighting a war and
‘we’ is the entity going to war. However, the left
sides of the paths look quite different: In one case,
‘war’ is the direct object of the governing verb,
in the other it is the nominal modifier. Addition-
ally, the governing verbs do not share meaning.
In order to catch the similarities, a system needs
the ability to decompose the paths and to learn the
meaning of sequences of words and dependencies.

4 Approach

4.1 Problem Encoding

We cast argument identification as a classification
task. For a trigger-mention pair (t,m) we make
one instance for training/testing consisting of (a)
event type, mention type, and text genre, (b) the
shortest lexicalized dependency path t → m and
(c) the sentence. Figure 2 depicts the pair (‘return-
ing’, ‘Ireland’). Event type (TRANSPORT), entity
type (loc) and genre (newswire, not depicted) con-
stitute the first information layer. The second In-
formation layer is the lexicalized dependency path
(returning nmod:from−−−−−−→summit nmod:in−−−−→Ireland). The
third information layer is the sentence.

The three layers correspond to the most valu-
able information sources for the baseline. How-
ever, the baseline draws only simple categorical
features from them. Most notably, it relies on hav-
ing seen dependency paths during training because
it cannot decompose them into meaningful sub-
paths, which is crucial for better identification per-
formance (Section 3.1). The neural network archi-
tecture we present in Section 4.2 is able to auto-
matically construct more meaningful features.
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Bush returning to the United States from his summit in Ireland .
TRANSPORT loc

nmod:from→ nmod:in→

event argument type?

Figure 2: A training/test instance. Depicted in red is given information, depicted in blue is requested
information. The trigger is underlined, the entity mention is bold.

4.2 biLSTM/CNN: Architecture

Input to our system (called biLSTM/CNN) are in-
stances as described in Section 4.1. Each instance
has three information layers, each layer is pro-
cessed by a separate component. Figure 3 depicts
the system architecture. The figure is split in four
(bottom, middle left/right, and top), each part vi-
sualizing one component, plus the final classifica-
tion. We will now describe each part. In the fol-
lowing, ⊕ means the concatenation of vectors.

Bias
The bias vector b provides a representation of the
event type, entity type, and genre. The intuition
behind the bias vector is that arguments are ex-
pressed differently across event types, entity types,
and genres. b is input to the other two components
and helps to learn better representations.

More formally, b is the last layer of a fully-
connected three layer neural network whose input
is defined as follows: b1 = en ⊕ ev ⊕ ge, where
en, ev, and ge are representations of the entity
type, event type, and genre. They are randomly
initialized and will receive standard backpropaga-
tion updates during training.

biLSTMs
Representing dependency paths with Long Short-
term Memory networks (LSTMs, Hochreiter and
Schmidhuber 1997) shows good results in fields
like relation extraction (Xu et al., 2015) and se-
mantic role labeling (Roth and Lapata, 2016). We
investigate their use for argument identification.

Our LSTMs produce a representation of lexi-
calized dependency paths, such that similar paths
have similar representations. LSTMs automati-
cally learn meaningful patterns in arbitrarily long
paths. For example, they learn that the paths

attacked
nsubj−−−→US and attacked

nsubj−−−→Iraq have sim-
ilar representations given that both indicate an
Attacker and only differ in two closely re-

lated words. They also learn that attacked
dobj−−→Iraq

has a different representation because the change

from nsubj to dobj often distinguishes between
Target and Attacker.

Input to our LSTM is a lexicalized dependency
path P = (w1, d

1:2, w2, . . . , d
n−1:n, wn) where

w1 is the trigger word, wn is the argument word,
and da:b is the dependency between wa and wb.
The element at position i in P is resolved by
a vector vi = ei ⊕ disttrigger ⊕ distmention ⊕ b.
ei is either a pre-trained word embedding or a
randomly-initialized dependency embedding, ac-
cording to the element type at position i. disttrigger
and distmention refer to the lexical distance of a
word to the trigger or the argument word, re-
spectively.4 Finally, b is our bias vector as de-
fined above. We keep word embeddings fixed, but
dependency embeddings receive backpropagation
updates during training.

P is processed by a bidirectional LSTM
(biLSTM). For a path element i, the biLSTM
produces two (so-called) hidden states hf

i (from
the forward LSTM) and hb

i (from the backward
LSTM). These vectors contain information about
the respective input, i.e., vi, as well as the hid-
den states of previously processed elements, i.e.
elements to the left of i for hf

i and elements to
the right for hb

i . We average the hidden states be-
longing to the same input vector: ai = 1/2(hf

i +
hb

n−i+1). Instead of averaging one could com-
bine the vectors differently, e.g., by concatenat-
ing them. However, none of the other possibilities
worked better in our case.

Using biLSTMs has the advantage that each ai

contains information from the entire sequence; us-
ing only a forward LSTM limits the representa-
tions at each position to the left context.

The middle-left part of Figure 3 depicts the biL-
STM and its final output, the average vectors a.

Convolutional Neural Networks
In contrast to LSTMs, which are designed to
capture the meaning of sequences, Convolutional
Neural Networks (CNNs) are often used to pro-

4Dependencies have the same distance as their governor.
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Figure 3: biLSTM/CNN architecture. Process flow is depicted from bottom to top. Embeddings e
depicted in white are fixed, every other node receives backpropagation updates during training. Section
4.2 describes each component in detail.

duce bag-of-words-like representations. They
were successfully applied to many NLP problems
(Kim, 2014; Johnson and Zhang, 2015, inter alia).

Input to our CNN is a tokenized sentence where
each word at position i is replaced by a vector xi

which is almost identical to the definition of vi

above. The only difference is that xi contains only
word embeddings.

CNNs apply filters (also called kernels) to a
fixed number of consecutive input vectors. Fil-
ters are then moved by a certain offset (also called
a stride) and re-applied. In our case, one filter
produces one feature for one position i: ci =
σ(W · xi:i+h−1 + s) where σ is a non-linearity
(tanh in our case), W is a weight matrix, s ∈ R is

a bias, and xi:i+h−1 is a concatenation of vectors
[xi ⊕ xi+1 ⊕ . . . ⊕ xi+h−1]. h is the filter width.
W and s receive backpropagation updates during
training, word embeddings are fixed.

We use CNNs to represent a sentence. The sen-
tence is important because the lexical contexts of
trigger and mention convey valuable information
for argument identification. This means that in our
case a filter of width h produces features for the
entire sentence, c = [c1, c2, . . . , cn−h+1]. We ap-
ply max-pooling afterwards, i.e., the final output
of one CNN filter is given by ĉ = max(c). Our
CNN uses 20 filters for filter widths 2,3,4. The
middle-right part of Figure 3 exemplifies a CNN
with 3 filters and filter width 2.
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Final Classification
Finally, the averaged biLSTM hidden vectors for
the dependency path and the max values for all
CNN filters applied to the entire sentence serve as
input to a softmax layer which produces a prob-
ability distribution over all argument types. We
pick the class with the highest probability as our fi-
nal result. However, choosing between all classes
is unnecessary because not all combinations of
event type, entity type and argument type are pos-
sible. For example, the argument type Vehicle
can only be assigned to TRANSPORT events, and
only mentions with entity type veh can be possible
fillers. We modify softmax to assign zero proba-
bility to classes which are disallowed:

yi =
mie

xi∑
j mjexj

The above equation gives the probability for a
particular argument type, yi, where x is the input
vector to softmax, and m is a binary vector indi-
cating allowed types. Note that yi > 0 only if the
respective argument type is allowed.

The top part of Figure 3 visualizes the softmax
component. The input vector is first reduced to
29 dimensions (28 argument types and one ‘null’
type), multiplied with the restriction mask, and
forwarded to our modified softmax.

Parameter Averaging
Inspired by the Averaged Perceptron (Freund and
Shapire, 1999; Collins, 2002) we do not use the
learned parameters directly for prediction. In-
stead, in each epoch we keep a moving average
of the parameters:

θV = αθT + (1− α)θV−1

Here, θT is the current weight vector after train-
ing epoch T , θV−1 is the averaged weight vector
before the new update, and α is the fraction of how
much θT influences θV . We set α = 0.1. θV is
then used during testing. Note that this procedure
does not change the training in any way.

With the formulation above, older weight vec-
tors have less influence on θV than more recent
vectors. After every training epoch, we evaluate
θV on the development set and keep the version
with highest F1 for the final evaluation.

Parameter averaging leads to better generaliza-
tion of our system. Furthermore, performance
fluctuation for different training runs is reduced.

5 Experiments

5.1 Data, Evaluation Metrics and Parameters

We evaluate on ACE 2005 and use the same data
split as most previous approaches (Ji and Grish-
man, 2008; Nguyen et al., 2016, inter alia). We
follow standard evaluation procedures: An event
argument is correct, if its span and role match a
reference argument (Ji and Grishman, 2008). Sec-
tion 1 gives an overview over the annotations pro-
vided in ACE 2005.

Because we want to measure argument iden-
tification performance by itself, we must ensure
that compared systems use the same entity men-
tion and trigger predictions; the best way to en-
sure this is to set both to gold. Using gold entity
mentions is a common setting in event extraction
(Li et al., 2013; Chen et al., 2015; Nguyen et al.,
2016, inter alia). Since we have evaluation num-
bers only for biLSTM/CNN and our baseline in
this setting, there is no direct comparability with
previous work other than Li et al. (2013).

Both systems were trained on the same training
set, and hyperparameters were optimized on the
same development set. We trained both systems
using enhanced++ dependencies (Schuster and
Manning, 2016).

We optimize hyper parameters for
biLSTM/CNN using Random Search (Bergstra
and Bengio, 2012). We use a batch size of 450, 20
CNN filters, 150 LSTM dimensions, and 130 bias
dimensions. In order to deal with class imbalance,
we set the weight of non-null training samples to
2; this value is used to scale the loss accordingly.
We used Keras (Chollet et al., 2015) version 2.0.2
with the TensorFlow backend as the learning
framework. Training the network on an NVIDIA
P40 GPU takes about 20 seconds per epoch.

5.2 Experiments and Results

We report the results of four main experiments,
namely measuring argument identification perfor-
mance in general, grouped by argument type,
grouped by dependency path length, and using
only a dependency path biLSTM. We report pre-
cision, recall, and F1.

Training neural networks is usually a non-
deterministic process. In order to increase relia-
bility, training was performed five times and the
evaluation on the test set was averaged across five
evaluation runs, one run per trained model.
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Baseline biLSTM/CNN
P R F1 P R F1 Support ∆F1

1 Micro 67.7 58.7 62.9 63.1 68.3 65.5† 916 2.6±0.5
2 dep-path biLSTM - - - 64.9 64.0 64.4 916 1.5
3 Time 69.9 70.9 70.4 70.9 80.1 75.2 134 4.8
4 Entity 63.7 56.7 60.0 57.7 65.2 61.2 127 1.2
5 Place 64.0 41.7 50.5 52.1 48.0 49.9 115 -0.6
6 Person 74.6 61.7 67.6 69.1 78.3 73.4 81 5.8
7 Artifact 78.5 71.8 75.0 70.3 77.2 73.5 71 -1.5
8 Destination 63.4 66.7 65.0 65.6 80.0 72.1 39 7.1
9 Crime 84.4 100.0 91.6 82.5 99.5 90.2 38 -1.4
10 Attacker 60.7 47.2 53.1 52.4 66.6 58.6 36 5.5
11 Defendant 70.0 63.6 66.7 67.6 75.2 71.1 33 4.4
12 Agent 64.7 34.3 44.9 55.9 40.6 46.8 32 1.9

Table 2: Test set precision, recall, and F1 for the baseline and biLSTM/CNN, ordered by frequency. Reported are argument
types with more than 30 instances. Mirco reports micro-averaged numbers, averaged across 5 training and testing rounds,
‘dep-path biLSTM’ reports numbers using only a dependency path biLSTM, the other rows report numbers per argument type.
‘Support’ reports the number of instances for the respective type. ‘∆F1’ reports the difference in F1 between biLSTM/CNN
and the baseline, as well as the standard deviation of biLSTM/CNN F1. † means statistically significant for every training and
testing round at the p < 0.05 level.
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(a) Test set F1 performance plotted against dependency path
length. The red curve depicts baseline F1, the blue curve de-
picts biLSTM/CNN F1.

Baseline biLSTM/CNN
Length F1 F1 Support ∆F1

1 80.2 83.5 432 3.3
2 53.9 59.5 248 5.6
3 27.8 36.9 123 9.1
4 31.5 35.4 59 3.9
5 29.3 14.3 26 -15.0

(b) Test set F1 by dependency path length for the baseline
and biLSTM/CNN. ‘Support’ reports the number of instances,
‘∆ F1’ reports the difference in F1 between biLSTM/CNN and
the baseline.

Figure 4: Test set F1 by dependency path length for the baseline and biLSTM/CNN.

Table 2 reports micro-averaged evaluation num-
bers for the baseline and biLSTM/CNN (Line 1),
a variant which uses only a dependency path biL-
STM (without context CNNs, Line 2) as well as
numbers per argument type (Lines 3-12). The
column ‘Support’ gives the number of instances
for the respective evaluation. Finally, the col-
umn ‘∆ F1’ reports the difference in F1 between
biLSTM/CNN and the baseline, positive num-
bers meaning better biLSTM/CNN performance,
as well as the standard deviation of the biL-
STM/CNN F1 score.

As we can see in Table 2, Line 1, biLSTM/CNN
has a lower precision and a considerably higher
recall than the baseline, resulting in an increase
of 2.6 points in micro-averaged F1 (with a stan-
dard deviation of 0.5 F1 points). This is statis-
tically significant at the p < 0.05 level.5 Note

5We measured significance using approximate random-
ization (Noreen, 1989). Each of the 5 models we trained per-
formed significantly better than the baseline.

that biLSTM/CNN does not use any manually en-
gineered features, whereas the baseline uses two
dozen feature templates, resulting in 150,000 fea-
tures. Furthermore, biLSTM/CNN is a simple
trigger-argument-pair classifier, whereas the base-
line jointly predicts all arguments of all triggers in
a sentence.

When we compare the performance using de-
pendency paths alone (Line 2), recall drops by 4.3
points, while increasing precision slightly by 1.8
points, resulting in a decrease of 1.1 F1 points.
The main advantage of the CNN is that it makes
the lexical context outside of the shortest depen-
dency path available to the system, which reflects
itself in the increased recall.

When we look at individual argument types,
we note that biLSTM/CNN improves performance
for all but three types. Destination has the
highest performance improvement (7.1 F1 points),
Artifact the highest loss (-1.5 F1 points).
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Time as the most frequent type in the test data
has a high improvement of 4.8 F1 points.

Figure 4 reports micro-averaged numbers for
the baseline and biLSTM/CNN per dependency
path length. Figure 4a is a visualization of Ta-
ble 4b. In total, 888 arguments (out of the 916 in
the test set) were connected to their triggers by de-
pendency paths of length 5 or less. biLSTM/CNN
performs considerably better for lengths 1-4, es-
pecially for paths of length 2 (+5.6 F1) and 4
(+9.1 F1). Length-1 paths, which are nearly as
frequent as all other path lenghts together, have
an increased performance of 3.3 F1 points. Only
length-5 paths (with a test set support of 26) lose
15 F1 points, mainly because biLSTM/CNN pro-
duced some false positives for this class.

Most of biLSTM/CNN’s errors are either false
positives (wrongly classified as an argument) or
false negatives (missed an argument). When it
confuses argument types, it usually confuses op-
posing types like Seller and Buyer.

6 Related Work

To the best of our knowledge, no other paper is tar-
geting event argument identification directly. For
this reason, we first summarize ‘neural’ event ex-
tractors, for which argument identification is one
necessary step. Then, we report work on repre-
senting dependency paths with neural networks.

Chen et al. (2015) use a pipelined event extrac-
tor based on CNNs. The input is a sentence, and
the output is, in phase one, all triggers in the sen-
tence and, in phase two, a classification of the ar-
gument type of a trigger-argument candidate pair.
The second phase is similar to the setting we ana-
lyze in this paper.

Nguyen et al. (2016) propose a joint and hybrid
approach using a Gated Recurrent Unit network
(Cho et al., 2014), a variant of an LSTM. Input to
their network is the word embedding matrix of a
sentence. In contrast to Chen et al. (2015), they
predict triggers and arguments jointly. They con-
catenate a one-hot representation of dependencies
to each word embedding. In contrast to this paper,
they do not attempt to directly operate on syntactic
structure. Instead, the GRU goes over the sentence
and passes its hidden states on to higher levels
of the network, which dynamically output triggers
and arguments for the entire sentence. Their ap-
proach is hybrid because they additionally use the
features from Li et al. (2013) We did not choose

this system as our baseline because it is consider-
ably more complex and would heavily rely on the
same features as our baseline in the setting we in-
vestigate in this paper.

Xu et al. (2015) use LSTMs for relation extrac-
tion. Similar to our work, they use LSTMs to com-
pute a representation of the shortest dependency
path connecting two related entities. While the
general learning scheme is similar to our biLSTM
component, they represent dependency paths dif-
ferently. Instead of one lexicalized path, they con-
struct four different representations, using only de-
pendency labels, only words, only part-of-speech
tags, and only WordNet categories. This results in
four LSTMs whose output is concatenated.

Roth and Lapata (2016) use dependency path-
encoding LSTMs for semantic role labeling
(SRL). Event extraction and SRL are similar in
terms of structures: SRL also involves finding
‘triggers’ and ‘arguments’. They differ however
in the nature of these structures. For example,
potential arguments in SRL may be assigned to
every verb in a sentence, while in event extrac-
tion, potential arguments must be assigned only
to event triggers. Similar to our work, Roth and
Lapata (2016) use an LSTM which processes a
dependency path connecting predicate and argu-
ment. Their dependency paths mix words, part-of-
speech tags and dependency relations.

7 Conclusions

In this paper, we show that argument identification
performance is tied to the length of dependency
paths connecting triggers and arguments. We pro-
pose a novel and efficient neural network that tar-
gets syntactic complexity. Without manual feature
engineering, it learns to produce meaningful repre-
sentations of dependency paths and to extract rel-
evant lexical context of arguments. We show that
our system outperforms a state-of-the-art baseline
which uses manually engineered features and pre-
dicts arguments jointly.
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