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Abstract

This study addresses the problem of iden-
tifying the meaning of unknown words
or entities in a discourse with respect to
the word embedding approaches used in
neural language models. We proposed
a method for on-the-fly construction and
exploitation of word embeddings in both
the input and output layers of a neural
model by tracking contexts. This extends
the dynamic entity representation used in
Kobayashi et al. (2016) and incorporates a
copy mechanism proposed independently
by Gu et al. (2016) and Gulcehre et al.
(2016). In addition, we construct a new
task and dataset called Anonymized Lan-
guage Modeling for evaluating the abil-
ity to capture word meanings while read-
ing. Experiments conducted using our
novel dataset show that the proposed vari-
ant of RNN language model outperformed
the baseline model. Furthermore, the ex-
periments also demonstrate that dynamic
updates of an output layer help a model
predict reappearing entities, whereas those
of an input layer are effective to predict
words following reappearing entities.

1 Introduction

Language models that use probability distribu-
tions over sequences of words are found in many
natural language processing applications, includ-
ing speech recognition, machine translation, text
summarization, and dialogue utterance genera-
tion. Recent studies have demonstrated that lan-
guage models trained using neural network (Ben-
gio et al., 2003; Mikolov et al., 2010) such as re-
current neural network (RNN) (Jozefowicz et al.,
2016) and convolutional neural network (Dauphin
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Figure 1: Dynamic Neural Text Modeling: the
embeddings of unknown words, denoted by coref-
erence indexes “[ k ]” are dynamically computed
and used in both the input and output layers (x[k]
and y[k]) of a RNN language model. These are
constructed from contextual information (d[k],i)
preceding the current (i+ 1)-th sentence.

et al., 2016) achieve the best performance across
a range of corpora (Mikolov et al., 2010; Chelba
et al., 2014; Merity et al., 2017; Grave et al., 2017).

However, current neural language models have
a major drawback: the language model works only
when applied to a closed vocabulary of fixed size
(usually comprising high-frequency words from
the given training corpus). All occurrences of out-
of-vocabulary words are replaced with a single
dummy token “<unk>”, showing that the word is
unknown. For example, the word sequence, Piko-
taro sings PPAP on YouTube is treated as <unk>
sings <unk> on <unk> assuming that the words
Pikotaro, PPAP, and YouTube are out of the vo-
cabulary. The model therefore assumes that these
words have the same meaning, which is clearly in-
correct. The derivation of meanings of unknown
words remains a persistent and nontrivial chal-
lenge when using word embeddings.

In addition, existing language models further
assume that the meaning of a word is the same
and universal across different documents. Neural
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Figure 2: Dynamic Neural Text Modeling: the meaning representation of each unknown word, denoted
by a coreference index “[ k ]”, is inferred from the local contexts in which it occurs.

language models also make this assumption and
represent all occurrences of a word with a single
word vector across all documents. However, the
assumption of a universal meaning is also unlikely
correct. For example, the name John is likely to re-
fer to different individuals in different documents.
In one story, John may be a pianist while another
John denoted in a second story may be an infant. A
model that represents all occurrences of John with
the same vector fails to capture the very different
behavior expected from John as a pianist and John
as an infant.

In this study, we address these issues and pro-
pose a novel neural language model that can build
and dynamically change distributed representa-
tions of words based on the multi-sentential dis-
course. The idea of incorporating dynamic mean-
ing representations into neural networks is not
new. In the context of reading comprehension,
Kobayashi et al. (2016) proposed a model that dy-
namically computes the representation of a named
entity mention from the local context given by
its prior occurrences in the text. In neural ma-
chine translation, the copy mechanism was pro-
posed as a way of improving the handling of out-
of-vocabulary words (e.g., named entities) in a
source sentence (Gu et al., 2016; Gulcehre et al.,
2016). We use a variant of recurrent neural lan-
guage model (RNLM), that combines dynamic
representation and the copy mechanism. The re-
sulting novel model, Dynamic Neural Text Model,
uses the dynamic word embeddings that are con-
structed from the context in the output and input
layers of an RNLM, as shown in Figures 1 and 2.

The contributions of this paper are three-fold.
First, we propose a novel neural language model,
which we named the Dynamic Neural Text Model.
Second, we introduce a new evaluation task and
dataset called Anonymized Language Modeling.
This dataset can be used to evaluate the ability of

a language model to capture word meanings from
contextual information (Figure 3). This task in-
volves a kind of one-shot learning tasks, in which
the meanings of entities are inferred from their
limited prior occurrences. Third, our experimen-
tal results indicate that the proposed model out-
performs baseline models that use only global and
static word embeddings in the input and/or out-
put layers of an RNLM. Dynamic updates of the
output layer helps the RNLM predict reappearing
entities, whereas those of the input layer are ef-
fective to predict words following reappearing en-
tities. A more detailed analysis showed that the
method was able to successfully capture the mean-
ings of words across large contexts, and to accu-
mulate multiple context information.

2 Background

2.1 RNN Language Model
Given a sequence of N tokens of a docu-
ment D = (w1, w2, ..., wN ), an RNN lan-
guage model computes the probability p(D) =∏N

t=1 p(wt|w1, ..., wt−1). The computation of
each factorized probability p(wt|w1, ..., wt−1) can
also be viewed as the task of predicting a following
word wt from the preceding words (w1, ..., wt−1).
Typically, RNNs recurrently compute the proba-
bility of the following word wt by using a hidden
state ht−1 at time step t− 1,

p(wt|w1, ..., wt−1) =
exp(~hᵀ

t−1ywt + bwt)∑
w∈V exp(~hᵀ

t−1yw + bw)
,

(1)

~ht =
−−−→
RNN(xwt ,

~ht−1). (2)

Here, xwt and ywt denote the input and output
word embeddings of wt respectively, V repre-
sents the set of words in the vocabulary, and bw
is a bias value applied when predicting the word
w. The function

−−−→
RNN is often replaced with
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LSTM (Hochreiter and Schmidhuber, 1997) or
GRU (Cho et al., 2014) to improve performance.

2.2 Dynamic Entity Representation

RNN-based models have been reported to achieve
better results on the CNN QA reading compre-
hension dataset (Hermann et al., 2015; Kobayashi
et al., 2016). In the CNN QA dataset, every named
entity in each document is anonymized. This is
done to allow the ability to comprehend a docu-
ment using neither prior nor external knowledge
to be evaluated. To capture the meanings of such
anonymized entities, Kobayashi et al. (2016) pro-
posed a new model that they named dynamic entity
representation. This encodes the local contexts of
an entity and uses the resulting context vector as
the word embedding of a subsequent occurrence
of that entity in the input layer of the RNN. This
model: (1) constructs context vectors d′e,i from the
local contexts of an entity e at the i-th sentence; (2)
merges multiple contexts of the entity e through
max pooling and produces the dynamic represen-
tation de,i; and (3) replaces the embedding of the
entity e in the (i+1)-th sentence with the dynamic
embedding xe,i+1 produced from de,i. More for-
mally,

xe,i+1 = Wdcde,i + be, (3)

de,i = maxpooling(d′e,i,de,i−1), (4)

d′e,i = ContextEncoder(e, i). (5)

Here, be denotes a bias vector, maxpooling is a
function that yields the largest value from the el-
ementwise inputs, and ContextEncoder is an en-
coding function. Figure 2 gives an example of the
process of encoding and merging contexts from
sentences. An arbitrary encoder can be used for
ContextEncoder; Kobayashi et al. (2016) used
bidirectional RNNs, encoding the words surround-
ing the entity e of a sentence in both directions. If
the entity e fails to appear in the i-th sentence, the
embedding is not updated, i.e., de,i = de,i−1.

3 Proposed Method: Dynamic Neural
Text Modeling

In this section, we introduce the extension of dy-
namic entity representation to language modeling.
From Equations 1 and 2, RNLM uses a set of word
embeddings in the input layer to encode the pre-
ceding contextual words, and another set of word
embeddings in the output layer to predict a word

from the encoded context. Therefore, we consider
incorporating the idea of dynamic representation
into the word embeddings in the output layer (yw

in Equation 1) as well as in the input layer (xw in
Equation 2; refer to Figure 1). The novel exten-
sion of dynamic representation to the output layer
affects predictions made for entities that appear
repeatedly, whereas that in the input layer is ex-
pected to affect the prediction of words that follow
the entities.

The procedure for constructing dynamic repre-
sentations of e, de,i is the same as that introduced
in Section 2.2. Before reading the (i + 1)-th sen-
tence, the model constructs the context vectors
[d′e,1, ...,d′e,i] from the local contexts of e in every
preceding sentence. Here, d′e,j denotes the context
vector of e in the j-th sentence. ContextEncoder
in the model produces a context vector d′e for e
at the t-th position in a sentence, using a bidirec-
tional RNN1 as follows:

d′e = ReLU(Whd[~ht−1, ~ht+1]+bd), (6)

~ht =
−−−→
RNN(xwt ,

~ht−1), (7)

~ht =
←−−−
RNN(xwt ,

~ht+1). (8)

Here, ReLU denotes the ReLU activation func-
tion (Nair and Hinton, 2010), while Wdc and Whd

correspond to learnable matrices; bd is a bias vec-
tor. As in the RNN language model, ~ht−1 and
~ht+1 as well as their composition d′e can capture

information necessary to predict the features of the
target e at the t-th word.

Following context encoding, the model merges
the multiple context vectors, [d′e,1, ...,d′e,i], into
the dynamic representation de,i using a merg-
ing function. A range of functions are abailable
for merging multiple vectors, while Kobayashi
et al. (2016) used only max pooling (Equation 4).
In this study, we explored three further func-
tions: GRU, GRU followed by ReLU (de,i =
ReLU(GRU(d′e,i,de,i−1))) and a function that se-
lects only the latest context, i.e., de,i = d′e,i. This
comparison clarifies the effect of the accumulation
of contexts as the experiments proceeded2.

1Equations 2 and 7 are identical but do not share internal
parameters.

2Note that merging functions are not restricted to con-
sidering two arguments (a new context and a merged past
context) recurrently but can consider all vectors over the
whole history [d′e,1, ...,d

′
e,i] (e.g., by using attention mecha-

nism (Bahdanau et al., 2015)). However, for simplicity, this
research focuses only on the case of a function with two
arguments.
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the hottest gift [  1  ] could be [  2  ] , but good luck  
finding one . as [  3  ] reports , many stores have sold out of [  2  ] even …

Anonymized Version

The hottest gift this Christmas could be Sony’s new PlayStation 2, but good luck 

finding one. As Greg Lefevre reports, many stores have sold out of the game even …

Original Version

Figure 3: An example document for Anonymized Language Modeling. Token “[ k ]” is an anonymized
token that appears k-th in the entities in a document. Language models predict the next word from the
preceding words, and calculate probabilities for whole word sequences.

The merging function produces the dynamic
representation de,i of e. In language modeling,
to read the (i + 1)-th sentence, the model uses
two dynamic word embeddings of e in the input
and output layers. The input embedding xe, used
to encode contexts (Equation 2), and the output
embedding ye, used to predict the occurrence of e
(Equation 1), are replaced with dynamic versions:

xe = Wdxde,i + bx
e , (9)

ye = Wdyde,i + by
e , (10)

where Wdx and Wdy denote learnable matrices,
and bx

e and by
e denote learnable vectors tied to e.

We can observe that a conventional RNN language
model is a variant that removes the dynamic terms
(Wdxde,i and Wdyde,i) using only the static terms
(bx

e and by
e) to represent e. The initial dynamic rep-

resentation de,0 is defined as a zero vector, so that
the initial word embeddings (xe and ye) are iden-
tical to the static terms (bx

e and by
e) until the point

at which the first context of the target word e is ob-
served. All parameters in the end-to-end model are
learned entirely by backpropagation, maximizing
the log-likelihood in the same way as a conven-
tional RNN language model.

We can view the approach in Kobayashi et al.
(2016) as a variant on the proposed method, but
using the dynamic terms only in the input layer
(for xe). We can also view the copy mecha-
nism (Gu et al., 2016; Gulcehre et al., 2016) as a
variant on the proposed method, in which specific
embeddings in the output layer are replaced with
special dynamic vectors.

4 Anonymized Language Modeling

This study explores methods for on-the-fly cap-
ture and exploitation of the meanings of unknown
words or entities in a discourse. To do this, we in-
troduce a novel evaluation task and dataset that we

called Anonymized Language Modeling. Figure 3
gives an example from the dataset. Briefly, the
dataset anonymizes certain noun phrases, treating
them as unknown words and retaining their coref-
erence relations. This allows a language model to
track the context of every noun phrase in the dis-
course. Other words are left unchanged, allowing
the language model to preserve the context of the
anonymized (unknown) words, and to infer their
meanings from the known words. The process
was inspired by Hermann et al. (2015), whose ap-
proach has been explored by the research on read-
ing comprehension.

More precisely, we used the OntoNotes (Prad-
han et al., 2012) corpus, which includes docu-
ments with coreferences and named entity tags
manually annotated. We assigned an anonymous
identifier to every coreference chain in the cor-
pus3 in order of first appearance4, and replaced
mentions of a coreference chain with its identi-
fier. In our experiments, each coreference chain
was given a dynamic representation. Following
Mikolov et al. (2010), we limited the vocabulary to
10,000 words appearing frequently in the corpus.
Finally, we inserted “<bos>” and “<eos>” tokens
to mark the beginning and end of each sentence.

An important difference between this dataset
and the one presented in Hermann et al. (2015) is
in the way that coreferences are treated. Hermann
et al. (2015) used automatic resolusion of corefer-
ences, whereas our study made use of the manual
annotations in the OntoNotes. Thus, the process
of Hermann et al. (2015) introduced (intentional
and unintentional) errors into the dataset. Addi-
tionally, the dataset did not assign an entity iden-

3We used documents with no more than 50 clusters, which
covered more than 97% of the corpus.

4Following the study of Luong et al. (2015), we assigned
“<unk1>”, “<unk2>”, ... to coreference clusters in order of
first appearance.
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Split Train Valid Test
# of documents 2725 335 336
Avg. # of sentences 25.7 27.2 26.4
Avg. # of unique entities 15.6 16.8 15.8
Avg. # of unique entities oc-
curring more than once

9.3 9.9 9.5

Avg. # of occurrences of an
entity

3.2 3.2 3.1

Table 1: Statistics of Anonymized Language
Modeling dataset.

tifier to a pronoun. In contrast, as our dataset has
access to the manual annotations of coreferences,
we are able to investigate the ability of the lan-
guage model to capture meanings from contexts.

Dynamic updating could be applied to words
in all lexical categories, including verbs, adjec-
tives, and nouns without requiring additional ex-
tensions. However, verbs and adjectives were ex-
cluded from targets of dynamic updates in the ex-
periments, for two reasons. First, proper nouns
and nouns accounted for the majority (70%) of
the low-frequency (unknown) words, followed by
verbs (10%) and adjectives (9%). Second, we
assumed that the meaning of a verb or adjective
would shift less over the course of a discourse than
that of a noun. When semantic information of un-
known verbs and adjectives is required, their em-
beddings may be extracted from ad-hoc training
on a different larger corpus. This, however, was
beyond the scope of this study.

5 Experiments

5.1 Setting

An experiment was conducted to investigate the
effect of Dynamic Neural Text Model on the
Anonymized Language Modeling dataset. The
split of dataset followed that of the original cor-
pus (Pradhan et al., 2012). Table 1 summarizes
the statistics of the dataset.

The baseline model was a typical LSTM RNN
language model with 512 units. We compared
three variants of the proposed model, using dif-
ferent applications of dynamic embedding: in the
input layer only (as in Kobayashi et al. (2016)),
in the output layer only, and in both the input and
output layers. The context encoders were bidirec-
tional LSTMs with 512 units, the parameters of
which were not the same as those in the LSTM
RNN language models. All models were trained
by maximizing the likelihood of correct tokens, to

achieve best perplexity on the validation dataset5.
Most hyper-parameters were tuned and fixed by
the baseline model on the validation dataset6.

It is difficult to adequately train the all parts of a
model using only the small dataset of Anonymized
Language Modeling. We therefore pretrained
word embeddings and ContextEncoder (the bi-
directional RNNs and matrices in Equations 6–
8) on a sentence completion task in which clozes
were predicted from the surrounding words in
a large corpus (Melamud et al., 2016)7. We
used the objective function with negative sam-
pling (Mikolov et al., 2013):

∑
e(log σ(x̂ᵀ

exe) +∑
v∈Neg(log σ(−x̂ᵀ

exv))). Here, x̂e is a context
vector predicted by ContextEncoder, xe denotes
the word embedding of a target word e appear-
ing in the corpus, and Neg represents randomly
sampled words. These pretrained parameters of
ContextEncoder were fixed when the whole lan-
guage model was trained on the Anonymized Lan-
guage Modeling dataset. We implemented models
in Python using the Chainer neural network li-
brary (Tokui et al., 2015). The code and the con-
structed dataset are publicly available8.

5.2 Results and Analysis
5.2.1 Perplexity
Table 2 shows performance of the baseline model
and the three variants of the proposed method in
terms of perplexity. The table reports the mean
and standard error of three perplexity values af-
ter training using three different randomly cho-
sen initializations (we used the same convention

5We performed a validation at the end of every half epoch
out of five epochs.

6Batchsize was 8. Adam (Kingma and Ba, 2015) with
learning rate 10−3. Gradients were normalized so that their
norm was smaller than 1. Truncation of backpropagation and
updating was performed after every 20 sentences and at the
end of document.

7We pretrained a model on the Gigaword Corpus, exclud-
ing sentences with more than 32 tokens. We performed train-
ing for 50000 iterations with a batch size of 128 and five
negative samples. Only words that occurred no fewer than
500 times are used; other words were treated as unknown
tokens. Melamud et al. (2016) used three different sets of
word embeddings for the two inputs with respect to the en-
coders (

−−−→
RNN and

←−−−
RNN) and the output (target). However,

we forced the sets of word embeddings to share a single set
of word embeddings in pretraining. We initialized the word
embeddings in both the input layer (xw) and the output layer
(yw) of the novel models, including the baseline model, with
this single set. The word embeddings of all anonymized to-
kens were initialized as unknown words with the word em-
bedding of “<unk>”.

8https://github.com/soskek/dynamic_
neural_text_model
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Models (1) All
(2) Reappearing

entities
(3) Following

entities (4) Non-entities
LSTM LM (Baseline) (A) 64.8±0.6 48.0±2.6 128.6±2.0 68.5±0.2
With only dynamic input (B) 62.8±0.3 42.4±1.1 109.5±1.4 66.4±0.3
With only dynamic output (C) 62.5±0.3 35.9±3.7 129.0±0.7 69.5±0.3
With dynamic input & output (D) 60.7±0.2 34.0±1.3 106.8±0.6 67.6±0.04

Table 2: Perplexities for each token group of models on the test set of Anonymized Language Modeling
dataset. All values are averages with standard errors, calculated respectively by three models (trained
with different random numbers). Dynamic models used GRU followed by ReLU as the merging function.

throughout this paper). Here, we discuss the pro-
posed method using GRU followed by ReLU as
the merging function, as this achieved the best
perplexity (see Section 5.2.2 for a comparison of
functions). We also show perplexitiy values when
evaluating words of specific categories: (1) all
words; (2) reappearing entity words; (3) words fol-
lowing entities; and (4) non-entity words.

All variants of the proposed method outper-
formed the baseline model. Focusing on the cat-
egories (2) and (3) highlights the roles of dynamic
updates of the input and output layers. Dynamic
updates of the input layer (B) had a larger im-
provement for predicting words following entities
(3) than those of the output layer (C). In con-
trast, dynamic updates of the output layer (C) were
quite effective for predicting reappearing entities
(2) whereas those of the input layer (B) were not.
These facts confirm that: dynamic updates of the
input layer help a model predict words following
entities by supplying on-the-fly context informa-
tion; and those of the output layer are effective to
predict entity words appearing multiple times.

In addition, dynamic updates of both the input
and output layers (D) further improved the perfor-
mance from those of either the output (C) or input
(B) layer. Thus, the proposed dynamic output was
shown to be compatible with dynamic input, and
vice versa. These results demonstrated the posi-
tive effect of capturing and exploiting the context-
sensitive meanings of entities.

In order to examine whether dynamic updates of
the input and output embeddings capture context-
sensitive meanings of entities, we present Fig-
ures 4, 5 and 6. Figure 4 depicts the perplexity
of words with different positions in a document9.
The figure confirms that the advantage of the pro-
posed method over the baseline is more evident

9It is more difficult to predict tokens appearing latter in
a document because the number of new (unknown) tokens
increases as a model reads the document.
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Figure 4: Perplexity of all tokens relative to the
time at which they appear in the document.

especially in the latter part of documents, where
repeated words are more likely to occur.

Figure 5 shows the perplexity with respect to
the frequency of words t within documents. Note
that the word embedding at the first occurrence of
an entity is static. This figure indicates that en-
tities appearing many times enjoy the benefit of
the dynamic language model. Figure 6 visualizes
the perplexity of entities with respect to the num-
bers of their antecedent candidates. It is clear from
this figure that the proposed method is better at
memorizing the semantic information of entities
appearing repeatedly in documents than the base-
line. These results also demonstrated the contribu-
tion of dynamic updates of word embeddings.

5.2.2 Comparison of Merging functions
Table 3 compares models with different merging
functions; GRU-ReLU, GRU, max pooling, and
the use of the latest context. The use of the lat-
est context had the worst performance for all vari-
ants of the proposed method. Thus, a proper accu-
mulation of multiple contexts is indispensable for
dynamic updates of word embeddings. Although
Kobayashi et al. (2016) used only max pooling as
the merging function, GRU and GRU-ReLU were
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Models Merging function
# of parameters
(to be finetuned) (1) All

(2) Reappearing
entities

(3) Following
entities (4) Non-entities

Only GRU-ReLU 18.9M (14.2M) 62.8±0.3 42.4±1.1 109.5±1.4 66.4±0.3
dynamic input GRU 18.9M (14.2M) 63.2±0.4 43.3±2.7 111.2±0.7 66.8±0.4

Max pool. 17.3M (12.6M) 63.6±0.4 45.0±2.6 116.0±1.0 67.0±0.2
Only latest 17.3M (12.6M) 64.0±0.4 44.1±1.6 127.6±0.7 67.5±0.2

Only GRU-ReLU 18.9M (14.2M) 62.5±0.3 35.9±3.7 129.0±0.7 69.5±0.3
dynamic output GRU 18.9M (14.2M) 62.6±0.2 39.0±2.0 121.1±8.3 69.1±0.2

Max pool. 17.3M (12.6M) 62.2±0.4 41.1±1.9 126.9±1.5 68.4±0.6
Only latest 17.3M (12.6M) 64.9±0.1 49.8±1.8 129.1±1.6 70.6±0.2

Dynamic GRU-ReLU 19.2M (14.4M) 60.7±0.2 34.0±1.3 106.8±0.6 67.6±0.04
input & output GRU 19.2M (14.4M) 60.9±0.3 37.5±0.3 108.9±0.8 67.2±0.4

Max pool. 17.6M (12.9M) 60.7±0.3 39.5±3.4 107.5±1.3 66.8±0.8
Only latest 17.6M (12.9M) 63.4±0.2 47.9±4.2 116.4±0.4 68.9±0.1

Baseline 12.3M (12.3M) 64.8±0.6 48.0±2.6 128.6±2.0 68.5±0.2

Table 3: Results for models with different merging functions on the test set of the Anonymized Language
Modeling dataset, as same as in Table 2.
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Figure 5: Perplexity of tokens following the enti-
ties relative to the time at which the entity occurs.

shown to be comparable in performance and supe-
rior to max pooling when predicting tokens related
to entities (2) and (3).

5.2.3 Predicting Entities by Likelihood of a
Sentence

In order to examine contribution of the dynamic
language models on a downstream task, we con-
ducted cloze tests for comprehension of a sentence
with reappearing entities in a discourse. Given
multiple preceding entities E = {e+, e1, e2, ...}
followed by a cloze sentence, the models were re-
quired to predict the true antecedent e+ which al-
lowed the cloze to be correctly filled, among the
other alternatives E− = {e1, e2, ...}.

Language models solve this task by comparing
the likelihoods of sentences filled with antecedent
candidates in E and returning the entity with the
highest likelihood of the sentence. In this experi-
ment, the performance of a model was represented
by the Mean Quantile (MQ) (Guu et al., 2015).
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Figure 6: Perplexity of entities relative to the num-
ber of antecedent entities.

The MQ computes the mean ratio at which the
model predicts a correct antecedent e+ more likely
than negative antecedents in E−,

MQ =
|{e− ∈ E− : p(e−) < p(e+)}|

|E−| . (11)

Here, p(e) denotes the likelihood of a sentence
whose cloze is filled with e. If the correct an-
tecedent e+ yields highest likelihood, MQ gets 1.

Table 4 reports MQs for the three variants and
merging functions. Dynamic updates of the in-
put layer greatly boosted the performance by ap-
proximately 10%, while using both dynamic in-
put and output improved it further. In this ex-
periment, the merging functions with GRUs out-
perform the others. These results demonstrated
that Dynamic Neural Text Models can accumulate
a new information in word embeddings and con-
tribute to modeling the semantic changes of enti-
ties in a discourse.
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Models Merging func. MQ
Baseline .525±.001
Only GRU-ReLU .630±.005
dynamic input GRU .633±.005

Max pool. .617±.002
Only latest .600±.004

Only GRU-ReLU .519±.001
dynamic output GRU .522±.000

Max pool. .519±.001
Only latest .519±.003

Dynamic GRU-ReLU .642±.004
input & output GRU .637±.005

Max pool. .620±.002
Only latest .613±.002

Table 4: Mean Quantile of a true coreferent entity
among antecedent entities.

6 Related Work

An approach to addressing the unknown word
problem used in recent studies (Kim et al., 2016;
Sennrich et al., 2016; Luong and Manning, 2016;
Schuster and Nakajima, 2012) comprises the em-
beddings of unknown words from character em-
beddings or subword embeddings. Li and Juraf-
sky (2015) applied word disambiguation and use
a sense embedding to the target word. Choi et al.
(2017) captured the context-sensitive meanings of
common words using word embeddings, applied
through a gating function controlled by history
words, in the context of machine translation. In fu-
ture work, we will explore a wider range of mod-
els, to integrate our dynamic text modeling with
methods that estimate the meaning of unknown
words or entities from their constituents. When
addressing well-known entities such as Obama
and Trump, it makes sense to learn their embed-
dings from external resources, as well as dynam-
ically from the preceding context in a given dis-
course (as in our Dynamic Neural Text Model).
The integration of these two sources of informa-
tion is an intriguing challenge in language model-
ing.

A key aspect of our model is its incorporation
of the copy mechanism (Gu et al., 2016; Gul-
cehre et al., 2016), using dynamic word embed-
dings in the output layer. Independently of this
study, several research groups have explored the
use of variants of the copy mechanisms in lan-
guage modeling (Merity et al., 2017; Grave et al.,
2017; Peng and Roth, 2016). These studies, how-
ever, did not incorporate dynamic representations
in the input layer. In contrast, our proposal in-
corporates the copy mechanism through the use

of dynamic representations in the output layer, in-
tegrating them with dynamic mechanisms in both
the input and output layers by applying dynamic
entity-wise representation. Our experiments have
demonstrated the benefits of such integration.

Another related trend in recent studies is the
use of neural network to capture the informa-
tion flow of a discourse. One approach has been
to link RNNs across sentences (Wang and Cho,
2016; Serban et al., 2016), while a second ap-
proach has expolited a type of memory space to
store contextual information (Sukhbaatar et al.,
2015; Tran et al., 2016; Merity et al., 2017).
Research on reading comprehension (Kobayashi
et al., 2016; Henaff et al., 2017) and coreference
resolution (Wiseman et al., 2016; Clark and Man-
ning, 2016b,a) has shown the salience of entity-
wise context information. Our model could be lo-
cated within such approaches, but is distinct in be-
ing the first model to make use of entity-wise con-
text information in both the input and output layers
for sentence generation.

We summarize and compare works for entity-
centric neural networks that read a document.
Kobayashi et al. (2016) pioneered entity-centric
neural models tracking states in a discourse. They
proposed Dynamic Entity Representation, which
encodes contexts of entities and updates the states
using entity-wise memories. Wiseman et al.
(2016) also proposed a method for managing sim-
ilar entity-wise features on neural networks and
improved a coreference resolution model. Clark
and Manning (2016b,a) incorporated such entity-
wise representations in mention-ranking corefer-
ence models. Our paper follows Kobayashi et al.
(2016) and exploits dynamic entity reprensetions
in a neural language model, where dynamic re-
poresentations are used not only in the neural en-
coder but also in the decoder, applicable to various
sequence generation tasks, e.g., machine transla-
tion and dialog response generation. Simultane-
ously with our paper, Ji et al. (2017) use dynamic
entity representation in a neural language model
for reranking outputs of a coreference resolution
system. Yang et al. (2017) experiment language
modeling with referring to internal contexts or ex-
ternal data. Henaff et al. (2017) focus on neural
networks tracking contexts of entities, achieving
the state-of-the-art result in bAbI (Weston et al.,
2015), a reading comprehension task. They en-
code the contexts of each entity by an attention-
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like gated RNN instead of using coreference links
directly. Dhingra et al. (2017) also try to improve
a reading comprehension model using coreference
links. Similarly to our dynamic entity representa-
tion, Bahdanau et al. (2017) construct on-the-fly
word embeddings of rare words from dictionary
definitions.

The fisrt key component of dynamic entity
representation is a function to merge more than
one contexts about an entity into a consistent
representation of the entity. Various choices
for the function exist, e.g., max or average-
pooling (Kobayashi et al., 2016; Clark and Man-
ning, 2016b), RNN (GRU, LSTM (Wiseman
et al., 2016; Yang et al., 2017) or other gated
RNNs (Henaff et al., 2017; Ji et al., 2017)), or
using the latest context only (without any merg-
ing) (Yang et al., 2017). This paper is the first
work comparing the effects of those choices (see
Section 5.2.2).

The second component is a function to encode
local contexts from a given text, e.g., bidirec-
tional RNN encoding (Kobayashi et al., 2016),
unidirectional RNN used in a language model (Ji
et al., 2017; Yang et al., 2017), feedforward neu-
ral network with a sentence vector and an entity’s
word vector (Henaff et al., 2017) or hand-crafted
features with word embeddings (Wiseman et al.,
2016; Clark and Manning, 2016b). This study
employs bi-RNN analogously to Kobayashi et al.
(2016), which can access full context with power-
ful learnable units.

In the task setting proposed in this study, a
model must capture the meaning of a given spe-
cific word from a small number of its contexts in
a given discourse. The task could also be seen
as novel one-shot learning (Fei-Fei et al., 2006)
of word meanings. One-shot learning for NLP
like this has been little studied, with the excep-
tion of the study by Vinyals et al. (2016), which
used a task in which the context of a target word is
matched with a different context of the same word.

7 Conclusion

This study addressed the problem of identifying
the meaning of unknown words or entities in a
discourse with respect to the word embedding ap-
proaches used in neural language models. We pro-
posed a method for on-the-fly construction and
exploitation of word embeddings in both the in-
put layer and output layer of a neural model by

tracking contexts. This extended the dynamic en-
tity representation presented in Kobayashi et al.
(2016), and incorporated a copy mechanism pro-
posed independently by Gu et al. (2016) and Gul-
cehre et al. (2016). In the course of the study,
we also constructed a new task and dataset, called
Anonymized Language Modeling, for evaluating
the ability of a model to capture word mean-
ings while reading. Experiments conducted using
our novel dataset demonstrated that the RNN lan-
guage model variants proposed in this study out-
performed the baseline model. More detailed anal-
ysis indicated that the proposed method was par-
ticularly successful in capturing the meaning of
an unknown words from texts containing few in-
stances.
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