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Abstract

In this article, we propose to investigate
a new problem consisting in turning a
distributional thesaurus into dense word
vectors. We propose more precisely a
method for performing such task by asso-
ciating graph embedding and distributed
representation adaptation. We have ap-
plied and evaluated it for English nouns
at a large scale about its ability to re-
trieve synonyms. In this context, we have
also illustrated the interest of the devel-
oped method for three different tasks: the
improvement of already existing word em-
beddings, the fusion of heterogeneous rep-
resentations and the expansion of synsets.

1 Introduction

Early work about distributional semantics
(Grefenstette, 1994; Lin, 1998; Curran and
Moens, 2002) was strongly focused on the notion
of distributional thesaurus. Recent work in this
domain has been more concerned by the notions
of semantic similarity and relatedness (Budanitsky
and Hirst, 2006) and by the representation of dis-
tributional data. This trend has been strengthened
even more recently with all work about distributed
word representations and embeddings, whether
they are built by neural networks (Mikolov et al.,
2013) or not (Pennington et al., 2014).

From a more global perspective, distributional
thesauri and distributional data, i.e. distributional
contexts of words, can be considered as dual rep-
resentations of the same semantic similarity infor-
mation. Distributional data are an intensional form
of this information that can take an extensional
form as distributional thesauri by applying a simi-
larity measure to them. Going from an intensional
to an extensional representation corresponds to the
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Figure 1: Duality of semantic information

rather classical process underlying the building of
distributional thesauri. In the context of word em-
beddings, Perozzi et al. (2014a) extend this pro-
cess to the building of lexical networks.

Going to the other way, from an extensional
to an intensional representation, is, as far as we
know, a new problem in the context of distribu-
tional semantics. The interest of this transforma-
tion is twofold. First, whatever the initial form
of the semantic knowledge, it can be turned into
the most suitable form for a particular use. For
instance, thesauri are more suitable for tasks like
query expansion while word embeddings are more
adapted as features for statistical classifiers. Sec-
ond, each form is also associated with specific
methods of improvement. A lot of work has
been done for improving distributional contexts
by studying various parameters, which has led to
an important improvement of distributional the-
sauri. Conversely, work such as (Claveau et al.,
2014) has focused on methods for improving the-
sauri themselves. It would clearly be interesting
to transpose the improvements obtained in such
a way to distributional contexts, as illustrated by
Figure 1.

Hence, we propose in this article to investigate
the problem of turning a distributional thesaurus
into word embeddings, that is to say embedding
a thesaurus. We will show that such process can
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be achieved without losing too much information
and moreover, that its underlying principles can
be used for improving already existing word em-
beddings. Finally, we will illustrate the interest
of such process for building word embeddings in-
tegrating external knowledge more efficiently and
extending this knowledge.

2 Embedding Distributional Thesauri

A distributional thesaurus is generally viewed as a
set of entries with, for each entry, a list of semantic
neighbors ranked in descending order of seman-
tic similarity with this entry. Since the neighbors
of an entry are also entries of the thesaurus, such
thesaurus can be considered as a graph in which
vertices are words and edges are the semantic
neighborhood relations between them, weighted
according to their semantic similarity. The result-
ing graph is undirected if the semantic similarity
measure between words is symmetric, which is
the most common case. Such representation was
already adopted for improving distributional the-
sauri by reranking the neighbors of their entries
(Claveau et al., 2014) for instance.

One specificity of distributional thesauri from
that perspective is that although the weight be-
tween two words is representative of their seman-
tic similarity, we know from work such as (Fer-
ret, 2010; Claveau et al., 2014) that the relevance
of the semantic neighbors based on this weight
strongly decreases as the rank of the neighbors
increases. Consequently, our strategy for embed-
ding distributional thesauri is two-fold: first, we
build an embedding by relying on methods for em-
bedding graphs, either by exploiting directly their
structure or from their representation as matrices;
second, we adapt the embedding resulting from
the first step according to the specificities of dis-
tributional thesauri. We detail these two steps in
the next two sections.

2.1 Graph Embedding

The problem of embedding graphs in the perspec-
tive of dimension reduction is not new and was
already tackled by much work (Yan et al., 2007),
going from spectral methods (Belkin and Niyogi,
2001) to more recently neural methods (Perozzi
et al., 2014b; Cao et al., 2016). As graphs can be
represented by their adjacency matrix, this prob-
lem is also strongly linked to the matrix factoriza-
tion problem. The basic strategy is to perform the

eigendecomposition of the matrix as for instance
in the case of Latent Semantic Analysis (LSA)
(Landauer and Dumais, 1997). However, such de-
composition is computationally expensive and for
large matrices, as in the context of Collaborative
Filtering (Koren, 2008), less constrained matrix
factorization techniques are used.

For turning a distributional thesaurus into word
embeddings, we tested three different methods:
• the LINE algorithm (Tang et al., 2015), a re-

cent method for embedding weighted graphs;
• the application of Singular Value Decompo-

sition (SVD) to the adjacency matrix of the
thesaurus;
• the matrix factorization approach proposed

by Hu et al. (2008), also applied to the ad-
jacency matrix of the thesaurus.

LINE defines a probabilistic model over the
space V ×V , with V , the set of vertices of the con-
sidered graph. This probabilistic model is based
on the representation of each vertex as a low-
dimensional vector. This vector results from the
minimization of an objective function based on the
Kullback-Leibler divergence between the proba-
bilistic model and the empirical distribution of
the considered graph. This minimization is per-
formed by the Stochastic Gradient Descent (SGD)
method. Tang et al. (2015) propose more precisely
two probabilistic models: one is based on the di-
rect relation between two vertices while the sec-
ond defines the proximity of two vertices accord-
ing to the number of neighbors they share. We
adopted the second model, which globally gives
better results on several benchmarks.

In our second option, SVD factorizes T , the ad-
jacency matrix of the thesaurus to embed, into the
product U ·Σ ·V ᵀ. U and V are orthonormal and Σ
is a diagonal matrix of eigenvalues. We classically
adopted the truncated version of SVD by keeping
only the first d elements of Σ, which finally leads
to Td = Ud·Σd·V ᵀ

d . Levy et al. (2015) investigated
in the context of word co-occurrence matrices the
best option for the low-dimensional representation
of words as the usual setting was Ud · Σd while
Caron (2001) suggested that Ud · ΣP

d with P < 1
would be a better option. They found that P = 0
or P = 0.5 are clearly better than P = 1, with a
slight superiority for P = 0. Similarly, we found
P = 0 to be the best option.

Our last choice is based on a less constrained
form of matrix factorization where T is decom-
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posed into two matrices in such a way that U ·V =
T̂ ≈ T , with T ∈ Rm·n, U ∈ Rm·d, V ∈ Rd·n and
d � m,n. U and V are obtained by minimizing
the following expression:∑

i,j

(tij − uᵀ
i vj)2 + λ(‖ui‖2 + ‖vj‖2) (1)

where the first term minimizes the reconstruction
error of T by the product U · V while the sec-
ond term is a regularization term, controlled by the
parameter λ for avoiding overfitting. We used U
as embedding of the initial thesaurus. (Hu et al.,
2008) is a slight variation of this approach where
tij is turned into a confidence score and the min-
imization of equation 1 is performed by the Al-
ternating Least Squares method. One of the in-
terests of this matrix factorization approach is its
ability to deal with undefined values, which im-
plements an implicit feedback in the context of
recommender systems and can deal in our con-
text with the fact that the input graph is generally
sparse and does not include the furthest semantic
neighbors of an entry.

2.2 From Graph to Thesaurus Embeddings

As mentioned previously, all the graph embedding
methods of the previous section exploit the seman-
tic similarity between words but for an entry, this
similarity is not linearly correlated with the rank
of its relevant neighbors in the thesaurus. In other
words, the relevance of the semantic neighbors of
an entry strongly decreases as their rank increases
and the first neighbors are particularly important.

For taking into account this observation, we
have adopted a strategy consisting in using the first
neighbors of each entry of the initial thesaurus as
constraints for adapting the embeddings built from
this thesaurus by the graph embedding methods
we consider. Such adaptation has already been
tackled by some work in the context of the in-
jection of external knowledge made of semantic
relations into embeddings built mainly by neural
methods such as the Skip-Gram model (Mikolov
et al., 2013). Methods for performing such injec-
tion can roughly be divided into two categories:
those operating during the building of the embed-
dings, generally by modifying the objective func-
tion supporting this building (Yih et al., 2012;
Zhang et al., 2014), and those applied after the
building of the embeddings (Yu and Dredze, 2014;
Xu et al., 2014). We have more particularly used
or adapted two methods from the second category

and transposed one method from the first category
for implementing our endogenous strategy.

The first method we have considered is the
retrofitting method from Faruqui et al. (2015).
This method performs the adaptation of a set of
word vectors qi by minimizing the following ob-
jective function through a label propagation algo-
rithm (Bengio et al., 2006):

n∑
i=1

[
‖qi − q̂i‖2 +

∑
(i,j)∈E

‖qi − qj‖2
]

(2)

where q̂i are the qi vectors after their adaptation.
The first term is a stability term ensuring that the
adapted vectors do not diverge too much from the
initial vectors while the second term represents an
adaptation term, tending to bring closer the vec-
tors associated with words that are part of a rela-
tion from an external knowledge source E. In our
case, this knowledge corresponds to the relations
between each entry of the initial thesaurus and its
first neighbors.

The second method, counter-fitting (Mrkšić
et al., 2016), is close to retrofitting and mainly
differentiates from it by adding to the objective
function a repelling term for pushing vectors cor-
responding to antonymous words away from each
other. However, a distributional thesaurus does not
contain identified antonymous words1. Hence, we
discarded this term and used the following objec-
tive function, minimized by SGD:

(3)

N∑
i =1

∑
j ∈N(i)

τ(dist(q̂i, q̂j)− dist(qi, qj))

+
∑

(i,j) ∈E

τ(dist(q̂i, q̂j))

with dist(x, y) = 1 − cos(x, y) and τ(x) =
max(0, x). As in equation 2, the first term tends
to preserve the initial vectors. In this case, this
preservation does not focus on the vectors them-
selves but on the pairwise distances between a vec-
tor and its nearest neighbors (N(i)). The second
term is quite similar to the second term of equa-
tion 2 with the use of a distance derived from
the Cosine similarity instead of the Euclidean dis-
tance2.

1We tried to exploit semantic neighbors that are not very
close to their entry as antonyms but results were globally bet-
ter without them.

2Since the Cosine similarity is used as similarity measure
between words through their vectors, this distance should be
more adapted in this context than the Euclidean distance.
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The last method we have used for improving the
embeddings built from the initial thesaurus, called
rank-fitting hereafter, is a transposition of the
method proposed by Liu et al. (2015). The objec-
tive of this method is to integrate into embeddings
order constraints coming from external knowledge
with the following form: similarity(wi, wj) >
similarity(wi, wk), abbreviated sij > sik in what
follows. This kind of constraints particularly fits
our context as the semantic neighbors of an en-
try in a distributional thesaurus are ranked and can
be viewed as a set of such constraints. More pre-
cisely, i corresponds in this case to an entry and
j and k to two of its neighbors such that rank(j)
> rank(k). However, the method of Liu et al.
(2015) is linked to the Skip-Gram model and was
defined as a modification of the objective function
underlying this model. We have transposed this
approach for its application to the adaptation of
embeddings after their building, without a specific
link to the Skip-Gram model.

The general idea is to adapt vectors to minimize
sij − sik ∀(i, j, k) ∈ E. The objective to min-
imize takes more specifically the following form:

∑
(i,j,k)∈E

f(sik − sij) (4)

where f(sik − sij) = max(0, sik − sij) corre-
sponds to a kind of hinge loss function and the
similarity between words i and j, sij , is given by
the Cosine measure between their associated vec-
tors. The minimization of this objective is per-
formed as for counter-fitting by SGD.

Finally, we have also defined a mixed counter-
rank-fitting method that associates constraints
about the proximity of word vectors and their rela-
tive ranking. This association was done by mixing
the objective functions of counter-fitting and rank-
fitting through the addition of the second term of
equation 3, i.e. its adaptation term, and equation 4.
In this configuration, the first term of the counter-
fitting function, that preserves the initial embed-
dings, was not found useful anymore in prelimi-
nary experiments.

3 Evaluation of Thesaurus Embedding

3.1 Experimental Framework

For testing and evaluating the proposed approach,
we needed first to choose a reference corpus and to
build a distributional thesaurus from it. We chose

the AQUAINT-2 corpus, already used for vari-
ous evaluations, a middle-size corpus of around
380 million words made of news articles in En-
glish. The main preprocessing of the corpus was
the application of lemmatization and the removal
of function words. According to (Bullinaria and
Levy, 2012), the lemmatization of words leads to
only a small improvement in terms of results but
it is also a way to obtain the same results with a
smaller corpus.

The building of our reference distributional the-
saurus, Tcnt, was achieved by relying on a clas-
sical count-based approach with a set of parame-
ters that were found relevant by several systematic
studies (Baroni et al., 2014; Kiela and Clark, 2014;
Levy et al., 2015):

• distributional contexts: co-occurrents re-
stricted to nouns, verbs and adjectives hav-
ing at least 10 occurrences in the corpus, col-
lected in a 3 word window, i.e. +/-1 word
around the target word;
• directional co-occurrents, which were found

having a good performance by Bullinaria and
Levy (2012);
• weighting function of co-occurrents in con-

texts = Positive Pointwise Mutual Informa-
tion (PPMI) with the context distribution
smoothing factor proposed by (Levy et al.,
2015), equal to 0.75;
• similarity measure between contexts, for

evaluating the semantic similarity of two
words = Cosine measure;
• filtering of contexts: removal of co-

occurrents with only one occurrence.

The building of the thesaurus from the distri-
butional data was performed as in (Lin, 1998) or
(Curran and Moens, 2002) by extracting the clos-
est semantic neighbors of each of its entries. More
precisely, the similarity measure was computed
between each entry and its possible neighbors.
Both the entries of the thesaurus and their possi-
ble neighbors were nouns with at least 10 occur-
rences in the corpus. These neighbors were then
ranked in the decreasing order of the values of this
measure.

The evaluation of distributional objects such as
thesauri or word embeddings is currently a subject
of research as both intrinsic (Faruqui et al., 2016;
Batchkarov et al., 2016) and extrinsic (Schnabel
et al., 2015) evaluations exhibit insufficiencies that
question their reliability. In our case, we per-
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Method #eval.
words

#syn./
word R@100 Rprec MAP P@1 P@2 P@5

Tcnt

10,544 2.9
29.0 11.3 13.1 15.7 11.4 6.6

GloVe 21.3 6.7 8.0 9.8 7.4 4.5
SGNS 22.4 8.7 10.3 12.3 8.8 5.2

Table 1: Evaluation of the initial thesaurus and two reference models of embeddings (values x 100)

formed an intrinsic evaluation relying on the syn-
onyms of WordNet 3.0 (Miller, 1990) as Gold
Standard. This choice was first justified by our
overall long-term perspective, illustrated in Sec-
tion 5, which is the extraction of synonyms from
documents and the expansion of already existing
sets of synonyms. However, it is also likely to
alleviate some evaluation problems as it narrows
the scope of the evaluation, by restricting to a spe-
cific type of semantic relations, but performs it
at a large scale, the combination of which mak-
ing its results more reliable. For focusing on the
evaluation of the extracted semantic neighbors, the
WordNet 3.0’s synonyms were filtered to discard
entries and synonyms that were not part of the
AQUAINT-2 vocabulary. The number of evalu-
ated words and the average number of synonyms
in our Gold Standard for each entry are given by
the second and the third columns of Table 1.

In terms of methodology, the kind of evaluation
we have performed follows (Curran and Moens,
2002; Ferret, 2010) by adopting an Information
Retrieval point of view in which each entry is con-
sidered as a query and its neighbors are viewed
as retrieved synonyms. Hence, we adopted the
classical evaluation measures in the field: the R-
precision (Rprec) is the precision after the first R
neighbors were retrieved, R being the number of
Gold Standard synonyms; the Mean Average Pre-
cision (MAP) is the mean of the precision values
each time a Gold Standard synonym is found; pre-
cision at different cut-offs is given for the 1, 2, 5
first neighbors. We also give the global recall for
the first 100 neighbors.

Table 1 shows the evaluation according to these
measures of our initial distributional thesaurus
Tcnt along with the evaluation in the same frame-
work of two reference models for building word
embeddings from texts: GloVe from Pennington
et al. (2014) and Skip-Gram with negative sam-
pling (SGNS) from Mikolov et al. (2013)3. The

3Following (Levy et al., 2015), SGNS was preferred to the
Continuous Bag-Of-Word (CBOW) model.

input of these two models was the lemmatized ver-
sion of the AQUAINT-2 corpus as for Tcnt but
with all its words. Each model was built with
the best parameters found from previous work and
tested on this corpus. For GloVe: vectors of 300
dimensions, window size = 10, addition of word
and context vectors and 100 iterations; for SGNS:
vectors of 400 dimensions, window size = 5, 10
negative examples and default value for down-
sampling of highly frequent words.

Two main trends can be drawn from this evalu-
ation. First, Tcnt significantly outperforms GloVe
and SGNS for all measures4. This superiority of a
count-based approach over two predict-based ap-
proaches can be seen as contradictory with the
findings of Levy et al. (2015). Our analysis is
that the use of directional co-occurrences, a rarely
tested parameter, explains a large part of this su-
periority. The second conclusion is that SGNS
significantly outperforms GloVe for all measures.
Hence, we will report results hereafter only for
SGNS as a reference word embedding model.

3.2 Graph Embedding Evaluation

We have evaluated the three methods presented
in Section 2.1 for embedding our initial thesaurus
Tcnt according to the evaluation framework pre-
sented in the previous section. For all methods,
the main parameters were the number of neighbors
taken into account and the number of dimensions
of the final vectors. In all cases, the number of
neighbors was equal to 5,000, LINE being not very
affected by this parameter, and the size of the vec-
tors was 6005. For LINE, 10 billion samplings of
the similarity values were done and for the matrix
factorization (MF) approach, we used λ = 0.075.

According to Table 2, SVD significantly ap-
pears as the best method even if LINE is a compet-
itive alternative. SVD outperforms GloVe while

4The statistical significance of differences were judged
according to a paired Wilcoxon test with p-value < 0.05. The
same test was applied for results reported hereafter.

5The values of these parameters were optimized on an-
other thesaurus, coming from (Ferret, 2010).
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Method Rprec MAP P@1 P@2 P@5

Tcnt 11.3 13.1 15.7 11.4 6.6
SGNS 8.7 10.3 12.3 8.8 5.2

SVD 7.8 9.5 11.3 8.1 5.0
LINE 6.8 8.3 9.7 7.1 4.4
MF 4.0 4.9 5.9 4.4 2.7

Table 2: Evaluation of the embedding of a the-
saurus as a graph

LINE is equivalent to it, which is a first inter-
esting result: this first embedding step of a dis-
tributional thesaurus is already able to produce
better word representations than a state-of-the-art
method, even if it does not reach the level of the
best one (SGNS). However, Table 2 also shows
that there is still room for improvement for reach-
ing the level of the initial thesaurus Tcnt. Finally,
the matrix factorization approach is obviously a
bad option, at least under the tested form.

3.3 Thesaurus Embedding Evaluation

Table 3 shows the results of the evaluation of
the word embedding adaptation methods of Sec-
tion 2.2, which is also the evaluation of the global
thesaurus embedding process. For all methods,
the input embeddings were produced by apply-
ing SVD to the initial thesaurus Tcnt, which
was shown as the best option by Table 2. For
retrofitting (Retrofit) and counter-fitting (Counter-
fit), only the relations between each entry of the
thesaurus and its first and second neighbors were
considered. For rank-fitting (Rankfit), the neigh-
borhood was extended to the first 50 neighbors.
For the optimization processes, we used the de-
fault settings of the methods: 10 iterations for
retrofitting and 20 iterations for counter-fitting.
We also used 20 iterations for rank-fitting and
counter-rank-fitting (Counter-rankfit). For all op-
timizations by SGD, the learning rate was 0.01.

Several observations can be done. First, all
the tested methods significantly improve the ini-
tial embeddings. Second, the results of the dif-
ferent methods are quite close for all measures.
retrofitting outperforms counter-fitting but not sig-
nificantly for Rprec. rank-fitting is significantly
the worst method and its association with counter-
fitting is better than retrofitting for P@1 only, but
not significantly. However, we can globally note
that the association of SVD and the best adapta-

Method Rprec MAP P@1 P@2 P@5

Tcnt 11.3 13.1 15.7 11.4 6.6
SGNS 8.7 10.3 12.3 8.8 5.2

SVD 7.8 9.5 11.3 8.1 5.0

Retrofit 10.9 12.9 15.2 11.4 6.8
Counterfit 10.6 12.8 14.0 11.9 7.3
Rankfit 9.0 10.5 12.6 9.0 5.3
Counter-rankfit 10.7 12.4 15.2 11.0 6.3

Table 3: Evaluation of the global thesaurus em-
bedding process

tion methods obtains results close to the results of
the initial Tcnt (the difference is even not signifi-
cant for Rprec and P@5). As a consequence, we
can conclude, in connection with our initial ob-
jective, that embedding a distributional thesaurus
while preserving its information in terms of se-
mantic similarity is possible.

4 Applications of Thesaurus Embedding

4.1 Improvement of Existing Embeddings
In the previous section, we have shown that the
strongest relations of a distributional thesaurus can
be used for improving word vectors built from the
embedding of this thesaurus. Since this adapta-
tion is performed after the building of the vectors,
it can actually be applied to all kinds of embed-
dings elaborated from the corpus used for build-
ing the distributional thesaurus. As for the pro-
cess of the previous section, this is a kind of boot-
strapping approach in which the knowledge ex-
tracted from a corpus is used for improving the
word representations elaborated from this corpus.
Moreover, as GloVe and most word embedding
models, SGNS relies on first-order co-occurrences
between words. From that perspective, adapting
SGNS embeddings with relations coming from a
distributional thesaurus built from the same cor-
pus as these embeddings is a way to incorporate
second-order co-occurrence relations into them.

Method Rprec MAP P@1 P@2 P@5

(S)GNS 8.7 10.3 12.3 8.8 5.2
Embretrof (Tcnt) 10.9 12.9 15.2 11.4 6.8

S+Counter-rankfit 9.5 11.1 13.8 9.9 5.6
S+Retrofit 9.3 10.6 13.2 9.6 5.5

Table 4: Evaluation of the adaptation of SGNS
embeddings with thesaurus relations

For this experiment, we applied both retrofitting
and counter-rank-fitting with exactly the same pa-
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rameters as in Section 3.3. The results of Ta-
ble 4 clearly validate the benefit of the technique:
both retrofitting and counter-rank-fitting signifi-
cantly improve SGNS embeddings. As in Sec-
tion 3.3, the results of retrofitting and counter-
rank-fitting are rather close, with a global advan-
tage for counter-rank-fitting. We can also note that
the improved versions of SGNS embeddings are
still far from the best results of our thesaurus em-
bedding method (SVD + Retrofit).

4.2 Fusion of Heterogeneous Representations
Being able to turn a distributional thesaurus into
word embeddings also makes it possible to fu-
sion different types of distributional data. In the
case of thesaurus, fusion processes were early pro-
posed by Curran (2002) and more recently by Fer-
ret (2015). In the case of word embeddings, the
recent work of Yin and Schütze (2016) applied en-
semble methods to several word embeddings. By
exploiting the possibility to change from one type
of representation to another, we propose a new
kind of fusion, performed between a thesaurus and
word embeddings and leading to improve both the
input thesaurus and the embeddings.

The first step of this fusion process consists in
turning the input word embeddings into a distribu-
tional thesaurus. Then, the resulting thesaurus is
merged with the input thesaurus, which consists in
merging two lists of ranked neighbors for each of
their entries. We followed (Ferret, 2015) and ap-
plied for this fusion the CombSum strategy to the
similarity values between entries and their neigh-
bors, normalized with the Zero-one method (Wu
et al., 2006). Finally, we applied the method of
Section 2 for turning the thesaurus resulting from
this fusion into word embeddings.

Method Rprec MAP P@1 P@2 P@5

(T)cnt 11.3 13.1 15.7 11.4 6.6
(S)GNS 8.7 10.3 12.3 8.8 5.2

Fusion T-S 12.5 14.8 17.2 12.8 7.5
Embretrof (
fusion T-S) 11.8 13.8 16.7 12.4 7.0

Table 5: Evaluation of the fusion of a distribu-
tional thesaurus T and word embeddings S

The evaluation of this fusion process, per-
formed in a shared context as the considered the-
saurus and word embeddings are built from the
same corpus, is given in Table 5. The Fusion T-S
line corresponds to the evaluation of the thesaurus

resulting from the second step of the fusion pro-
cess. The significant difference with the results of
Tcnt and SGNS confirms the conclusions of Ferret
(2015) about the interest of merging thesauri built
differently. The Embretrof (fusion T-S) line shows
the evaluation of the word embeddings produced
by the global fusion process. In a similar way to
the findings of Section 3.3, the embeddings built
from the Fusion T-S thesaurus are less effective
than the thesaurus itself but the difference is small
here too. Moreover, we can note that these embed-
dings have significantly higher results than SGNS,
the input embeddings, but also higher results than
the input thesaurus Tcnt, once again without any
external knowledge.

5 Knowledge Injection and Synset
Expansion

In this section, we will illustrate how the improve-
ment of a distributional thesaurus, obtained in our
case by the injection of external knowledge, can
be transposed to word embeddings. Moreover, we
will show that the thesaurus embedding process
achieving this transposition obtains better results
for taking into account external knowledge than
methods, such as retrofitting, that are applied to
embeddings built directly from texts (SGNS in our
case). We will demonstrate this superiority more
precisely in the context of synset expansion.

The overall principle is quite straightforward:
first, the external knowledge is integrated into a
distributional thesaurus built from the source cor-
pus (Tcnt in our experiments). Then, the result-
ing thesaurus is embedded following the method
of Section 2. This external knowledge is supposed
to be made of semantic similarity relations. We
have considered more particularly pairs of syn-
onyms (E,K) such that E is an entry of Tcnt and
K is a synonym of E randomly selected from the
WordNet 3.0’s synsets E is part of. Each E is part
of only one pair (E,K).

5.1 Injecting External Knowledge into a
Thesaurus

The integration of the semantic relations into a dis-
tributional thesaurus is done for each entry E by
reranking the neighbor K of the (E,K) pair at
the highest rank with the highest similarity. The
line Tcnt+K of Table 6 gives the evaluation of this
integration for 10,544 pairs (E,K) of synonyms,
which means one synonym by entry.
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Evaluation of memorization Global evaluation

Method Rprec MAP P@1 P@2 P@5 Rprec MAP P@1 P@2 P@5

SGNS 6.5 9.7 6.5 4.6 2.6 8.7 10.3 12.3 8.8 5.2
SGNS+retrof(K) 82.4 90.3 82.4 47.8 19.9 80.1 82.0 98.1 72.3 36.9

Tcnt 8.5 12.4 8.5 5.9 3.2 11.3 13.1 15.7 11.4 6.6
svd(Tcnt) 5.8 9.0 5.8 4.0 2.3 7.8 9.5 11.3 8.1 5.0
svd(Tcnt)+retrof(K) 86.6 92.8 86.6 48.8 20.0 81.5 83.5 98.8 72.6 37.4

Tcnt+K 100 100 100 50.0 20.0 62.7 63.8 100 54.0 23.1
svd(Tcnt+K) 12.0 18.0 12.0 8.3 4.7 13.8 17.1 19.0 13.7 8.1
svd(Tcnt+K)+retrof(K) 88.3 93.9 88.3 49.2 20.0 82.6 84.5 99.5 73.2 38.2

Table 6: Evaluation of the injection of external knowledge into word embeddings for synset expansion

As our evaluation methodology is based on the
synonyms of WordNet, we have split our evalua-
tion in two parts. One part takes as Gold Standard
the synonyms used for the knowledge injection
(see the Evaluation of memorization columns in
Table 6) and evaluates to what extent the injected
knowledge has been memorized. The second part
(see the Global evaluation columns in Table 6)
considers all the synonyms used for the evalua-
tions in the previous sections as Gold Standard for
evaluating the ability of models not only to mem-
orize the injected knowledge but also to retrieve
new synonyms, i.e. synonyms that are not part
of the injected knowledge. In the context of our
evaluation, which is based on synonym retrieval,
this kind of generalization can also be viewed as
a form of synset expansion. This is another way
to extract synonyms from texts compared to work
such as (Leeuwenberg et al., 2016; Minkov and
Cohen, 2014; van der Plas and Tiedemann, 2006).

In the case of Tcnt+K, we can note that the
memorization is perfect, which is not a surprise
since the injection of knowledge into the thesaurus
corresponds to a kind of memorization. No spe-
cific generalization effect beyond the synonyms
already present in the thesaurus is observed for the
same reason.

5.2 From a Knowledge-Boosted Thesaurus to
Word Embeddings

The result of the process described in the previous
section is what we could call a knowledge-boosted
distributional thesaurus. However, its form is not
different from a classical distributional thesaurus
and it can be embedded similarly by applying the
method of Section 2. The only difference with this
method concerns its second step: instead of lever-
aging the first n neighbors of each entry for im-
proving the embeddings obtained by SVD, we ex-

ploited the set of relations used for “boosting” the
initial thesaurus.

The evaluation of the new method we propose
for building word embeddings integrating exter-
nal knowledge is presented in Table 6. More
precisely, three different methods are compared:
a state-of-the-art method, SGNS+retrof(K), con-
sisting in applying retrofitting to SGNS embed-
dings. retrofitting was chosen as it is quick
and gives good results. The second method,
svd(Tcnt)+retrof(K), applies retrofitting to the em-
beddings built from Tcnt by SVD. The last
method, svd(Tcnt+K)+retrof(K), corresponds to
the full process we have presented, where the ex-
ternal knowledge is first injected into the initial
thesaurus Tcnt before its embedding.

First, we can note that all the methods consid-
ered for producing word embeddings by taking
into account external knowledge leads to a very
strong improvement of results compared to their
starting point. This is true both for the memoriza-
tion and global evaluations. From the memoriza-
tion viewpoint, all the injected synonyms can be
found among the first five neighbors returned by
the three methods as illustrated by their P@5 and
even at the first rank in nearly nine times out of ten
for the best method, which is clearly our thesaurus
embedding process (except the pure memorization
performed by Tcnt+K).

We can also observe that the method used
for knowledge injection can reverse initial differ-
ences. For instance, the application of SVD to
a thesaurus built from a corpus, svd(Tcnt), ob-
tains lower results than the application of SGNS
to the same corpus. After the injection of ex-
ternal knowledge, this ranking is reversed: the
values of the evaluation measures are higher for
svd(Tcnt)+retrof(K) than for SGNS+retrofit(K).

More importantly, Table 6 shows that the inte-
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Entries K Synonyms in neighbors of Tcnt+K Synonyms in neighbors of svd(Tcnt+K)+retrof(K)

richness fullness
fullness [1] 1.0, affluence [1,665] 0.06, profusion [1,950]

0.06, fertility [2,000] 0.06, cornucopia [2,919] 0.06

fullness [1] 0.80, affluence [2] 0.71, cornucopia [3] 0.71,

fertility [5] 0.66, profusion [6] 0.44

butchery abattoir

abattoir [1] 1.0, slaughterhouse [2] 0.05, carnage [65]

0.03, slaughter [90] 0.03, massacre [132] 0.03, shambles

[3,735] 0.02

abattoir [1] 0.64, massacre [2] 0.62, carnage [3] 0.61,

slaughterhouse [4] 0.53, shambles [5] 0.45, slaughter

[11] 0.21

idiom dialect
dialect [1] 1.0, phrase [16] 0.09, accent [62] 0.09,

parlance [2,971] 0.07

dialect [1] 0.80, phrase [2] 0.75, accent [3] 0.71,

parlance [4] 0.71

spectator witness witness [1] 1.0, viewer [28] 0.14, watcher [519] 0.12
watcher [1] 0.59, witness [2] 0.56, viewer [3] 0.51,

looker [10] 0.30

Table 7: Examples of the interest of thesaurus embedding for synset expansion. Each synonym is given
with its [rank] among the neighbors of the entry and its similarity value with the entry

gration of external knowledge into the thesaurus
before its embedding is clearly effective as il-
lustrated by the significant differences between
SGNS+retrofit(K) and svd(Tcnt+K)+retrof(K). Fi-
nally, from the synset expansion viewpoint, it
is worth adding that the P@2 value of our best
method means that the first synonym proposed by
the expansion in addition to the injected synonyms
is correct with a precision equal to 46.9, which
represents 4,945 new synonyms and illustrates the
generalization capabilities of the method.

Table 7 illustrates more qualitatively for some
words the interest of the thesaurus embedding
method we propose for the expansion of existing
synsets. In accordance with the findings of Ta-
ble 6, it first shows that the method has a good
memorization capability of the injected knowl-
edge (K) in the initial thesaurus since in the re-
sulting embeddings (svd(Tcnt+K)+retrof(K)), the
synonym provided for each entry appears as the
first or the second neighbor.

Table 7 also illustrates the good capabilities of
the method observed in Table 6 in terms of gen-
eralization as the rank of synonyms of an entry
not provided as initial knowledge tend to decrease
strongly. For instance, for the entry idiom, the
rank of the synonym parlance is equal to 2,971 in
the initial thesaurus with the injected knowledge
(Tcnt+K) while it is only equal to 4 after the em-
bedding of the thesaurus. Interestingly, this im-
provement in terms of rank comes from a change
in the distributional representation of words that
also impacts the evaluation of the semantic sim-
ilarity between words. While the similarity be-
tween the word richness and its synonym profu-
sion was initially very low (0.06), its value after
the embedding process is very much higher (0.66)

and more representative of the relation between
the two words.

6 Conclusion and Perspectives

In this article, we presented a method for build-
ing word embeddings from distributional thesauri
with a limited loss of semantic similarity informa-
tion. The resulting embeddings outperforms state-
of-the-art embeddings built from the same corpus.
We also showed that this method can improve al-
ready existing word representations and the injec-
tion of external knowledge into word embeddings.

A first extension to this work would be to better
leverage the ranking of neighbors in a thesaurus
and to integrate more tightly the two steps of our
embedding method. We also would like to de-
fine a more elaborated method for injecting ex-
ternal knowledge into a distributional thesaurus,
more precisely by exploiting the injected knowl-
edge to rerank its semantic neighbors. Finally, we
would be interested in testing further the capabil-
ities of the embeddings with injected knowledge
for extending resources such as WordNet.
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