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Abstract

To learn more knowledge, enabling tran-
sitivity is a vital step for lexical infer-
ence. However, most of the lexical infer-
ence models with good performance are
for nouns or noun phrases, which can-
not be directly applied to the inference
on events or states. In this paper, we
construct the largest Chinese verb lexical
inference dataset containing 18,029 verb
pairs, where for each pair one of four in-
ference relations are annotated. We fur-
ther build a probabilistic soft logic (PSL)
model to infer verb lexicons using the
logic language. With PSL, we easily en-
able transitivity in two layers, the observed
layer and the feature layer, which are in-
cluded in the knowledge base. We further
discuss the effect of transitives within and
between these layers. Results show the
performance of the proposed PSL model
can be improved at least 3.5% (relative)
when the transitivity is enabled. Fur-
thermore, experiments show that enabling
transitivity in the observed layer benefits
the most.

1 Introduction

Lexical inference is an important component of
natural language understanding for NLP tasks
such as textual entailment (Garrette et al., 2011),
metaphor detection (Mohler et al., 2013), and text
generation (Biran and McKeown, 2013) to ac-
quire implications not explicitly written in context.
Given two words, the goal of lexical inferences
is to detect whether there is an inference relation
between the lexicon pair. For example, the word
‘buy’ entails the word ‘have’. With the help of lex-
ical inference system, we can know “Mom has ap-

ples” from the ground truth “Mom buys apples”to
answer the question “Who has apples?” without
explicitly mentioning it.

An intuitive solution to this problem is to first
represent the sense of words in the lexicon to cal-
culate the confidence of inferences from one sense
to another, or to build a classifier to distinguish
inference relations from other relations. Most re-
lated research is of one of these two types (Szpek-
tor and Dagan, 2008a; Kiela et al., 2015). How-
ever, for this problem it is difficult for these mod-
els to take into account transitivity. In the frame-
work of a lexical inference system, transitivity can
be included in three layers: the observed layer, the
feature layer, and the prediction layer. Figure 1
illustrates these layers and the corresponding tran-
sitives. The observed layer includes inference re-
lations we already know, e.g., true inferences from
the gold labels or ontologies; the feature layer in-
cludes the observed features for all lexicon pairs to
be predicted,i.e.,features for the testing data, and
the predicted layer saves the predicted inference
pairs, i.e., the relations of pairs in the testing data,
predicted by the model. As inference usually in-
volves available knowledge, the knowledge base
(KB) is shown in Figure 1 as well. KB contains
known information for the models. Therefore, in
this system, it includes the observed layer and the
feature layer which contain gold relations and the
features for the testing data respectively.

There has been several new rising research di-
rections involving lexical inference. The most rep-
resentative ones are the automatic problem solvers
and the open-domain question answering systems,
where inferring between events or states like Some
animals grow thick fur effecting Some animals
stay warm is critical (Clark et al., 2016). How-
ever, many recent works of lexical inference are
only designed for or being tested on nouns or noun
phrases (Jiang and Conrath, 1997; Kiela et al.,
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Figure 1: Three-layer lexical inference system.
Points of the same shape in each layer are the same
verbs; the solid arrow indicates the known infer-
ence relation; the dotted arrow indicates the hid-
den inference relation which can be inferred by the
known inference relations.

2015; Shwartz et al., 2016), which makes them
limited or not capable for these newly proposed
research problems.

In this paper, we adopt the probabilistic soft
logic (PSL) model to find lexical inference on Chi-
nese verbs toward the math word problem solver.
The contributions of this paper are listed as fol-
lows: (1) We build the largest Chinese verb lexical
inference dataset with four types of inference re-
lations as a potential testbed in the future. (2) We
show that in the proposed PSL model the transi-
tivity is easy to enabled and can benefit the lexical
inference on Chinese verbs. (3) We implement and
discuss the transitivity inter- and intra- layers and
conclude the transitivity within the observed layer
brings the most performance gain.

2 Related Work

One mainstream lexical inference extracts ei-
ther explicit or implicit features from the man-
ually constructed lexical knowledge. Szpek-
tor (2009) constructs a WordNet inference chain
through substitution relations (synonyms and hy-
pernyms) defined in WordNet. Aharon (2010)
proposed a FrameNet Entailment-rule Derivation
(FRED) algorithm to inference on the framework
of FrameNet. FrameNet models the semantic ar-
gument structure of predicates in terms of proto-
typical situation, which is called frames. Predi-
cates belong to the same frames are highly related
to a specific situation defined for the frame. There-
fore, it is intuitive to acquire lexical inference pairs
from predicates in the same frame. However, no
matter WordNet or FrameNet was used, the cov-

erage problem was always an issue when lever-
aging handcraft resources. Moreover, the rela-
tions of verbs in WordNet are rather flat compared
to nouns, which brings problems when directly
adopting approaches utilizing WordNet to detect
the inference between verbs.

An unsupervised concept, distributional simi-
larity, for measuring relations between words was
proposed to overcome the coverage problem. Dis-
tributional similarity related algorithms utilized a
large, unstructured corpus to learn lexical entail-
ment relations by assuming that semantically sim-
ilar lexicons appear with similar context (Harris,
1954). Various implementations were proposed
to assess contextual similarity between two lexi-
cons, including (Berant et al., 2010; Lin and Pan-
tel, 2001; Weeds et al., 2004). Lin Similarity, or
known as DIRT, is one commonly adopted method
to measure the lexical context similarity (Lin and
Pantel, 2001). Instead of applying the Distribu-
tional Hypothesis to verbs, Lin applied this hy-
pothesis to the paths in dependency trees. They
hypothesize that the meaning of two phrases is
similar, if their paths tend to link the same sets
of words in a dependency tree. Later, Weeds and
Weir (2004) proposed a general framework for di-
rectional similarity measurement. The measure-
ment examined the coverage of word wl’s features
against those ofwr’s, and more coverage indicated
more similarity.

Lin Similarity generates errors as its symmet-
ric structure cannot tell the difference between
wl → wr and wr → wl. That is, it makes errors
on non-symmetric examples, like buy → take.
Moreover, Weeds’ method generates high score
when an infrequent lexicon has features similar
to those of another lexicon, which harms the per-
formance as it happens a lot for non-entailed lex-
icons. Therefore, Szpektor and Dagan (2008a)
proposed a hybrid method Balanced-Inclusion,
BInc, and it was proved to outperform methods
proposed prior to it. In this paper, we adopt BInc
measurement and complement with lexical re-
source method to construct a hybrid model, which
was proved to outperform both methods separately
on our dataset.

Recent research is exploiting the effect of tran-
sitivity during model training. The intuition is that
some implicit entailment relation is difficult to be
identified when there is no direct features support-
ing it. Sometimes previous work could find the
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entailment pairs w1 → w2 and w2 → w3, but
failed to answer distant entailment relation like
w1 → w3. Skeptor and Dagan (2009) first applied
transitive chaining in the knowledge provided by
the lexical ontology Wordnet (Miller, 1995) in the
feature layer. Berant et al. (2011) built a lexical
entailment knowledge graph given the predicted
results from the base classifier. They used inte-
ger linear programming (ILP) to find the latent
entailment in the prediction cascade, which tran-
sits in the prediction layer. Kloetzer et al. (2015),
whose system outperformed Berant et al.’s on their
own corpus, further use cascade entailment infer-
ence in the feature layer. They applied short tran-
sitivity optimization by a two-layered SVM clas-
sifier (Kloetzer et al., 2015). A set of candidate
transitivity paths were created by concatenating
two identified inference pairs from the first SVM
classifier, e.g., w1 → w2 and w2 → w3 result
in a candidate path w1 → w2 → w3. Then the
two-layered SVM classifier re-predicted whether
there was an inference relation for the lexical pair
w1 → w3. However, none of these models takes
into account transitivity in the observed layer or
transitivity between two layers.

We select probabilistic soft logic (PSL) to
model the lexical inference problem. PSL is a re-
cently proposed alternative framework for prob-
abilistic logic (Bach et al., 2015). It was first
applied to the category prediction and similar-
ity propagation on Wikipedia documents to align
ontologies on a standard corpus of bibliographic
ontology (Brocheler et al., 2012). It has been
adopted in social network analysis, including so-
cial group modeling (Huang et al., 2012) and so-
cial trust analysis (Huang et al., 2013). For nat-
ural language processing, recently, Dhanya Srid-
har (2014) applied the PSL model to stance classi-
fication of on-line debates. Islam Beltagy (2014)
approached the textual problem by transforming
sentences into their logic representations and ap-
plying a PSL model to analyze word-to-word se-
mantic coverage between the hypothesis and the
premise. All these show that PSL is good at cap-
turing relations. However, PSL has not been uti-
lized yet in the lexical inference problem, and its
power to provide lexical transitivity has not been
tested, either. Thus in this paper, we explore its
ability on detecting verb lexical inference and on
enabling the transitivity.

3 Approach

We start from describing the features for each lex-
icon pair. To use PSL, we define atoms and de-
sign rules to enable the inter- and intra-layer tran-
sitives. Finally, PSL will automatically learn the
rule weights by MLE to yield the best results.

3.1 Lexicon Pair Features
3.1.1 Lexical ontology features
E-HowNet is a large Chinese lexical resource ex-
tended from HowNet (Dong and Dong, 2006).
Manually constructed by several linguistic ex-
perts, it contains 93,953 Chinese words and 9,197
semantic types (concepts; some are sememes). It
was designed as an ontology of semantic types,
each is listed in both Chinese and in English. For
example, one semantic type is (Give|給). Each
semantic type has some instances which inherit the
concept of it. Lexical relations are also defined. In
addition to hypernym-hyponym pairs, E-Hownet
contains conflation pairs, including preconditions
like (Divorce|離婚) is to (GetMarried|結婚), con-
sequences like (Labor|臨產) is to (Pregnant|懷
孕), and same-events like (Sell|賣) is to (Buy|買).
The hypernym-hyponym relation and the confla-
tion relation are two features that we use to repre-
sent a lexicon pair.

3.1.2 Cohesion path score
Given two semantically related words, a key as-
pect of detecting lexical inference is the gener-
ality of the hypothesis compared to the premise.
Though we have a lexical ontology to tell us ex-
plicitly the hypernym-hyponym relations, a score
to estimate the degree of this compared generality
is still necessary for model learning. Therefore,
We define the cohesion score of a semantic type
with E-Hownet to model the generality. For each
semantic type si ∈ S which has a set of instantiate
words Vsi, the cohesion score of si is calculated as

Coh (si) = 1
N

∑
v1 6=v2

sim (v1, v2) ;
v1, v2 ∈ Vsi

(1)

where sim(v1, v2) is the word-embedding cosine
similarity of words v1 and v2.

We construct a graph by considering hypernym,
hyponym, and conflation relations in E-HowNet
where nodes are semantic types and instantiate
words, and where edges are relations. Given a
word pair (vl, vr), a set of paths P from vl to
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vr can be found by traversing this graph, each of
which is denoted as p with edges in the edge set
E. Each of these edges in E is represented by the
triple e(n1, n2, typee), where node n2 is of type
typee to node n1. Nodes here can be a word or a
semantic type. The PathScore(p) is defined as:

PathScore(p) =∏
e∈Ep

{
coh(se), typee = Hyponym
1, otherwise

(2)

The idea of PathScore(p) is to calculate the gen-
erality lost, which is caused by hyponym rela-
tions, of each step of inference. The hypernym or
conflation relation does not lose generality, so the
PathScore(p) is always 1.

Empirically, those path p whose length exceed
10 are dropped as the inference chain is too long.
Finally, the cohesion path score of word pair
(v1, v2) is defined as:

CohPathScore(v1, v2) =
ln(maxp∈PPathScore(p))− ln(m)

ln(M)− ln(m)
(3)

while M and m are the Maximum and Mini-
mum PathScore respectively. The cohesion path
score also serves as a feature to build the PSL
model.

3.1.3 Distributional similarity
Distributional semantics has been used to exploit
the semantic similarities of the linguistic items
through large language data.

We applied the CKIP parser 1, a well-known
Chinese text parser, to raw sentences. Context of
words are extracted as features fs of words, ac-
cording to parsed sentence trees.

Some pre-prosessing steps are performed.
Words appearing only once in the corpus are
dropped to reduce Chinese segmentation error.
For each Word v, we retrieve all the words that
share at least one feature with w and call them
candidate words. Drop the candidate word if it
shares less than 1 percent features, counted by fre-
quency, with word w. We then calculate the distri-
butional similarity score between w and its candi-
date words.

Balanced-inclusion (BInc, (Szpektor and Da-
gan, 2008a)) is a well-known scoring function for

1CKIP parser : http://parser.iis.sinica.edu.tw/

determining lexical entailment. It contains two
parts, one is semantic similarity measurement, and
one is semantic coverage direction measurement.
Given two words wl, wr and their feature sets Fl,
Fr, the semantic similarity between wl and wr

is calculated by Lin similarity (Lin and Pantel,
2001):

Lin(vl, vr) =

∑
f∈Fl∩Fr

[wvl(f) + wvr(f)]∑
f∈Fl

wvl(f) +
∑

f∈Fr
wvr(f)

(4)
The coverage direction measurement, which

provides clues of direction of entailment relation,
is calculated by Weed’s (Weeds et al., 2004) cov-
erage measurement:

weed(vl, vr) =

∑
f∈Fl∩Fr

wvl(f)∑
f∈Fl

wvl(f)
(5)

The weight of each feature w(f) is the Point-
wise Mutual Information (PMI) between the word
v and the feature f :

wv(f) = log[
pr(f |v)
pr(f)

] (6)

where pr(f) is probability of feature f . BInc is
defined as geometric mean of the above two:

BInc(vl, vr) =
√
Lin(vl, vr) ·Weed(vl, vr)

(7)
To compare BInc’s performance to the proposed

PSL model and utilize it as a feature, we imple-
mented it on the Chinese experimental dataset to
calculate the BInc score of each lexicon pair.

3.1.4 Word Embeddings
Previous work has shown that word embeddings
work well on entailment relation recognition of
noun-noun pairs and (adj+noun)-noun pairs (Ba-
roni et al., 2012; Roller et al., 2014). We choose
glove (Pennington et al., 2014) to train embed-
dings of each word, and concatenate the embed-
ding of two words to create the embedding for
each word pair. This embedding then serves as the
feature in the rbf-kernel SVM classifier to predict
the entailment relation of the corresponding word
pair.

3.2 Probabilistic Soft Logic (PSL)
We use the PSL model to find the latent infer-
ence relations by enabling the transitivity of lex-
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ical relations. The lexical relations include fea-
tures described in Section 3.1, and the known in-
ference relations in the observed layer. In PSL,
each relation of the lexicon pair vl, vr is writ-
ten as a (ground) atom a(vl, vr) in the logic lan-
guage. The description of the transitivity of atoms
ai(v1, v2), aj(v2, v3) and its latent inference rela-
tion, Etl(v1, v3) is written as a rule in the logic
language:

ai(v1, v2) ∧ aj(v2, v3)→ Etl(v1, v3) (8)

Each rule is assigned a weight to denote the re-
liability of the hypothesis that given ai(v1, v2),
aj(v2, v3) are true, Etl(v1, v3) is also true. The
PSL model learns the rule weights by the training
set. We encode the transitivity inter-(i = j) and
intra-(i 6= j) different types of relations and their
resulting latent inference relation to construct the
experimental rule set.

Given a set of (ground) atoms a = {a1, ..., an},
we denote an interpretation the mapping I : a →
[0, 1]n from ground atoms to soft truth value. The
distance to satisfaction of each ground rule is de-
fined as:

d(r, I) = max{0, I(rantecedent)− I(rconsequent)}
(9)

The PSL model learns the weights λr of these
rules and optimizes the most probable interpreta-
tion of entailment relations, through the probabil-
ity density function f over I:

f(I) =
1
Z

exp[−
∑

r∈R
λr(d(r, I))

p]; (10)

where Z is the normalization term, λr is the
weight of rule r, R is the set of all ground rules,
and p ∈ {1, 2}. In this paper, we set p to 2, indi-
cating a squared function.

In the following section, we are going to de-
scribe the atoms defined in our lexical inference
model in Section 3.2.1. Then rules are defined in
Section 3.2.2. Last, weight learning is described
in Section 3.2.3

3.2.1 Atoms for PSL
Atoms are types of information provided in
Knowledge base in PSL model, Table 1 lists all
atoms defined in our lexical inference model. Etl
denotes the entailment relation serving as the pre-
diction target. It is the only unknown atom.
In PSL model the number of prediction target

grows quadratically with the number of the enti-
ties (verbs), if no limitation is provided, which is
not desired and is time consuming. Thus Cdd in-
dicates canopies (McCallum et al., 2000) over the
prediction target. Hypr, Con, Coh, and BInc
are the hypernym, conflation, cohesion path score,
and distributional similarity score BInc features
described in Section 3.1. Svm is the prediction
of SVM classifier which takes concatenation of
word embeddings as feature. Obv represents the
knowledge of observed entailment lexical pairs for
the training phase. Note that the set of pairs with
Obv = true must not overlap with the testing set.

3.2.2 Inference rules for PSL
Having defined the atoms, the five features Hypr,
Con, BInc, Coh, and Svm are used in the de-
sign of five basic rules in Eq. 11. We further apply
the inference chain by concatenating two atoms to
create 25 rules shown as Eq.12 for feature-layer
transitivity. For transitivity in the observed layer,
we concatenate Obv atoms as shown in Eq.13.
Then we concatenate Obv with other features and
vice versa to add 10 additional rules shown as in
Eq.14,15 for bidirectional transitives between the
feature and the observed layers. Finally, the rule
¬Etl(v1, v2) states that v1 does not entail v2 if the
previous rules are not applicable.

Rel(v1, v2)→ Etl(v1, v2);
Rel ∈ {Hypr, Con,BInc, Coh, Svm} (11)

Rel(v1, v2) ∧Rel(v2, v3)→ Etl(v1, v3) (12)

Obv(v1, v2) ∧Obv(v2, v3)→ Etl(v1, v3)
(13)

Obv(v1, v2) ∧Rel(v2, v3)→ Etl(v1, v3)
(14)

Rel(v1, v2) ∧Obv(v2, v3)→ Etl(v1, v3)
(15)

3.2.3 Learning inference rule weights
The rule weights(λr) are determined using
maximum-likelihood estimation.

∂

∂λr
log p(I) =

−
∑

r∈Ri

(d(r, I)) + E
[∑

r∈Ri

(d(r, I))
]
(16)
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Atom Name Description

Cdd(v1,v2)
Canopies over prediction target. Return 1 if (v1,v2) is the prediction target
in the task

Etl(v1,v2) Entail statement which is the prediction target.
Hypr(s1,s2) Hypernym relation between two semantic concept: s1 is hypernym of s2.
Con(s1,s2) Conflation relation between two semantic types.
Ehow(v1, v2) E-HowNet algorithm.
Dis(v1,v2) BInc between v1 and v2.
Svm(v1,v2) Svm prediction featured by word embeddings
Obv(v1,v2) Observed entail statement.

Table 1: List of atoms in lexical inference model

The expected value E
[∑

r∈Ri
(d(r, I))

]
is

intractable. Thus it is approximated via∑
r∈Ri

dr(I∗), where I∗ is the most prob-
able interpretation given the current weight
(Kimmig et al., 2012).

4 Evaluation

4.1 Experiment Dataset

There are some of entailment dataset open to
research utility, but the Chinese Verb entail-
ment dataset (CVED) is special in some way.
First, most of the open entailment dataset in-
clude the entailment between noun-noun pairs,
adjective noun-noun pairs, and quantity noun-
quantity noun pairs, but none of them consider the
entailment between verb-verb pairs like CVED.
Second, in my knowledge, our CVED is the largest
Chinese entailment dataset.

To get more verb lexical inference pairs for our
experiments, we collected verb pairs from math
application problems, which usually contain log-
ical relations in the descriptions for each problem.
A total of 995 verbs and 18,029 verb pairs were
extracted from 20,000 Chinese elementary math
problems, where the verbs in each pair are from
the same problem. Few types of verb are dis-
carded, including V 1, V 2, VH, VI, VJ, VK and
VL ,which are adjective2 and statement associated
verbs defined in CKIP3.

Given a set of verbs extracted from a math
problem, every possible directed verb pair was
labeled. If there were n verbs, n × (n − 1)
directed verb pairs (vi → vj) were collected,
where vi is the premise and vj is the hypothesis.
For example, if we extracted “sell”, “buy”, and

2Adjective words are seen as kind of verbs in CKIP
3http://rocling.iis.sinica.edu.tw/CKIP/tr/

9305 2013%20revision.pdf

“pay” from the descriptions of the problem, we
added six directed verb pairs to the annotation set:
{(sell, buy), (sell, pay), (buy, pay), (buy, sell),
(pay, sell), (pay, buy)} We provide four types
of entailment label in CVED. One is commonly
seen hypernym relation. The same-event relations
are verb pairs related to same thing but in differ-
ent point of view Some examples are (sell, buy)
and (give, got). These are used by most earlier
research or in small-scale experiments (Szpektor
and Dagan, 2008b; Kiela et al., 2015). Another
two are casual relations, as premises in the pre-
condition and consequence relations are likely to
be true given their hypothesis in our daily life,
and because these relations are more useful in real
applications, we further consider these relations
as entailment relations. These relations are usu-
ally selected for web-scale experiments (Aharon
et al., 2010; Berant et al., 2011; Kloetzer et al.,
2015). Among all experimental verb pairs, 10%
were used for testing, 10% were used for develop-
ing and the remaining dataset was for training. A
five-fold training process was performed to learn
the best parameters for the testing model.

4.2 Experiment Setting

To achieve better performance, weights are ran-
domly initialized and retrained 10 times for each
fold. The best combination is derived by averaging
the five best weight sets obtained in the five-fold
cross-validation process. Two baselines are pro-
vided for the evaluation of the models with transi-
tivity disabled. Hyper+Conf is the ontology-based
baseline. In this setting, verb pairs with hyper-
nym and conflation relations found in E-Hownet
are reported as entailment pairs. BInc is the distri-
butional similarity baseline, where we set a best
threshold for the development set and apply it
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Precision Recall F1
Hyper+Conf 0.547 0.189 0.281
BInc 0.150 0.098 0.119
PSL 0.270 0.474 0.344

Table 2: Model performance: transitivity disabled.

to the testing set to identify the entailment rela-
tion. The 20,000 elementary math problems to-
gether with 61,777 sentences from Sinica Tree-
bank4 are utilized to calculate the BInc score of
each verb pair. A set of 300 dimensional word
embedding representation is trained by a hybrid of
Sinica Treebank, elementary math problems and
Chinese Wikipedia.

To discuss the effect of transitivity within
(intra-) and between (inter-) different layers,
we build three additional models for PSL.
PSL TrFeat allows transitivity within the fea-
ture layer, PSL TrObv allows transitivity within
the observed layer on top of PSL TrFeat, and
PSL TrFeatObv allows transitivity betwen the ob-
served layer and the feature layer on top of
PSL TrObv. Here we set the degree of transitiv-
ity to 2, and leave the determination of the best
transitivity degree as future work. For comparison,
we implement a SVM baseline ,the state-of-the-art
entailment classifier (Kloetzer(base)), and its tran-
sitivity framework (Kloetzer(TrFeatPred)) (Kloet-
zer et al., 2015). We use rbf-kernel SVM and the
other hyper-parameters are selected from the 5-
fold training.

4.3 Results and Discussion

Table 2 shows the performance of the proposed
PSL model when transitivity is disabled (PSL).
Unsurprisingly, Hyper+Conf achieves the high-
est precision as the relations found in E-Hownet
are built manually. False alarms come from pairs
that contain various unknown Chinese compound
words that E-Hownet does not include, e.g., 分
給(distribute to) is composed of 分(issue) and
給(give). We attempt to find its head to deter-
mine its sense, which sometimes causes errors.
Compared to BInc, though in general distribu-
tional approaches may outperform ontology-based
approaches at least in recall, Hyper+Conf still per-
forms much better. We think the reason is that E-
Hownet already contains a large number of words

4sinica treeback: http://rocling.iis.sinica.edu.tw/CKIP/
engversion/treebank.htm

and adopting the heuristic of finding the head for
compound words which could mitigates the cover-
age problem.

Table 3 shows the performance of various PSL
models when transitivity is enabled. We conduct a
SVM baseline, SVM(w2v), by concatenating the
word embeddings of two verbs as the features of
the verb pair and it performs comparably well,
indicating word embeddings are strong features.
Therefore, we discuss the effect of the strong and
the weak base settings here. The strong base set-
ting involves the prediction of SVM by word em-
beddings (relation SVM), while the weak base set-
ting involves the rest relations Hypr, Con, BInc
and Coh. The SVM model from Kloetzer serves
as the second baseline. It involves more than 100
features but does not include word embeddings,
and hence we compare it with the PSL models
of the weak base setting. For the weak base set-
ting, the performance of PSL cannot beat that of
Kloetzer’s SVM in the very beginning, as SVM
is generally considered a more powerful classifier
and the Kloetzer’s SVM model involves compa-
rably more features. Surprisingly, this state-of-
the-art model from Kloetzer does not improve its
F1 score after enabling the transitivity in the fea-
ture layer by their transitivity framework. (Kloet-
zer(TrFeatPred) vs. Kloetzer(base): they report
a 2% improvement in average precision in their
paper.) For the proposed PSL models, enabling
transitivity in the feature layer (PSL(TrFeat) vs.
PSL(base)) does improve the F1 score from the
gain of recall. The reason for this could be that
the transitivities of Kloetzer’s features depend on
the transitivities of the prediction results. If the
predictions don’t indicate a path to transit, their
features will not be combined together for the next
prediction. Therefore, their transitivity framework
may involve the noise from the first prediction.
On the contrary, in our PSL models, all possi-
ble feature-layered transitivities between pairs are
explored. Hence, our feature-layered transitivity
models have the capabilities to improve the recall.

A significant improvement comes from en-
abling transitivity in the observed layer, that is,
if we know w1 → w2 and w2 → w3, we add
w1 → w3 to the gold labels. As the relations in the
observed layer constitute prior knowledge (known
from the training data and saved in the PSL knowl-
edge base), inferring from one relation to the other
involves less uncertainty. Therefore, compared to
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Precision Recall F1
SVM(w2v) 0.850 0.500 0.630
PSL(WeakBase) 0.314 0.570 0.405
PSL(WeakBase TrFeat) 0.348 0.645 0.452
PSL(WeakBase TrObv) 0.675 0.577 0.622
PSL(WeakBase TrFeatObv) 0.544 0.613 0.577
Kloetzer(base) 0.390 0.590 0.469
Kloetzer(TrFeatPred) 0.385 0.604 0.470
PSL(StrongBase) 0.670 0.649 0.660
PSL(StrongBase TrFeat) 0.667 0.649 0.658
PSL(StrongBase TrObv) 0.624 0.757 0.684
PSL(StrongBase TrFeatObv) 0.612 0.764 0.680

Table 3: Model performance: transitivity enabled. PSL(StrongBase TrObv) is significantly better than
all the other models with p-value < 0.001.

PSL(WeakBase TrFeat), PSL(WeakBase TrObv)
shows a great improvement in both preci-
sion and F1. For recall, the feature-layer
transitivity (PSL(WeakBase TrFeat)) enables the
model to reach more words for a better re-
call, while the enrichment of the prior knowl-
edge in PSL(WeakBase TrObv) helps to elim-
inate uncertainty but decreases recall. If we
go further to enable transitivity between the ob-
served layer and the feature layer using model
PSL(WeakBase TrFeatObV), it begins to suffer
from the lower precision caused by longer transi-
tivity. Overall, PSL(WeakBase TrObV) achieves
best among all PSL(WeakBase) models, with im-
provements of 21.7% over the transitivity-disabled
PSL model.

Compared to the models of the weak base
setting, the PSL model of the strong base set-
ting without transitivity enabled has achieved
good performance in the very beginning
(F1=0.66). Its performance is better than
3 baselines, SVM(w2v), Kloetzer(base) and
Kloetzer(TrFeatPred). It also performs better
than the best PSL model of the weak base set-
ting, PSL(WeakBase TrObv). The great thing
is, enabling transitivity achieves even better
performance in PSL(StrongBase TrObv) and
PSL(StrongBase TrFeatObv). For all models
of the strong base settings, only enabling the
transitivity in the feature layer does not benefit the
performance as this decreases the precision.

From all the experiment results, we can con-
clude the followings. First, enabling transitivi-
ties help to find more inference pairs no matter
the initial model is strong or weak. Second, for

a general model, transitivities inter- or intra- lay-
ers both help it become stronger; however, for a
strong model, only the transitivities intra- or in-
ter the observed layer, i.e., involving the gold la-
bels, contribute to the performance gain. In other
words, only solid knowledge can make a strong
model even stronger through transitivities.

5 Conclusion

We have proposed a PSL model to explore the
power of transitivity. In this process, the easy
and straightforward nature of PSL in considering
transitives for lexical inference is demonstrated.
Results show that the best PSL model achieves
the F1 score 0.684. Moreover, the proposed base
PSL model has already achieved well and mod-
els with transitivity enabled achieve even better,
which confirms the power of transitivity for solv-
ing the lexical inference problem on verbs. We
will release the current experimental dataset. Fu-
ture goals include enlarging our dataset by includ-
ing web word pairs and applied the predicted re-
sults in textual entailment tasks. The constructed
CVED dataset can be found in the NLPSA lab
webpage5.
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