
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 70–79,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Word Ordering as Unsupervised Learning
Towards Syntactically Plausible Word Representations

Noriki Nishida and Hideki Nakayama
Graduate School of Information Science and Technology

The University of Tokyo
{nishida,nakayama}@nlab.ci.i.u-tokyo.ac.jp

Abstract

The research question we explore in
this study is how to obtain syntacti-
cally plausible word representations with-
out using human annotations. Our un-
derlying hypothesis is that word order-
ing tests, or linearizations, is suitable
for learning syntactic knowledge about
words. To verify this hypothesis, we de-
velop a differentiable model called Word
Ordering Network (WON) that explic-
itly learns to recover correct word order
while implicitly acquiring word embed-
dings representing syntactic knowledge.
We evaluate the word embeddings pro-
duced by the proposed method on down-
stream syntax-related tasks such as part-
of-speech tagging and dependency pars-
ing. The experimental results demonstrate
that the WON consistently outperforms
both order-insensitive and order-sensitive
baselines on these tasks.

1 Introduction

Distributed word representations have been suc-
cessfully utilized to transfer lexical knowledge
to downstream tasks in a semi-supervised man-
ner, and well known to benefit various applica-
tions (Turian et al., 2010; Collobert et al., 2011;
Socher et al., 2011). As different applications gen-
erally require different features, it is crucial to
choose representations suitable for target down-
stream tasks.

The research question we want to explore in
this study is how to obtain syntactically plausi-
ble word representations without human annota-
tions, with a focus on syntax-related tasks (pars-
ing, etc.). Whereas a variety of approaches re-
lated to semantic word embeddings have been pro-

Figure 1: Illustration of the word ordering task.
The goal of the word ordering task is to recover an
original order given a set of shuffled tokens. The
figure shows an example where original sentence
is “this is a short sentence.” To correctly reorder
the tokens, syntactic knowledge about words (e.g.
grammatical classes of words and their possible
relations) is indispensable. In this study, we ex-
plore how well the word ordering task can be an
objective to obtain syntactic word representations.

posed (Mikolov et al., 2013a,b; Pennington et al.,
2014), it still remains unclear how we should ob-
tain syntactic word embeddings from unannotated
corpora.

Word ordering tests, or linearizations, are com-
monly used to evaluate students’ language profi-
ciency. Suppose that we are given a set of ran-
domly shuffled tokens {“a”, “is,” “sentence,”
“short,” “this,” “.”}. In this case we can easily
recover the original order: “this is a short sen-
tence.” We consider this doable thanks to our
knowledge about grammatical classes (e.g., part-
of-speech (POS) tags) of words and their possible
relations. We depict the above explanation in Fig-
ure 1. Of course, it might not be necessary for ma-
chines to mimic exactly the same reasoning pro-

70

cess in humans. However, syntactic knowledge
about words is crucial for both humans and ma-
chines to solve the word ordering task.

Inspired by this observation, in this study, we
develop an end-to-end model called the Word Or-
dering Network (WON) that explicitly learns to
recover correct word orders while implicitly ac-
quiring word embeddings representing syntactic
information. Our underlying hypothesis is that the
word ordering task can be an objective for learning
syntactic knowledge about words. The WON re-
ceives a set of shuffled tokens and first transforms
them independently to low-dimensional continu-
ous vectors, which are then aggregated to produce
a single summarization vector. We formalize the
word ordering task as a sequential prediction prob-
lem of a permutation matrix. We use a recurrent
neural network (RNN) (Elman, 1990) with long
short-term memory (LSTM) units (Hochreiter and
Schmidhuber, 1997) and a soft attention mecha-
nism (Bahdanau et al., 2014; Luong et al., 2015)
that constructs rows of permutation matrices se-
quentially conditioned on summarization vectors.

We evaluate the proposed word embeddings on
downstream syntax-related tasks such as POS tag-
ging and dependency parsing. The experimen-
tal results demonstrate that the WON outperforms
both order-insensitive and order-sensitive base-
lines, and successfully yields the highest perfor-
mance. In addition, we also evaluate the WON on
traditional word-level benchmarks, such as word
analogy and word similarity tasks. Combined with
semantics-oriented embeddings by a simple fine-
tuning technique, the WON gives competitive or
better performances than the other baselines. In-
terestingly, we find that the WON has a potential
to refine and improve semantic features. More-
over, we qualitatively analyze the feature space
produced by the WON and find that the WON
tends to capture not only syntactic but also seman-
tic regularities between words. The source code of
this work is available online. 1

2 The Proposed Method

In this section, we formulate the WON which
implicitly acquires syntactic word embeddings
through learning to solve word ordering problems.

1https://github.com/norikinishida/won

2.1 Embedding Layer
Given a set of shuffled tokensX = {w1, . . . , wN},
the WON first transforms every single symbol wc

into a low-dimensional continuous vector, i.e.,

ec = F (wc) ∈ RD, (1)

where F is a learnable function. Please note that
the number of tokens N in the input X can vary in
the word ordering task.

2.2 Aggregation
To perform reordering on a set of shuffled embed-
dings {e1, . . . , eN}, we aggregate the embeddings
and compute a single summarization vector. The
aggregation function is a sum of word embeddings
followed by a non-linear transformation:

ẽ = tanh(W a

N∑
c=1

ec + ba) ∈ RD, (2)

where W a ∈ RD×D and ba ∈ RD are a projection
matrix and bias vector, respectively.

2.3 Prediction of a Permutation Matrix
We formalize a reordering problem as a prediction
task of a permutation matrix.

A permutation matrix is a square binary ma-
trix and every row and column contains exactly
one entry of 1 and 0s elsewhere. The left-
multiplication of a matrix E ∈ RN×D by a per-
mutation matrix P ∈ RN×N rearranges the rows
of the matrix E, e.g.

e>1
e>2
e>3
e>4

 = PE (3)

=

0 1 0 0
0 0 0 1
1 0 0 0
0 0 1 0

e>3
e>1
e>4
e>2

 . (4)

Equation 4 gives an example where E =
(e3, e1, e4, e2)

>, and the original sentence (cor-
rect order) is w1, w2, w3, w4.

In the word ordering task, one of the issues in
predicting permutation matrices is that the num-
ber of tokens N changes according to the variable
lengths of input sentences. Therefore, it is impos-
sible to define and train learning models that have
fixed-dimensional outputs such as multi-layer per-
ceptrons.

71

Figure 2: Visualization of our approach to sequen-
tially predict a permutation matrix P ∈ RN×N .
In this case, we are given N = 4 shuffled to-
kens (w1, w2, w3, w4). We first independently em-
beds each symbol to dense vectors (e1, e2, e3, e4).
Then, by using an RNN and a soft attention mech-
anism, we sequentially constructs the rows of the
permutation matrix P = (p1,p2,p3,p4)> for
N steps through a scoring function. The vector
hr ∈ RD denotes the r-th hidden state of the
RNN. One can interpret pr as a selective probabil-
ity distribution over the input tokens. For simplic-
ity, in this figure, we ignore the projection matrix
in the scoring function (Eq. 8).

Recently, Vinyals et al. (2015) proposed the
Pointer Networks (PtrNets) that were successfully
applied to geometric sorting problems. Inspired by
the PtrNet, we develop an LSTM (Hochreiter and
Schmidhuber, 1997) with a soft attention mecha-
nism (Bahdanau et al., 2014; Luong et al., 2015).
The LSTM constructs rows of a permutation ma-
trix P = (p1, . . . ,pN)> conditioned on a set
of word embeddings {e1, . . . , em} calculated by
Equation 1. If

∑N
c=1 pr,c = 1 holds, one can in-

terpret pr,c as the probability of the token wc to be
placed at r-th position. In Figure 2, we show a
visualization of our approach to predict a permu-
tation matrix with the LSTM.

The LSTM’s r-th hidden state hr ∈ RD and
memory cells cr ∈ RD are computed as follows:

hr, cr =

{
ẽ, 0 (r = 0)
FLSTM(eir−1 ,hr−1, cr−1) (1 ≤ r ≤ N)

,

(5)

where the function FLSTM is a state-update func-
tion and ir−1 ∈ {1, . . . , N} denotes the index of
the token wir−1 that is placed at the previous posi-

tion, i.e.,

ir−1 = argmax
c∈{1,...,N}

pr−1,c. (6)

Subsequently, we predict a selective distribution
over the input tokens:

pr,c =
exp(score(hr, ec))∑N

k=1 exp(score(hr, ek))
, (7)

where the scoring function score computes the
confidence of placing the token wc at r-th posi-
tion. We define the scoring function as a bilinear
model as follows

score(u,v) = u>W sv ∈ R. (8)

where W s ∈ RD×D denotes a learnable matrix.

2.4 Objective Function
As the WON is designed to be fully differentiable,
it can be trained with any gradient descent al-
gorithms, such as RMSProp (Tieleman and Hin-
ton, 2012). Given a set of shuffled tokens X =
{w1, . . . , wN}, we define a loss function as the
following negative log likelihood:

L(X) =
N∑

r=1

− log pr,tr (9)

where tr ∈ {1, . . . , N} denotes the index of the
ground-truth token that appears at r-th position
in the original sentence. In other words, an or-
dered sequence wt1 , wt2 , . . . , wtN forms the orig-
inal sentence.

3 Related Work

Among the most popular methods for learning
word embeddings are the skip-gram (SG) model
and the continuous bag-of-words (CBOW) of
Mikolov et al. (2013a,b), or the GloVe introduced
by Pennington et al. (2014). These are formal-
ized as simple log-bilinear models based on the
inner product between two word vectors. The
core idea is based on the distributional hypothe-
sis (Harris, 1954; Firth, 1957), stating that words
appearing in similar contexts tend to have simi-
lar meanings. For example, SG and CBOW are
trained by making predictions of bag-of-words
contexts appearing in a fixed-size window around
target words, and vice versa. Although word em-
beddings produced by these models have been

72

shown to give improvements in a variety of down-
stream tasks, it still remains difficult for these
models to learn syntactic word representations ow-
ing to their insensitivity to word order. As a con-
sequence, word embeddings produced by these
order-insensitive models are thus suboptimal for
syntax-related tasks such as parsing (Andreas and
Klein, 2014). In contrast, our method mainly fo-
cuses on word order information and utilize it in
the learning process.

Ling et al. (2015b) introduced the structured
skip-gram (SSG) model and the continuous win-
dow (CWindow) that extend SG and CBOW re-
spectively. Let c be the window size. These
models learn 2c context-embedding matrices to be
aware of relative positions of context words in a
window. The recent work of Trask et al. (2015)
is also based on the same idea as SSG and CWin-
dow. Ling et al. (2015a) proposed an approach
to integrating an order-sensitive attention mech-
anism into CBOW, which allows for considera-
tion of the contexts of words, and where the con-
text words appear in a window. Bengio et al.
(2003) presented a neural network language model
(NNLM) where word embeddings are simultane-
ously learned along with a language model. One
of the major shortcomings of these window-based
approaches is that it is almost impossible to learn
longer dependencies between words than the pre-
fixed window size c. In contrast, the recurrent ar-
chitecture allows the WON to take into account
dependencies over an entire sentence.

Mikolov et al. (2010) applied an RNN for lan-
guage modeling (RNNLM), and demonstrated that
the word embeddings learned by the RNNLM cap-
ture both syntactic and semantic regularities. The
main shortcoming of the RNNLM is that it is
very slow to train unfortunately. This is a conse-
quence of having to predict the probability distri-
bution over an entire vocabulary V , which is gen-
erally very large in the real world. In contrast,
the WON predicts the probability distribution over
entire sentences, whose length N is usually less
than 50 � |V |. In our preliminary experiments,
we found that the computation time for one itera-
tion (= forward + backward + parameter
update) of the WON is about 4 times faster than
that of the RNNLM (LSTMLM).

Levy and Goldberg (2014) introduced
dependency-based word embeddings. The
method applies the skip-gram with negative

sampling (SGNS) model (Mikolov et al., 2013b)
to syntactic contexts derived from dependency
parse-trees. Their method heavily relies on
pre-trained dependency parsers to produce words’
relations for each sentence in training corpora,
thus encountering error propagation problems. In
contrast, our method only requires raw corpora,
and our aim is to produce word embeddings that
improve syntax-related tasks, such as parsing,
without using any human annotations.

The WON can be interpreted as a simplifica-
tion of the recently proposed pointer network (Ptr-
Net) (Vinyals et al., 2015). The main difference
between the WON and the PtrNet is the encoder
part. The PtrNet uses an RNN to encode an un-
ordered set X = {w1, . . . , wN} sequentially, i.e.,

ei = RNNenc(wi, ei−1). (10)

In contrast, the WON treats each symbol indepen-
dently (Eq. 1) and aggregates them with a simpler
function (Eq. 2). In the word ordering task, the or-
der of X = (w1, . . . , wN) is meaningless because
X is an out-of-order set. Nonetheless, according
to Equation 10, the vector ei depends on the in-
put order of w1, . . . , wi−1. Vinyals et al. (2015)
evaluated the PtrNet on geometric sorting tasks
(e.g., Travelling Salesman Problem) where each
input wi forms a continuous vector that represents
the cartesian coordinate of the point (e.g., a city).
However, in the word ordering task, Equation 10
suffers from the data sparseness problem, as each
input wi forms a high-dimensional discrete sym-
bol.

4 Experimental Setting

4.1 Dataset and Preprocessing

We used the English Wikipedia corpus as the train-
ing corpus. We lowercased and tokenized all to-
kens, and then replaced all digits with “7” (e.g.,
“ABC2017”→“ABC7777”). We built a vocab-
ulary of the most frequent 300K words and re-
placed out-of-vocabulary tokens with a special
“〈UNK〉” symbol. Subsequently, we appended
special “〈EOS〉” symbols to the end of each sen-
tence. The resulting corpus contains about 97 mil-
lion sentences with about 2 billion tokens. We
randomly extracted 5K sentences as the validation
set.

73

4.2 Hyper Parameters

We set the dimensionality of word embeddings to
300. The dimensionality of the hidden states of
the LSTM was 512. The L2 regularization term
(called weight decay) was set to 4× 10−6. For the
stochastic gradient descent algorithm, we used the
SMORMS3 (Func, 2015), and the mini-batch size
was set to 180.

4.3 Baselines

For a fair comparison, we trained the follow-
ing order-insensitive/sensitive baselines on exactly
the same pre-processed corpus described in Sec-
tion 4.1.

• SGNS (Mikolov et al., 2013b): We used the
word2vec implementation in Gensim2 to
train the Skip-Gram with Negative Sampling
(SGNS). We set the window size to 5, and the
number of negative samples to 5.

• GloVe (Pennington et al., 2014): GloVe’s
embeddings are trained by using the origi-
nal implementation3 provided by the authors.
We set the window size to 15. In our pre-
liminary experiments, we found that GloVe
with a window size of 15 yields higher per-
formances than that with a window size of 5.

• SSG, CWindow (Ling et al., 2015b): We
built word embeddings by using the struc-
tured skip-gram (SSG) and the continuous
window (CWindow). We used the original
implementation4 developed by the authors.
The window size was 5, and the number of
negative samples was 5.

• LSTMLM: We also compared the proposed
method with the RNNLM (Mikolov et al.,
2010) with LSTM units (LSTMLM). The
hyper parameters were the same with that
of the WON except for the mini-batch size.
We used a mini-batch size of 100 for the
LSTMLM.

5 Evaluation on Part-of-Speech Tagging

In this experiment, we evaluated the learned word
embeddings by using them as pre-trained features
in supervised POS tagging.

2https://radimrehurek.com/gensim/
3http://nlp. stanford.edu/projects/glove/
4https://github.com/wlin12/wang2vec

Test Acc. (%)
SGNS (Mikolov et al., 2013b) 96.76
GloVe (Pennington et al., 2014) 96.31
SSG (Ling et al., 2015b) 96.94
CWindow (Ling et al., 2015b) 96.78
LSTMLM 96.92
WON 97.04

Table 1: Comparison results on part-of-speech
tagging with different word embeddings. The
dataset is the Wall Street Journal (WSJ) portion of
the Penn Treebank (PTB) corpus. The evaluation
metric is accuracy (%).

5.1 Supervised POS Tagger
In POS tagging, every token in a sentence is clas-
sified into its POS tag (NN for nouns, VBD for past
tense verbs, JJ for adjectives, etc.). We first used
the learned word embeddings to project three suc-
cessive tokens (wi−1, wi, wi+1) in an input sen-
tence to feature vectors (ei−1, ei, ei+1) that are
then concatenated and fed to a two-layer percep-
tron followed by a softmax function:

P (c|wi−1, wi, wi+1) = MLP([ei−1; ei; ei+1]),
(11)

where [· ; · ; ·] denotes vector concatenation. The
classifier MLP predicts the probability distribu-
tion over POS tags of the center token wi. We put
special padding symbols at the beginning and end
of each sentence. The dimensionality of the hid-
den layer of the MLP was 300. The MLP classifier
was trained via the SMORMS3 optimizer (Func,
2015) without updating the word embedding layer.

We used the Wall Street Journal (WSJ) por-
tion of the Penn Treebank (PTB) corpus5 (Mar-
cus et al., 1993). We followed the standard section
partition, which is to use sections 0-18 for train-
ing, sections 19-21 for validation, and sections 22-
24 for testing. The dataset contains 45 tags. The
evaluation metric was the word-level accuracy.

5.2 Results & Discussion
Table 1 presents the comparison of the WON to
the other baselines on the test split. The re-
sults demonstrate that the WON gives the high-
est performance, which supports our hypothesis
that the word ordering task is effective for acquir-
ing syntactic knowledge about words. We also

5We used the LDC99T42 Treebank release 3 version.

74

Dev Test
UAS LAS UAS LAS

SGNS 91.56 90.09 91.11 89.89
GloVe 88.87 87.09 88.28 86.61
SSG 91.11 89.60 90.93 89.43
CWindow 91.23 89.69 91.16 89.67
LSTMLM 91.83 90.34 91.49 90.08
WON 91.92 90.49 91.82 90.38

Table 2: Results on dependency parsing with dif-
ferent word embeddings. The dataset was the WSJ
portion of the PTB corpus. The evaluation metrics
were Unlabeled Attachment Score (UAS) and La-
beled Attachment Score (LAS).

observe that the order-sensitive methods (WON,
LSTMLM, and SSG) tend to outperform the order-
insensitive methods (SGNS and GloVe), which in-
dicates that, as we expect, word order information
is crucial for learning syntactic word embeddings.

6 Evaluation on Dependency Parsing

In this experiment, as in Section 5, we evaluated
the learned word embeddings on supervised de-
pendency parsing.

6.1 Supervised Dependency Parser

Dependency parsing aims to identify syntac-
tic relations between token pairs in a sentence.
We used Stanford’s neural network dependency
parser (Chen and Manning, 2014)6, whose word
embeddings were initialized with the learned
word embeddings. We followed all the de-
fault settings except for the word embedding size
(embeddingSize = 300) and the number of
training iterations (maxIter = 6000).

We used the WSJ portion of the PTB corpus
and followed the standard splits of sections 2-21
for training, 22 for validation, and 23 for testing.
We converted the treebank corpus to Stanford style
dependencies using the Stanford converter. The
parsing performances were evaluated in terms of
Unlabeled Attachment Score (UAS) and Labeled
Attachment Score (LAS).

6.2 Results & Discussion

Table 2 shows the results of the different word
embeddings on dependency parsing. First we
observe that the WON consistently outperforms

6http://nlp.stanford.edu/software/nndep.shtml

the baselines on both UAS and LAS. Next, by
comparing the unlimited-context models (WON
and LSTMLM) with the limited-context models
(SGNS, GloVe, SSG, CWindow), we can notice
that the former give higher parsing scores than the
latter. These results are reasonable because the
former can learn arbitrary-length syntactic depen-
dencies between words without constraints from
the fixed-size window size based on which the
limited-window models are trained.

7 Fusion with Semantic Features

In various NLP tasks, both syntactic and semantic
features can benefit performances. To enrich our
syntax-oriented word embeddings with semantic
information, in this section, we adopt a simple
fine-tuning technique and verify its effectiveness.
More precisely, we first initialize the word embed-
dings W with pre-trained parameters W sem pro-
duced by a semantics-oriented model such as the
SGNS. Subsequently we add the following penalty
term to the loss function in Equation 9:

λ‖W −W sem‖2F , (12)

where λ ∈ R is a hyper parameter to control the
intensity of the penalty term in the learning pro-
cess, and ‖ · ‖2F is the Frobenius norm. This term
attempts to keep the word embeddings W close
to the semantic representations W sem while min-
imizing the syntax-oriented objective on the word
ordering task. In our experiments, we used the
SGNS’s embeddings as W sem and set λ to 1. The
SGNS was trained as explained in Section 4.3.

In this section, we quantitatively evaluated the
WON with the above fine-tuning technique on two
major benchmarks: (1) word analogy task, and (2)
word similarity task.

7.1 Word Analogy
The word analogy task has been used in previous
work to evaluate the ability of word embeddings
to represent semantic and syntactic regularities. In
this experiment, we used the word analogy dataset
produced by Mikolov et al. (2013a). The dataset
consists of questions like “A is to B what C is
to ?,” denoted as “A : B :: C : ?.” The dataset
contains about 20K such questions, divided into a
syntactic subset and a semantic subset. The syn-
tactic subset contains nine question types, such
as adjective-to-adverb and opposite,
while the semantic subset contains five question

75

Question Types SGNS GloVe SSG CWindow LSTMLM WON
adjective-to-adverb 24.1 23.3 29.9 12.1 4.3 29.9
opposite 36.2 29.9 37.0 11.7 15.0 37.8
comparative 85.7 79.5 88.5 73.5 55.3 88.7
superlative 59.3 49.1 68.7 43.8 22.4 62.8
present-participle 64.9 61.0 73.6 57.4 27.1 71.8
nationality-adjective 89.4 92.2 89.7 87.3 30.5 90.8
past-tense 58.0 52.2 59.0 54.0 33.1 61.4
plural 75.2 83.0 75.2 70.4 26.4 75.4
plural-verbs 78.9 56.0 84.6 64.6 61.0 82.9
capital-common 94.5 95.3 92.5 93.1 53.8 95.5
captal-world 87.8 94.5 84.0 66.6 22.1 82.6
currency 12.8 8.7 14.0 3.7 1.9 10.7
city 66.0 60.7 56.9 61.9 13.6 67.4
family 84.2 77.9 81.8 59.1 62.9 84.2

Total 69.9 68.3 69.7 58.2 27.0 70.6

Table 3: Results on the word analogy task (Mikolov et al., 2013a) with different word embeddings. The
first upper block presents the results on nine syntactic question types. In the lower block we show the
results on five semantic question types. The last row presents the total score. The evaluation metric is
accuracy (%).

types such as city-in-state and family.
Suppose that a vector ew is a representation of a
word w, and is normalized to unit norm. Follow-
ing a previous work (Mikolov et al., 2013a), we
answer an analogy question “A : B :: C : ?” by
finding a word w∗ that has the closest representa-
tion to (eB −eA +eC) in terms of cosine similar-
ity, i.e.,

w∗ = argmax
w∈V \{A,B,C}

(eB − eA + eC)> ew

‖eB − eA + eC‖ , (13)

where V denotes the vocabulary. The evaluation
was performed using accuracy, which denotes the
percentage of words predicted correctly.

In Table 3, we report the results of the different
word embeddings on this task. As can be seen in
the Table 3, the WON outperforms the baselines
on four out of nine syntactic question types, and
tends to yield higher accuracies by a large margin
than the baselines except for the SSG. Our method
and the SSG totally give the best performances on
seven of nine syntactic question types. This ten-
dency, as in Section 5.2, indicates that word or-
der information is crucial to learn syntactic word
embeddings. In regard to semantics, the WON
achieves the best scores on three out of five seman-
tic question types. Interestingly, on two semantic
question types (capital-common and city),
the WON outperforms the SGNS that was used to

WS-353 MC RG
SGNS 71.26 81.96 78.86
GloVe 62.54 71.57 75.54
SSG 73.08 81.78 80.37
CWindow 70.31 80.92 77.80
LSTMLM 53.34 66.76 63.23
WON 70.97 82.43 77.64

Table 4: Results on the word similarity task
with different word embeddings. Spearman’s rank
correlation coefficents (%) are computed on three
datasets: WS-353, MC, and RG.

initialize our word embeddings. This result im-
plies that the word ordering task has the potential
to improve not only syntactic but also semantic
features. Our method achieves the highest accu-
racy on the overall score.

7.2 Word Similarity
The word similarity benchmark is commonly used
to evaluate word embeddings in terms of distri-
butional semantic similarity. The word similarity
datasets consist of triplets like (w1, w2, s), where
s ∈ R is a human-annotated similarity score
between two words (w1, w2). In this task, we
compute cosine similarity between two word em-
beddings. The evaluation is performed with the
Spearman’s rank correlation coefficient between

76

Query The 3 most similar words
he she they we
him them us me
his their our your
boy kid creature girl
boys ladies guys folks
dragon werewolf dwarf vamp
dragons robots giants spiders
city village library palace
cities countries kingdoms neighborhoods
drive ride walk hike
drives draws pisses causes
drove rode marched strode
driving traveling walking riding
driven flown propelled shaken
happy pleased unhappy thrilled
happier crazier prettier tougher
happiest hottest toughest coolest
good nice bad decent
better easier worse safer
best worst hardest biggest
in on into under

Table 5: Query words and their most similar
words. Cosine similarities are computed between
their embeddings produced by the WON.

the human-annotated similarities and the com-
puted similarities.

Table 4 presents the results on three datasets:
WordSim-353 (Finkelstein et al., 2001),
MC (Miller and Charles, 1991), and RG (Ruben-
stein and Goodenough, 1965). we observe that the
WON gives a slightly higher performance than
the baselines on the MC dataset. On the other
datasets, the SSG yields the best performances.
These results are interesting because the two
models rely on word order information while the
word similarity task originally focuses on topical
semantic similarities between words.

Further investigation into the interaction be-
tween syntactic and semantic representations
would be interesting and needs to be explored.

8 Qualitative Analysis

In this section, we inspect the learned vector space
by computing the similarities between word em-
beddings.

In this experiment we trained the WON on the
BookCorpus (Zhu et al., 2015) that is preprocessed
in the same way described in Section 4.1. The
BookCorpus consists of a large collection of nov-

els, which results in a grammatically sophisticated
text corpus that would be suitable for qualitative
analysis. Note that to clearly investigate the word
embeddings produced by the WON we neither ini-
tialize our word embeddings with other models
nor use fine-tuning techniques, as in experiments
on downstream syntax-related tasks (Section 5 and
Section 6). We choose queries focusing on (1)
declension of personal pronouns, (2) singular and
plural forms of nouns, (3) verb conjugation, (4)
comparative/superlative forms of adjectives, and
(5) prepositions.

Table 5 presents some representative queries for
(1)-(5) and their respective most similar words in
the learned vector space. First we can observe that
our word embeddings produce a continuous vector
space that successfully captures syntactic regulari-
ties. In addition to the syntactic regularities, inter-
estingly, we found that the WON prefers to gather
words in terms of those meanings or semantic cat-
egories.

9 Conclusion and Future Work

The research question we explored in this study
was how to learn syntactic word embeddings with-
out using any human annotations. Our underlying
hypothesis is that the word odering task is suitable
for obtaining syntactic knowledge about words.
To verify this idea, we developed the WON, which
implicitly learns syntactic word representations
through learning to explicitly solve the word or-
dering task. The experimental results demonstrate
that the WON gives improvements over baselines
particularly on syntax-related tasks, such as part-
of-speech tagging and dependency parsing. We
can also observe that the WON, by combined with
a simple fine-tuning technique, has the potential
to refine not only syntactic but also semantic fea-
tures.

It remains unclear how well order-sensitive
models like the WON can learn syntactic knowl-
edge about words in languages other than English.
Especially, it is interesting to investigate cases on
languages with richer morphology and freer word
order. We leave this to future work.

Acknowledgements

The authors would like to thank the anonymous re-
viewers for their constructive and helpful sugges-
tions on this work. We also thank Makoto Miwa
and Naoaki Okazaki for valuable comments and

77

discussion. This work was supported by JSPS
KAKENHI Grant Number 16H05872 and JST
CREST JPMJCR1304.

References
Jacob Andreas and Dan Klein. 2014. How much do

word embeddings encode about syntax? In Pro-
ceedings of the 52nd Annual Meeting of the Asso-
ciation for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Re-
search, 3(Feb):1137–1155.

Danqi Chen and Christopher D. Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Process-
ing.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Jeffrey L. Elman. 1990. Finding structure in time.
Cognitive Science, 14(2):179–211.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th Inter-
national Conference on World Wide Web.

John R. Firth. 1957. A synopsis of linguistic theory,
1930-1955. Blackwell.

Simon Func. 2015. Smorms3 - blog entry: Rm-
sprop loses to smorms3 - beware the epsilon!
http://sifter.org/ simon/journal/20150420.html.

Zellig S. Harris. 1954. Distributional structure. Word,
10(2-3):146–162.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Over Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics.

Wang Ling, Lin Chu-Cheng, Yulia Tsvetkov, and Sil-
vio Amir. 2015a. Not all contexts are created equal:
Better word representations with variable attention.
In Proceedings of the 2015 Conference of Empirical
Methods in Natural Language Processing.

Wang Ling, Chris Dyer, Alan Black, and Isabel
Trancoso. 2015b. Two/too simple adaptation of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large annotated
corpus of english: The penn treebank. Computa-
tional Linguistics, 19(2):313–330.

Tomas Mikolov, Kai Chen, Greg S. Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan
Cernockỳ, and Sanjeev Khudanpur. 2010. Recurrent
neural network based language model. In Proceed-
ings of INTERSPEECH.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in Neural Information Processing
Systems.

George A. Miller and Walter G. Charles. 1991. Con-
textual correlates of semantic similarity. Language
and Cognitive Processes, 6(1):1–28.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representations. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Communica-
tions of the ACM, 8(10):627–633.

Richard Socher, Jeffrey Pennington, Eric H Huang,
Andrew Y Ng, and Christopher D Manning. 2011.
Semi-supervised recursive autoencoders for predict-
ing sentiment distributions. In Proceedings of the
conference on empirical methods in natural lan-
guage processing.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5-rmsprop: Divide the gradient by a running av-
erage of its recent magnitude. COURSERA: Neural
networks for machine learning, 4(2).

Andrew Trask, David Gilmore, and Matthew Russell.
2015. Modeling order in neuralword embeddings
at scale. In Proceedings of The 32nd International
Conference on Machine Learning.

78

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Compu-
tational Linguistics.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In Advances in Neural In-
formation Processing Systems.

Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan
Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Aligning books and movies:
Towards story-like visual explanations by watch-
ing movies and reading books. arXiv preprint
arXiv:1506.06724.

79

