
Proceedings of the The 8th International Joint Conference on Natural Language Processing, pages 11–20,
Taipei, Taiwan, November 27 – December 1, 2017 c©2017 AFNLP

Context-Aware Smoothing for Neural Machine Translation

Kehai Chen1∗, Rui Wang2†, Masao Utiyama2, Eiichiro Sumita2 and Tiejun Zhao1

1Machine Intelligence & Translation Laboratory, Harbin Institute of Technology
2ASTREC, National Institute of Information and Communications Technology (NICT)

{khchen and tjzhao}@hit.edu.cn
{wangrui, mutiyama and eiichiro.sumita}@nict.go.jp

Abstract

In Neural Machine Translation (NMT),
each word is represented as a low-
dimension, real-value vector for encoding
its syntax and semantic information. This
means that even if the word is in a different
sentence context, it is represented as the
fixed vector to learn source representation.
Moreover, a large number of Out-Of-
Vocabulary (OOV) words, which have
different syntax and semantic information,
are represented as the same vector
representation of unk. To alleviate this
problem, we propose a novel context-
aware smoothing method to dynamically
learn a sentence-specific vector for each
word (including OOV words) depending
on its local context words in a sentence.
The learned context-aware representation
is integrated into the NMT to improve the
translation performance. Empirical results
on NIST Chinese-to-English translation
task show that the proposed approach
achieves 1.78 BLEU improvements on
average over a strong attentional NMT,
and outperforms some existing systems.

1 Introduction

Neural Machine Translation (NMT) (Kalchbren-
ner and Blunsom, 2013; Sutskever et al., 2014;
Bahdanau et al., 2015), has shown prominent
performances in comparison with the conventional
Phrase Based Statistical Machine Translation
(PBSMT) (Koehn et al., 2003). In NMT, a source
sentence is converted into a vector representation
by an RNN called encoder, then another RNN

∗Kehai Chen was an internship research fellow at NICT
when conducting this work.

†Corresponding author.

called decoder generates target sentence word by
word based on the source representation with
attention information and target history.

One advantage of NMT systems is that each
word is represented as a low-dimension, real-
valued vector, instead of storing statistical rules
as in PBSMT. This means that even if the word
is in a different sentence context, it is represented
as the fixed vector to learn source representation.
Figure 1 (a) shows two pair of Chinese-to-English
parallel sentences in which two Chinese sentences
contain the same word “da”. Intuitively, the “da”
denotes “beating” in the first Chinese sentence
while the “da” denotes “playing” in the second
Chinese sentence. It is obvious that the “da”
which denotes different meanings in a specific
sentence is represented as the same word vector
in the encoder of NMT, as show in Figure 1 (b).
Although the RNN-based encoder can capture the
sentence context for each word, we believe that
offering better word vector with context-aware
representation might help improve translation
quality of NMT.

Moreover, a large number of Out-Of-
Vocabulary (OOV) words which have different
syntax and semantic information are represented
as the same vector representation of unk. Actually,
this kind of simple approach may cause ambiguity
of the sentences since the single unk breaks the
structure of sentences, thus hurts representation
learning of source sentence and translation
prediction of the target word. For example, the
unk firstly affects source representation learning in
encoder; then the negative effect would be further
transformed to the decoder, which generates the
poverty context vector and hidden layer state for
translation prediction, as shown in the gray parts
of Figure 1 (c). Besides, when the generated
target word may also be unk, the negative effect
of unk will become more severe.
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Figure 1: (a) Two parallel Chinese-to-English sentence pair; (b) The encoder of NMT; (c) The NMT
with OOV, these gray parts indicate the parameters of NMT which are affected by the OOV xu.

In this paper, we propose a novel context-
aware smoothing method to dynamically learn a
Context-Aware Representation (CAR) for each
word (including OOV words) depending on its
local context words in a sentence. We then
use the learned CAR to extend word vector in
a sentence, thus enhancing source representation
for improving the translation performance of
NMT. First, compared with the single unk vector,
we encode the context words of each OOV as
a Context-Aware Representation (CAR), which
has the potential to capture the OOV’s semantic
information. Second, we also extend the context-
aware smoothing method to in-vocabulary words,
which enhances encoder and decoder of NMT
by more effectively utilizing context information
by the learned CAR. To this end, we proposed
two unique neural networks to learn the context-
aware representation for each word depending on
its context words in a fixed-size window. We then
design four NMT models with CAR to improve
translation performance by smoothing the encoder
and decoder.

The remainder of the paper is organized as
follows. Section 2 introduces the related work
in the NMT. Section 3 presents two novel
neural models to learn the CAR for each word.
Section 4 integrates the CAR into the NMT by
using smoothing strategies. Section 5 reports
the experimental results obtained in the Chinese-
to-English task. Finally, we conclude the
contributions of the paper and discuss the further
work in Section 6.

2 Related Work

In traditional SMT, there are many research works
to improve the translations of OOVs. Fung and
Cheung (2004) and Shao and Ng (2004) adopte
comparable corpora and web resources to extract
translations for each unknown word. Marton et al.
(2009) and Mirkin et al. (2009) applied paraphrase
model and entailment rules to replace unknown
words with in-vocabulary synonyms before trans-
lation. A series of works (Knight and Graehl,
1997; Jiang et al., 2007; Al-Onaizan and Knight,
2002) utilized transliteration and web mining
techniques with external monolingual/bilingual
corpora, comparable data and the web resource to
find the translation of the unknown words. Nearly
most of the related PBSMT researches focused
on finding the correct translation of the unknown
words with external resources and ignored the
negative effect for other words.

Compared with PBSMT, due to high computa-
tional cost, NMT has a more limited vocabulary
size and severe OOV phenomenon. The existing
PBSMT methods that used external resources
to translate unknown words for SMT are hard
to be directly introduced into NMT, because
of NMT’s soft-alignment mechanism (Bahdanau
et al., 2015). To relieve the negative effect
of unknown words for NMT, Luong et al.
(2015) proposed a word alignment algorithm,
allowing the NMT system to emit, for each OOV
word in the target sentence, the position of its
corresponding word in the source sentence, and
to translate every OOV in a post-processing step
using a external bilingual dictionary. Although
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these methods improved the translation of OOV,
they must learn external bilingual dictionary
information in advance.

From the point of vocabulary size, many works
tried to use a large vocabulary size, thus covering
more words. Jean et al. (2015) proposed a method
based on importance sampling that allowed NMT
model to use a very large target vocabulary for
relieving the OOV phenomenon in NMT, which
are only designed to reduce the computational
complexity in training, not for decoding. Arthur
et al. (2016) introduced discrete translation
lexicons into NMT to imrpove the translations
of these low-frequency words. Mi et al. (2016)
proposed a vocabulary manipulation approach by
limiting the number of vocabulary being predicted
by each batch or sentence, to reduce both the
training and the decoding complexity. These
methods focused on the translation of OOV itself
and ignored the other negative effect caused by the
OOV, such as the translations of the words around
the OOV.

Recently, many works exploited the granularity
translation unit from words to smaller subwords
or characters. Sennrich et al. (2016) introduced
a simpler and more effective approach to encode
rare and unknown words as sequences of subword
units by Byte Pair Encoding (Gage, 1994). This
is based on the intuition that various word
classes are translatable via smaller units than
words. Luong and Manning (2016) segmented the
known words into character sequence, and learned
the unknown word representation by character-
level recurrent neural networks, thus achieving
open vocabulary NMT. Li et al. (2016) replaced
OOVs with in-vocabulary words by semantic
similarity to reduce the negative effect for words
around the OOVs. Costa-jussà and Fonollosa
(2016) presented a character-based NMT, in which
character-level embeddings were in combination
with convolutional and highway layers to replace
the standard lookup-based word representations.
These methods extended the vocabulary to a
larger or unlimited vocabulary and improved the
performance of NMT tasks, especially in the
morphological rich language pairs.

Instead of utilizing larger vocabulary or sub-
unit information, we exploit to relieve more
translation performance for NMT from the
negative effect of OOVs by learning context-
aware representations for OOVs. As a result, the

proposed method can smooth the representation
of word and reduce the unk’s negative effect in
attention model, context annotations and decoding
hidden states, thus improving the performance of
NMT.

3 Context-Aware Representation

Intuitively, when one understands natural lan-
guage sentence, especially including polysemy
words or OOVs, one often inferences the meaning
of these words depending on its context words.
Context plays an important role in learning
distributed representation of word (Mikolov et al.,
2013a,b). Motivated by this, we propose two
neural network methods, including Feedforward
Context-of-Word Model (FCWM) and Convo-
lutional Context-of-Words Model (CCWM), to
learn a Context-Aware Representation (CAR) for
each word.

3.1 Feedforward Context-of-Words Model
Inspired by the representation learning of
word (Bengio et al., 2003), the proposed FCWM
includes an input layer, a projection layer, and a
non-linear output layer, as shown in Figure 2 (a).

Specifically, suppose there is a source language
sentence, {x1, x2, . . . , xj , . . . , xJ}. If the context
window is set as 2n (n = 2), the context of each
word xi is defined as its historical n words and
future n words:

Lj = xj−n, . . . , xj−1, xj+1, . . . , xj+n. (1)

In the input layer, each word in Lj is transformed
into one-hot representation. 1 The projection layer
concatenates one-hot representations in Lj to a
(2nm)-dimension vector Lj ,2

Lj = [vj−n : . . . , vj−1 : vj+1 : · · · : vj+n], (2)

where “:” denotes the concatenation operation of
word vectors.

We then approximate to learn its semantic
representation VLj ∈ Rm by a non-linear output
layer instead of softmax layer:

VLj = σ(W1Lj + b1)T , (3)

1If the Lj includes OOV, we use original unk vector to
represent it. Besides, we also try the average vector of the
current sentence word to represent it, but gain the similar
translation performance.

2In this paper, the bold variable denotes a continuous
space vector.
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Figure 2: (a) Feedforward Context-of-Word Model; (b) Convolution Context-of-Word Model.

where σ is a non-linear activation function (e.g.,
Tanh), T represents matrix transpose, and W1 is a
weight matrix and b1 is a bias term.

Finally, we extend each word with the learned
CAR vector VLj , thus feeding into the NMT
to enhance source representation for improving
target word prediction. Therefore, the proposed
FCWM plays the role of the function ϕ
parameterized by θ1, which maps the context Lj

of each word into vector VLj as follows:

VLj = ϕ(Lj ; θ1). (4)

3.2 Convolutional Context-of-Words Model
Compared with the FCWM, the proposed CCWM
indirectly encodes the context words of each
word as a compositional semantic representation
to represent the OOV. Specifically, the proposed
CCWM is a novel variant of the standard
convolutional neural network (Collobert et al.,
2011), including an input layer, a convolution
layer, a pooling layer and a non-linear output layer,
as shown in Figure 2 (b).

Input Layer: When the dimension of word
vector is m and the context window is set to
2n, the input layer is denoted as one vector
matrix M ∈ Rm×2n. In M, each column
denotes context words of word xj , that is, M is
[vj−n, · · · , vj−1, vj+1, · · · , vj+n] for the context
{xj−n, · · · , xj−1, xj+1, · · · , xj+n} of xj .

Convolutional Layer: In the convolutional
layer, let the filter window size bem×k (2 ≤ k ≤
2n), where the k is set to 3 in our experiments,
thus generating feature map Lj as follows:

Lj = ψ(W2[vj : vj+1 : · · · : vj+k] + b2), (5)

where ψ is a non-linear activation function,3 W2 ∈
Rm×k·m is the weight matrix and b2 ∈ Rm is
a bias term. After the filter traverses the input
matrix, the output of the feature map L is:

L = [L1, . . . ,L2n−k+1]. (6)

Pooling Layer: The pooling operation (e.g.,
max, average) is commonly used to extract robust
features from convolution. For the output feature
map of the convolution layers, a column-wise
max is performed over the consecutive columns of
window size 2 as follows:

P l = max[L2l−1,L2l], (7)

where 1 ≤ l ≤ 2n−k+1
2 . After the max pooling,

the output of the feature map P is:

P = [P1, . . . ,P 2n−k+1
2

]. (8)

Non-linear Output Layer: The output layer
is typically a fully connected layer multiplied by
a matrix. In this paper, first row-wise averaging
from the pooling layers is performed without any
parameters, and gain CAR of each word by non-
linear active function σ (e.g., Tanh); hence, the
CAR VLj of word xj is obtained by

VLj = σ(W3(average(

2n−k+1
2∑

l=1

P l)) + b3). (9)

Therefore, the above CCWM plays the role of
the function ϕ parameterized by θ2, which maps

3We used a ReLU activation function.
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the context Lj of word xj into vector VLj as
follows:

VLj = ϕ(Lj ; θ2) (10)

In this case, the word xj is represented as a CAR
VLj .

4 NMT with Context-Aware Smoothing

4.1 NMT Background

An NMT model consists of an encoder process
and a decoder process, and hence it is often
called encoder-decoder model (Kalchbrenner and
Blunsom, 2013; Sutskever et al., 2014; Bahdanau
et al., 2015), as shown in Figure 1. Typically,
each unit of source input (x1, . . . , xJ) is firstly
embedded as a vector vxj , and then represented as
annotation vector hj by

hj = fenc(vxj ,hj−1), (11)

where fenc is a bidirectional Recurrent Neural
Network (RNN) (Bahdanau et al., 2015). These
annotation vectors {h1, . . . ,hJ} are used to
generate target word in decoder.

An RNN decoder is used to compute the target
word yi probability by a softmax layer g:

P (yi|y<i, x) = g(vyi−1 , si, ci), (12)

where vyi−1 is vector representation of the
previously emitted word yi−1, si is an RNN hidden
state for the current time step and the ci is the
current context vector.

4.2 Smoothing Strategy

In this subsection, we will introduce NMT with the
learned CAR. This would relieve the translation
performance of NMT from source representation.
To this end, we use OOV as an example to
integrate FCWM or CCWM into NMT; and then
extend them to in-vocabulary words.

To learn the representation of source sentence,
the proposed FCWM or CCWM are integrated
into the encoder of NMT. If the source word xj is
in-vocabulary, its annotation vector hj is learned
by the traditional encoder; if the source word xj

is not in-vocabulary (OOV xu), the FCWM or
CCWM proposed in section 3 are used to learn its
CAR instead of single unk vector, and further learn
its annotation vector hj . According to the eq.(11),
the encoder with CAR learns the annotation vector

hj by the eq.(13):

hj =

{
fenc(hxj ,hj−1), xj ∈ Vs

fenc(ϕe(VLxj
),hj−1), xj /∈ Vs,

(13)

where Vs is source-side vocabulary table in NMT,
ϕe is the proposed FCWM or CCWM integrated
into the encoder according to eq.(4) or eq.(10),
and VLj is the learned CAR over the source-side
Lj from eq.(1):

Lj = xj−n, . . . , xj−1, xj+1, . . . , xj+n.
4 (14)

Similarly, the proposed FCWM or CCWM
are also integrated into the decoder in NMT.
Compared with the encoder with CAR, the target-
side OOV’s context words of training processing is
different from that of the decoding in which target-
side OOV’s future context is unknowable. That
is, only the historical n words of yi−1 are used to
learn the CAR of V

L
′
i−1

. To be consistent with the
decoding process, the previous 2n words of OOV
are regarded as its context L

′
i−1 instead of the

previous n words and future n words. Therefore,
the decoder with CAR predicts the next target
word by the eq.(15):

P (yi|y<i, x) =

{
g(vyi−1 , si, ci), yi−1 ∈ Vt

g(ϕd(L
′
i−1), si, ci), yi−1 /∈ Vt,

(15)
where Vt is target-side vocabulary table in NMT,
ϕd denotes the proposed FCWM or CCWM
integrated into the decoder according to eq.(4) or
eq.(10), and V

L
′
i−1

is the learned CAR over the

target-side context L
′
i−1 from eq.(1):

L
′
i−1 = yi−2n, . . . , yi−n, . . . , yi−1.

5 (16)

4.3 Models
Based on the above smoothing strategy, we
design four novel NMT models: CARNMT-
Encoder, CARNMT-Decoder, CARNMT-Both
and an ALLSmooth, all of which can make use
of CAR to enhance encoder or decoder of NMT
for improving the translation performance:

• CARNMT-Encoder: Only smoothing
source-side unk to relieve the influence in the
encoder, as shown in Figure 3 (a).

4If the number of previous context or future context words
is less n, we pads a sentence start symbol BEG or sentence
end symbol EOS.

5If the number of previous context words is less 2n, we
pads Li−1 using a sentence start symbol BEG.
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Figure 3: (a) CARNMT-Encoder; (b) CARNMT-Decoder; (c) CARNMT-Both; (d) ALLSmooth, in
which the red dotted arrows obtain the context words of each word according to eq.(14) or eq.(16). The
blue dotted boxes denote FCWM or CCWM proposed in section 2.

• CARNMT-Decoder: Only smoothing target-
side unk in the decoder, as shown in Figure 3
(b).

• CARNMT-Both: Both smoothing the unks
of source-side and target-side in the NMT, as
shown in Figure 3 (c).

• ALLSmooth: this model smooths not only
the unk words, but also all source-and target-
side in-vocabulary words by the learned
CARs, as shown in Figure 3 (d). Meanwhile,
the vector of in-vocabularys word and its
CARs are concatenated as a novel vector
to represent the semantic information of the
word instead of replacing the word vector
with its CAR.

In our experiments, each model has two variants
according to the integrated FCWM or CCWM.

For example, “CARNMT-encoder (CCWM)”
indicates that the CAR for OOV is learned by the
CCWM proposed in the section 3. In Figure 3,
we take FCWM to learn the CAR for each word
(including OOV). Therefore, there is easy to use
the proposed CCWM instead of the FCWM.

Moreover, the proposed NMT models with
CAR are an integrative architecture without any
external information. Especially, the NMT
and FCWM or CCWM, which are not isolated
from each other, are trained by optimizing their
parameters jointly. In other words, the θ1 or θ2
and the parameters of NMT are optimized jointly.

5 Experiments

5.1 Setting up
We carry out experiments on the Chinese-to-
English translation task. The training dataset
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System Dev (MT02) MT03 MT04 MT05 MT06 MT08 AVG
Moses 33.15 31.02 33.78 30.33 29.62 23.53 29.66
Bahdanau et al. (2015) 36.42 34.22 37.11 33.02 32.69 25.38 32.48
Sennrich et al. (2016) 36.89 35.39 38.24 33.73 32.74 26.22 33.26
Costa-jussà and Fonollosa (2016) 35.98 34.93 37.56 33.24 32.32 26.02 32.81
Li et al. (2016) 36.96 35.78 38.42 34.02 33.14 26.36 33.54
CARNMT-Encoder (FCWM) 36.78 35.56** 38.14* 33.69 33.13 26.16* 33.34
CARNMT-Decoder (FCWM) 36.67 34.65 37.60 33.26 33.01 26.15* 32.93
CARNMT-Both (FCWM) 37.36 35.43** 38.34** 33.43 33.47 26.86** 33.50
ALLSmooth (FCWM) 37.71 35.73** 38.53** 33.91* 33.53* 27.18** 33.78
CARNMT-Encoder (CCWM) 37.12 35.64** 38.14* 33.49 33.26* 26.57** 33.42
CARNMT-Decoder (CCWM) 36.33 34.56 37.43 33.24 32.96 25.86 32.81
CARNMT-Both (CCWM) 37.56 35.83** 38.52** 33.73 33.37** 27.06** 33.70
ALLSmooth (CCWM) 37.69 36.23** 38.89** 34.69** 33.83** 27.94‡ 34.32

Table 1: Results on NIST Chinese-to-English Translation Task. “*” indicates statistically significant
better than Bahdanau et al. (2015) at p-value< 0.05 and “**” at p-value< 0.01. “†” indicate statistically
significant difference (p-value < 0.05) from the Li et al. (2016) which performed the best among
baselines and “‡” at p-value < 0.01. AVG is average BLEU scores for MT03-MT08 test sets. The
bold denotes the proposed model is superior to the Li et al. (2016) over the same test set.

consists of 1.42M sentence pairs extracted from
LDC corpora.6 We choose the NIST 2002 (MT02)
and the NIST 2003-2008 (MT03-08) datasets as
validation set and test sets, respectively. Case-
insensitive 4-gram NIST BLEU score (Papineni
et al., 2002) is as evaluation metric, and the
signtest (Collins et al., 2005) was as statistical
significance test.

The baseline systems included the standard PB-
SMT implemented in Moses (Koehn et al., 2007)
and the standard attentional NMT (Bahdanau
et al., 2015) . We also compared with state-of-the-
art enhanced NMT methods for OOV: subword-
based NMT (Sennrich et al., 2016), character-
based NMT (Costa-jussà and Fonollosa, 2016),
and replacing unk with similarity semantic in-
vocabulary words (Li et al., 2016). All of
these baselines and the proposed method are
implemented in Nematus 7 (Sennrich et al., 2017).

For all NMT systems, we limit the source and
target vocabularies to 30K, and the maximum
sentence length is 80. We shuffle training set
before training and the mini-batch size is 80. The
word embedding dimension is 620-dimensions 8,
the hidden layer dimension is 1000, and the
default dropout technique (Hinton et al., 2012) in
Nematus is used on the all the layers. Training is
conducted on a single Tesla P100 GPU. All NMT
models trained for 15 epochs9 using ADADELTA

6LDC2002E18, LDC2003E07, LDC2003E14, Hansards
portion of LDC2004T07, LDC2004T08, and LDC2005T06.

7https://github.com/EdinburghNLP/nematus
8For the ALLSmooth, the 360 dimensions are from Vxj

or Vyi and the 260 dimensions were from the learned CAR
9All NMT models are convergent in the 15 epochs.

optimizer (Zeiler, 2012), and our training time
is only about 10% slower than the standard
attentional NMT.

5.2 Results and Analyses

Table 1 shows the translation performances
on test sets measured in BLEU score. The
standard attentional NMT (Bahdanau et al., 2015)
outperforms Moses by 2.78 BLEU points on
average, indicating that it is a strong baseline
NMT system. All the comparison methods,
including Sennrich et al. (2016), Costa-jussà and
Fonollosa (2016), and Li et al. (2016), outperform
the standard attentional NMT.

1) Over the standard attentional NMT,
CARNMT-Encoder (FCWM/CCWM)
gain improvements of 0.86/0.94 BLEU
points on average, and CARNMT-Decoder
(FCWM/CCWM) gain improvements of
0.45/0.33 BLEU points on average. CARNMT-
Both (FCWM/CCWM) gain improvements
of 1.02/1.30 BLEU points on average, which
indicates that improvement in encoder and
decoder are essentially orthogonal.

2) ALLSmooth (FCWM/CCWM) surpass
CARNMT-Both (FCWM/CCWM) by 0.28/0.62
BLEU points on average. This indicates that
the proposed context-aware smoothing method
not only helps relieve the OOV affect, but also
enhances representations of in-vocabulary words.

3) ALLSmooth (FCWM/CCWM) also outper-
forms the best performed baseline Li et al. (2016),
which replaces the unk words by using external
lexicon similarity, by 0.24/0.78 BLEU points on
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Ref: to well use this strategic period of opportunity and strive to accomplish some achievments , the development of science and 
technology should be placed in a more prior and prominent position 

Bahdanauet al.(2015) : to make good use of this strategy , we should strive for the development of science and technology , and must put 
the development of science and technology into an even more important and prominent position

SRC:    用好 这个 战略 机遇期 (OOV) ,  力争 有所 作为 ,  必须 把 发展 科学技术 放在 更加 重要 ,     更加 突出的 位置
(pinyin) yonghao zhege zhanlue jiyuqi ,         lizheng yousuo zuowei , bixu ba fazhan kexue jishu fangzai gengjia zhongyao , gengjia tuchu de wiezhi

This work: in making good use of this strategic plan and striving to accomplish something , it is necessary to place the development of 
science and technology in a more important and more prominent position

Figure 4: Translation sample for source sentence with one OOV. The English phrases in color indicate
they are translations from the corresponding Chinese phrase with the same color.

average.
4) The CCWM performs slightly better than

FCWM. The reason may be that the convolution
neural network can summarize the contextual
information better than the feedforward neural
network.

5.3 Translation Qualities for Sentences with
Different Numbers of OOV
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Figure 5: Translation qualities for sentences with
different numbers of OOV.

To further verify our methods, we group
sentences of same number OOVs all the test sets
(MT03-08), for example, “5” indicates that all the
source sentences include five OOV words in the
group, and compute a BLEU score per group.

1) In Figure 5, we observe that when the
number of OOVs is zero (no OOV), ALLSmooth
(FCWM/CCWM) outperform other baseline sys-
tems, and the performances of CARNMT-
Both (FCWM/CCWM) are similar to standard
attentional NMT. This means that CARNMT-Both
(FCWM/CCWM) degrade into standard attention-
al NMT because of these sentences not include

OOV, but our context-aware smoothing method
enhances the representation of in-vocabulary
words in the ALLSmooth (FCWM/CCWM).

2) With the increasing in the number of OOVs
(especially when more than five), the gap between
our methods and other methods (except PBSMT)
become larger. This indicates that our methods
are especially good at dealing with multi-OOV
situation, in comparison with other NMT methods.

5.4 Samples Analysis

This subsection shows one translation sample
for source sentence with one OOV, as shown in
Figure 4. We compare our method ALLSmooth
(CCWM) with Bahdanau et al. (2015) on the
translation of a source sentence with the OOV
“jiyuqi” (“period of opportunity” in English).

1) For both of Bahdanau et al. (2015)’s method
and the proposed method, the OOV “jiyuqi” itself
is not translated.

2) For Bahdanau et al. (2015)’s method,
the phrase “lizheng yousuo zuowei” (“strive to
accomplish some achievments” in English) after
“jiyuqi” is not translated. The purple part of source
sentence are translated twice in (Bahdanau et al.,
2015)’s method. This is in consistent with our
hypothesis in Section 1: the OOV which makes the
structure of source sentence discontinuous affects
source representation learning in encoder; then the
negative effect would be further transformed to
the decoder by the source annotation vectors, thus
generating the poverty context vector and hidden
layer state for translation prediction.

3) In comparison, the proposed method
translates it into “striving to accomplish some-
thing”, which is quite close to the reference.
This indicates that our proposed context-aware
smoothing method can relieve more translation
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performance for NMT from the OOV’s negative
effect shown in Section 1.

6 Conclusion

In this paper, we explored the context information
to smooth source representation with OOVs, and
integrate the learned CAR into the Encoder and
Decoder of NMT to improve the translation
performance. Especially, we extended the method
to smooth each word in-vocabulary, and further
gained improvements over the proposed models
for the NMT.

In the future, we will exploit richer context
information, such as pos-tagger and named
entity, to enhance the semantic representation of
vocabulary in NMT.
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Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.
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