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Abstract To understand why linguistic agnosticity is a
potential weakness of existing scoring metrics,
consider a document in which there are three
coreferent mentiongiillary Clinton, she andshe
appearing in this order in the document. Assume
that two coreference resolver®; and R,, are
applied to these three mentions, whete only
positsHillary Clinton andsheas coreferent, and
R5 only posits the two occurrencessifeas coref-
erent. Being linguistically agnostic, existing scor-
ing metrics will assign theamescore to both re-
solvers after seeing that both of them correctly as-
sign two of the three objects to the same cluster.
Intuitively, however, R; should receive a higher
1 Introduction score thanR,: R; has facilitated automated text

Coreference resolution is the task of Oletermin_understandlng by successfully finding the referent

ing which mentions in a text or dialogue refer of one of the pronouns, whereas fra’s output
. o we know nothing about the referent of the two pro-
to the same real-world entity. Designing appro-

. . . nouns. Failure to ranR; higher thanR, implies
priate evaluation metrics for coreference resolu- 1 Nig 2 IMp

tion is an important and challenging task. SinCethat existing scoring metrics fail to adequately re-

there is no consensus on which existing coreferﬂeCt the perf_ormgnce of a_resol\?er.
Our goal in this paper is to address the afore-

ence evaluation metric is the best, the organizers of tioned K b ) ; K
the CONLL-2011 and CoNLL-2012 shared tasks/ ¢/ oned weakness by proposing a framewor
on unrestricted coreference (Pradhan et al. 2011Or incorporating linguistic awareness into the

2012) decided to take the average of the Score_rsnost commonly-used coreference scoring metrics,

computed by three coreference evaluation metrics',nduo!Ing MUC, Bg.’ gnd_ CEAF. R_ather than m_ak-
MUC (Vilain et al., 1995), B (Bagga and Bald- "9 different modifications to different metrics,

win, 1998), and CEAF(Luo, 2005), as the official one of the contributions of our work lies in the
sco,re of a]oarticipating cor’eferen(’:e resolver. proposal of aunifiedframework that enables us to

One weakness shared by virtually all exist-en;lotliOy ﬁh&\?vmrgsit ?fimr?d'f;caltl'?ﬁs tor%ret?ite lin-
ing coreference evaluation metrics is that theygus cally aware versions of afl these metrics.

are linguistically agnostic t_reating the meptioqs ‘2 Existing Evaluation Metrics

to be clustered as generic rather than linguistic

objects. In other words, while MUC, 3 and In this section, we review four scoring metrics,
CEAF were designed for evaluating coreferenceMUC, B3, and the two versions of CEAF, namely,

resolvers, their linguistic agnosticity |mplles that 2One may disagree that, should be ranked higher than
they can be used to evaluadey clustering task, R, by arguing that successful identification of two corefer-
including those that are not linguistic in natdre. ential pronouns is not necessarily easier than resolving an
- - anaphoric pronoun to a non-pronominal antecedent. Our ar-
This statement is also true for BLANC (Recasens andgument, however, is based on the view traditionally adopted
Hovy, 2011), a Rand Index-based coreference evaluatioin pronoun resolution research that resolving an anaphoric
metric we will not focus on in this paper. pronoun entails finding a non-pronominal antecedent for it.

Virtually all the commonly-used evalua-

tion metrics for entity coreference reso-

lution are linguistically agnostic, treating

the mentions to be clustered as generic
rather than linguistic objects. We argue
that the performance of an entity coref-

erence resolver cannot be accurately re-
flected when it is evaluated using linguis-

tically agnostic metrics. Consequently,

we propose a framework for incorporating

linguistic awareness into commonly-used
coreference evaluation metrics.
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CEAF,, and CEAFE. As F-score is always com- Intuitively, wc(Ci) can be interpreted as the
puted as the unweighted harmonic mean of recaliweight” of Cz In MUC, the weight of a cluster is
and precision, we will only show how recall and defined as theninimumnumber oflinks needed

precision are computed. Note that unlike previougo create the cluster, smc(C’) = \C]Z.\ —1if
discussion of these metrics, we present them in ﬁgz‘ > 0.
way that reveals their common elements. The number of links in the key chaink(d), is

2.1 Notation and Terminology calculated as:

In the rest of this paper, we use the tercasefer- K@)

ence chaingndcoreference clustennterchange- k(K(d)) = Z w (£5), ©)
ably. For a coreference chaifi, we define|C| =1

as the number of mentions i@. Key chains wherew;,(K;) = |K;| — 1. The number of links in
andsystem chaingefer to gold coreference chains the system chains(S(d)), is calculated as:

and system-generated coreference chains, respec-

tively. In addition, K(d) and S(d) refer to the S(d)]

set of gold chains and the set of system-generated s(S(d) = Y wa(S;), 4)
chains in document, respectively. Specifically, '

]:
wherew,(S;) = |S;| — 1.
K(d)={K;:i=1,2,--- | |K(d)|},
2.3 B’ (Bagga and Baldwin, 1998)
S(d) ={8j:7=12,---,|S(d]}, One of MUC's shortcoming is that it fails to re-

where K; is a chain ink(d) and S; is a chain in ward successful identification of singleton clus-
S(d). |K(d)| and|S(d)| are the number of chains ters. To address this weakneBs, first computes

in K(d) andS(d), respectively. the recall and precision for each mention, and then
averages these per-mention values to obtain the
2.2 MUC (Vilain et al., 1995) overall recall and precision.

MUC is a link-based metric. Given a documefyt ~ Letm,, be thenth mention in document. Its

recall is computed as the number of common linkg€call, R(m,,), and precision,”(my), are com-

between the key chains and the system chaims in Puted as follows. Lefs; and.S; be the key chain

divided by the number of links in the key chains.and the system chain that contain,,, respec-

Precision is computed as the number of commofively, and letC? be the set of mentions appearing

links divided by the number of links in the system in both S; and ..

chains. Below we show how to compute (1) the

number of common links, (2) the number of key R(my,) = w 7

links, and (3) the number of system links. wi(K;)
To compute the number of common links, a par- i ;

tition P(S;) is created for each system chaii where w.(C7) = [Cj], wi(K;) = |K;|, and

using the key chains. Specifically, ws(5j) = ‘S ]

2.4 CEAF (Luo, 2005)

While B? addresses the shortcoming of MUC, Luo

Each subset’ in P(S;) is formed by intersect- Presents counter-intuitive results produced by B
J ) L .
ing S; with &;. Note that|CZ\ 0if S; and which it attributes to the fact that*Bmay use

K; have no mentions in common. Since there aré Key/system chain more than once when com-
IK(d)|%|S(d)| subsets in total, the number of com- puting recall and precision. To ensure that each
key/system chain will be used at most once in the

P(Sj) = {C]Z =12, K@)} (1)

mon links is
scoring process, his CEAF scoring metric scores
S| k()] a coreference partition by finding an optinuale-
c(K(d),S(d)) = Z Z to-one mappindor alignmenj between the chains
j=1 =1 (2) in I(d) and those ir5(d).
i 0 if |CY =0; Since the mapping is one-to-one, not all key
whereuw(C) = { |Ci -1 if iCZZi > 0. chains and system chains will be involved in it. Let
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Kmin(d) andS,,in (d) be the set of key chains and  Next, we will show that simply by redefin-
the set of system chains involved in the alignmentjng these three functions appropriately, we can
respectively. The alignment can be represented ageate linguistically aware versions of MUC? B
a one-to-one mapping functign where CEAF,,, and CEAE.2 For convenience, we will
refer to their linguistically aware counterparts as
9(K;) = 8j, K; € Kinin(d) andS; € Spin(d). LMUC, LB3, LCEAF,,, and LCEAE 4

The score of;, ®(g), is defined as 3 Incorporating Linguistic Awareness
d(g) = Z &(Ki, 9(K;)), As mentioned in the introduction, one of the con-
Ki€Kmin(D) tributions of our work lies in identifying the three

weight functions that are common to MUC? B
where¢ is a function that computes themilar-  CEAF,,, and CEAE (see Section 2.5). To see
ity between a gold chain and a system chain. Theyhy these weight functions are important, note
optimal alignmentg*, is the alignment whos@  thatany interaction between a scoring metric and
value is the largest among all possible alignmentsa coreference chain is mediated by one of these
and can be computed efficiently using the Kuhn+eight functions In other words, if these weight
Munkres algorithm (Kuhn, 1955). functions are linguistically agnostic (i.e., they treat

Given g*, the recall (R) and precision (P) of a the mentions as generic rather than linguistic ob-
system partition can be computed as follows:  jects when assigning weights), the scoring metric

. . that employs them will be linguistically agnostic.

_ ¢(g") p— ©(g") _ On the other hand, if these weight functions are

Zyi(ld))\ o(Ki, Ki) ngm #(S;,S;)  linguistically aware, the scoring metric that em-
ploys them will be linguistically aware.

As we can see, at the core of CEAF is the simi-  Thg ohservation makes it possible for us to de-
larity function¢. Luo defines two different func-  sjgn a unified framework for incorporating lin-
tions, ¢3 andey: guistic awareness into existing coreference scor-
ing metrics. Specifically, rather than making dif-
ferent modifications to different scoring metrics to
; incorporate linguistic awareness, we can simply
— 2|K; N 5| — 2 *wc(cj) incorporate linguistic awareness into these three

[Kil + 1551 wi(Ks) +ws(S;)  weight functions. So when they are being used

(M) in different scoring metrics, we can handily obtain
the linguistically aware versions of these metrics.

In the rest of this section, we will suggest one
way of implementing linguistic awareness. This is
by no means the only way to implement linguis-
tic awareness, but we believe that this is a good

Recall that the three weight fu'nctlonscz wy, and starting point, which hopefully will initiate further
ws, are involved in all the scoring metrics we havediscussions in the coreference community

discussed so far. To summarize:

¢3(Ki, S;5) = |K;i N Sj| = we(C])  (6)

¢4 (K, ;)

¢3 andgy result in mention-based CEAF (a.k.a.
CEAF,,) and entity-based CEAF (a.k.a. CEAF
respectively.

2.5 Common functions

L . 3.1 Formalizing Linguistic Awareness
e w.(C}) is the weight of the common subset gtng

betweenk; andS;. For MUC, its value is 0 Other than illustrating the notion of linguistic
if C]i, is empty anq(j]i,| — 1 otherwise; for B, awareness via a simple example in the introduc-

CEAF,, and CEAE, its value is|C’| tion, we have thus far been vague about what ex-
i) j .
o wy(K;) is the weight of key chairf;. For 3Note that for a given scoring metria,.(C) = wy (C) =
MUC, its value is|K;| — 1, while for B?, ws(C) for any non-empty chaid@'. The reason why we de-
CEAF,, and CEAF, its value iS| K; | fine three weight functions as opposed to one is that they are

defined differently in the linguistically aware scoring mes,

o w(S;) is the weight of system chaifi;. For ~ as e will see.

4 . . L
. ; . Our implementation of the linguistically aware eval-
| 3 . A h
MUC, its value IS|SJ| 1, while for B, uation metrics is available fromhttp://www.hit.

CEAF,, and CEAE, its value is|S}|. utdallas.edu/  ~yzcchen/coreference
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actly itis. In this section, we will make this notion Case 1:|C;ﬁ\ > 2
more concrete. Recall that the linguistically agnostie. function
Recall that the goal of (co)reference resolutionreturns a weight ofC’j| — 1. This makes sense,
is to facilitate automated text understanding bybecause in a linguistically agnostic situation, all
finding the referent for each referring expressiorthe links have the same weight, and hence the
in a text. Hence, when resolving a mention, aweight assigned td‘;f will be the same regardless
resolver should be rewarded more if the selectedf which |C}| — 1 links in C} are chosen. How-
antecedent allows the underlyirmtity to be in-  ever, the same is no longer true in a linguistically
ferred than if it doesn't, because the former con-aware setting: since the links may not necessar-
tributes more to understanding the correspondingly have the same weight, the weight assigned to
text than the latter. Note that the mondormative (% depends on whicﬂ‘Cj\ — 1 links are chosen.
the selected antecedent is, the easier it will be fom this case, it makes sense for our linguistically
the reader to infer the underlying entity. Here, weawarew? function to find the|Cj’ﬁ\ — 1 links that
adopt a simple notion of linguistic informativeness have the largest weights and assignifothe sum
based on the mention type: a name is more inforpf these weights, since they reflect how well a re-
mative than a nominal, which in turn is more infor- solver managed to find informative antecedents for
mative than a pronouh Hence, a coreference link the mentions. Note that the sum of the| — 1
involving a name should be given a higher weightjinks that have the largest weights is ]equal the

than one that doesn't, and a coreference link |nwe|ght of the maximum Spanning tree defined over
volving a nominal should be given a higher weightthe mentions irC]i..

than one that involves only pronouns. Case 2:|Ci| = 0

We implement this observation by assigning to J
each linke; a weight ofw;(e;), wherew;(e;) is
defined using the first rule applicabledobelow:
Rule 1: If ¢; involves a namew;(e;) = wpam.-

Rule 2: If ¢; involves a nominaku;(e;) = wpom. - o
Rule 3: wy(e;) = Wpro. In this case K; and.S; have one mention in com-

There is a caveat, however. By assigningmon' The question, then, is: can we simply re-

weights to coreferendinks rather than mentions, (UM Wsing, the weight associated with a single-

we will be unable to reward successful identi-0" ClUSIer? The answer is no: singg;,, was
fication of singleton clusters, since they Containcreated to rewargduccessfuldentification of sin-

no links (and hence they carry no weights). To9leton clusters, a resolver should be rewarded by

address this problem, we introduce a singletoriUsing only if it correctly identifies a singleton clus-

L o ;
weightw,;,,, which will be assigned to any chain - I other wordsy,” returnswsin, if all of C7,
that contains exactly one mention. K; andS; contain exactly one mention (which im-

So far, we have introduced four weights, — plies that the singleton clustérj is correctly iden-
(Wnams Wnoms Wpros Wsing), Which encode our tified); otherwisew? returns 0.
(somewhat simplistic) notion of linguistic aware-  The definition ofw/ is summarized as follows,
ness. Below we show how these four weights ar&vhereE is the set of edges in the maximum span-
incorporated into the three weight functions,,  hing tree defined over the mentionsa.
wg, and andw,, to create their linguistically aware

In this caseC;f is empty, meaning thak’; and S;
do not have any mention in common:l simply
returns a weight of 0 when applied €.

Case 3:|Ci| = 1

counterpartsw?, wk, andw?. > wiler) if O > 1;
. ’U)L(Cz) _ e €k ) ;
3.2 DeflnlnngL cATy) Wsing if ‘Cj‘v |Kz|a ‘Sj‘ =1
0 otherwise

Recall thatC} represents the set of mentions com- (®)
mon to key chaink; and system chai$;. To
difme the linguistically aware welght function 33 Definingw,g
w, (C}), there are three cases to consider:
- Recall thatw} aims to compute the weight of key
Different notions of linguistic informativeness might be chain K. Given the definition OwaL’ in order to
appropriate for different natural language applicatidnsur hat th . lis 1 iti |
framework, a different notion of linguistic informativese ens_uret at the maximum rec‘f" IS 1, itis natural to
can be implemented simply by altering the weight functions.deflnewIL( as follows, where? is the set of edges
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appearing in the maximum spanning tree defined Note that a link is spurious if it links a men-

over the mentions it ;. tion in C* with a mention ier’?, wherel < i; #
ia < K(d). Without loss of generality, assume that
> wile) if [K;| > 1 there arene; non-empty clusters i(S;). Note
w (Ki) = § @k : . ©) that we needhe; —1 spurious links in order to con-
Wsing if ‘Kz| =1 J

nect thene; non-empty clusters. To adequately
reflect the damage created by these spurious links,
_ . _ ) among the different sets afe;—1 spurious links
Finally, we definew?”, the function for computing that connect thee; non-empty clusters i®(;),

the weight of system chaifi;. To better under- e choose the set where the sum of the weights of
stand how we might want to definel, recall that e inks is the largest and count the edges in it as
in MUC, B3, and both versions of CEAF, precision precision errors. We denote this setfags, ).

and recall play a symmetric role. In other words, now we are ready to define’. There are two
precision is computed by reversing the roles of the.55es to consider. °

key partitionC(d) and the system partitio§(d)  case 1:| S >1

used to compute recall for documedt If we |, this casew’ (S;) is computed as follows:
wanted precision and recall to also play a symmet-

3.4 Definingw’

ric role in the linguistically aware versions of these  w!(S;) = > wl(CH+ > we).

scoring metrics, it would be natural to defim¢ in CieP(S)) e€F(S;)

the same way asF, whereE is the set of edges (11)

appearing in the maximum spanning tree definedNote that the second term corresponds to the pre-

over the mentions ity;. cision errors discussed in the previous paragraph,
whereas the first term corresponds to the sum of

. > wile) i[85 > 1; the values returned by’ when applied to each
wy (Sj) = § @<k : (10)  cluster inP(S;). The first term guarantees that a
Wsing if |S;] = 1. /

resolver is penalized for precision errors because

However, there is a reason why it is undesirable?f Spurious links, not suboptimal links.
for us to definew” in this manner. Consider the €ase 2:[Sj| =1 _ .
special case in which a system partiti§) con- In this caseS; only contains one mention. We set
tains only correct links, some of which are subop-wsL(Sj) 10 Wsing.
timal.® AlthoughS(d) contains only correct links,
the precision computed by any scoring metric that
employsw’ with the above definition will be less In this section, we design experiments to better un-
than one simply because it contains suboptimatlerstand our linguistically aware metrics (hence-
links. In other words, if a scoring metric employs forth LMetrics). Specifically, our evaluation is
w’ with the above definition, it will penalize a re- driven by two questions. First, given that the
solver for choosing suboptimal links twice, once LMetrics are parameterized by a vector of four
in recall and once in precision. weightsTV, how do their behaviors change as we
To avoid penalizing a resolver for the same mis-alteriW? Second, how do theMetricsdiffer from
take twice,wl cannot be defined in the same waythe existing metrics (henceforMetricg?
aswk.” In particular, only spurious links (i.e.,
links between two non-coreferent mentions), no
suboptimal links, should be counted as precisiofVe use as our running example the paragraph
errors. To avoid this problem, recall thB(S;) is shown in Figure 1, which is adapted from the Bible
defined as a partition of system chain created domain of the English portion of the OntoNotes

Evaluation

t4.1 Experimental Setup

by intersectings; with all key chains inC(d). v5.0 corpus. There are 19 mentions in the para-
graph, each of which is enclosed in parentheses
P(S;) ={C}:i=1,2,--- , |K(d)} and annotated as:}, wherey is the ID of the

- chain to which this mention belongs, amds the
5Suboptimal links are links that are correct but do not ap-mention ID.

pear in a maximum spanning tree for any of its chains. Fi 2 sh fi f
"This implies that precision and recall will no longer play igure 2 shows five system responses (a—e) for

a symmetric role in our linguistically aware scoring megric  our running example along with the key chains.
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(Jesus) came near (Jerusalefn) Looking at (the cityj, (he), began to cry for (it} and said, (Ij wish (you} knew what
would bring (you, (peacej. But it is hidden from (you) (now). (A time)¢ is coming when ((your) enemies) will hold
(you)k; in on (all sides). (They} will destroy (you¥ and (all (your¥, people.

Figure 1: A paragraph adapted from the Bible domain of theo®ates 5.0 corpus.

For conciseness, a mention is denoted by its memouns to a non-pronominal antecedent, but unfor-
tion ID, and each connected sub-graph forms onéunately, it wrongly connect§,,, to ml, m; and
coreference chain. Moreover, the type of a menm,..

tion is denoted by its shape: sgjuaredenotes a

NAME mention; atriangle denotes aNOMINAL

mention, and a&ircle denotes @RONOUN men-
tion. Note thatS,,,, the set of coreferent “you”
mentions consisting ofm, m3, - --

pears in all system responses.

7m2n}’ ap-

a—br—c

d —&—f —fg—m

dl & (f g-m

n

d & (f—fg-m

VvV @

A AR A

V@ v ©

VVVVV VVVWV¥
Key Chains System Response {a)

al (b)—c a| (b)—c

d & g - m

L =
v ©

VY VYV

System Response (h)

System Response (c)

a| (b—c

d & (f g —~m

W @

VYV YV

afbfcj

d —&—f g —m

N/

VY VYV

System Response {d)

Figure 2: Key and system coreference chains.

System Response (e)

Next, we investigate the two questions posed
at the beginning of Section 4.1. To determine
how the LMetrics behave when used in com-
bination with different weight vectord¥ =
(Wnams Wnoms Wpro, Wsing), WE €Xperiment with:

Wy = (1.0,1.0,1.0,10720);8

Wy = (1.0,1.0,1.0,0.5);

W5 = (1.0,1.0,1.0,1.0);

Wy = (1.0,0.75,0.5,1.0);

W5 = (1.0,0.5,0.25, 1.0).

Note thati;, W5, andWj differ only with respect

to wging, SO comparing the results obtained us-
ing these weight vectors will reveal the impact of
Wsing ON theLMetrics On the other hand}, and
W5 differ with respect to the gap of the weights
associated with the three types of mentions. Ex-
amining theLMetricswhen they are used in com-
bination with W, and W5 will reveal the differ-
ence between having “relatively similar” weights
versus having “relatively different” weights on the
three mention types.

Figure 3 shows four graphs, one for each of the
four LMetrics. Each graph contains six curves,
five of which correspond to curves generated by
using the aforementioned five weight vectors, and
the remaining one corresponds to tRetric
curve that we include for comparison purposes.
Each curve is plotted using five points that corre-
spond to the five system responses.

4.2 Impact of wging
We first investigate the impact af;,,. We will

Let us begin by describing the five system re-determine how th&Metricsbehave in response to

sponses. Response (a) is produced by a simplk’1, W2 andWs.
and conservative resolver. Besides formisyg,,,

this resolver also correctly links} with m!. Re-

The first graph in Figure 3 shows the LMUC
and MUC F-scores. As we can see, the scores of

sponses (b), (c) and (d) each improves upon reMUC and LMUC(1//;) are almost the same. This
sponse (a) by linkingS,,, to one of three pre- is understandable: the uniform edge weights and

ceding mentions, namely, oRRONOUNMention,
one NOMINAL mention, and on&lAME mention
respectively. Response (e) is produced by an agy,

a very smallwg;ng in Wy imply that LMUC will

S\We Setwsing t0 @ very small value other than 0, because
tingwsing to 0 may cause the denominator of the expres-

gressive resolver that tries to resolve all the prosionsin (5) and (7) to be 0.
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Figure 3: Comparison of theMetricsscores under different weight settings and @detricsscores.

essentially ignore correct identification of single contains many erroneous singleton clusters. De-
clusters and consider all errors to be equal, jusspite the large differences in these responsés, B
like MUC. When we replacdl?; with W5 and only gives 0.7% more points to response (e) than
W3, the two weight vectors with a largers;,, response (a). On the other hand, 3L&ssigns a
value, and rescore the five responses, we see thatuch lower score to response (a) owing to the nu-
the LMUC scores for responses (a), (b), (c) andmerous erroneous singleton clusters it contains.

(d) decrease. This is because LMUC uses,, The third graph of Figure 3 shows the LCEAF
to penalize these four responses for identifyingang CEAF, F-scores. Since LCEAF uses both
wrong singleton clusters. On the other hand, th&jngleton and non-singleton clusters when com-
LMUC score for response (e) is higher than thepyting the optimal alignment, it should not be
corresponding MUC score, because LMUC addi-gyrprising that as we increase,,,, the sin-
tionally rewards response (e) for correctly classigieton clusters will play a more important role
fying all singleton clusters without introducing er- jn the LCEAF,, score. Consider, for example,
roneous singleton clusters. LCEAF,,,(W}). Sincewsin, = 0, LCEAF,, (W)
The second graph in Figure 3 shows the3LB ignores the correct identification of singleton clus-
and B F-scores. Here, we see that the scoreders: From the graph, we see that LCEARY:)
for LB3(W1), LB3(W,) and LB}(W3) are iden- 9ives a hlgher score to response (a) than response
tical. These results suggest that the value)gf,,  (€)- This is understandable: response (a) is not
does not affect the LB score, despite the fact penalized for the many erroneous singleton clus-
that LB? does take into account singleton clustersf€rs it contains; on the other hand, response (e)
when scoring, a property that it inherits froni.B ?s'penalized for the erroneous coreference links
The reason is that regardless of what,, is, if it introduces. Now, consider LCEAR';), where
a mentionm is correctly classified as a singleton Wsing = 1. Here, response (e) is assigned a higher
mention, both of?(m) andP(m) will be 1, other-  Score by LCEAKWS3) than response (a): response
wise, both will be 0 (see formula (5)). Note, how- (a) is heavily penalized because of the many erro-
ever, that there is a difference between3L&hd Neous clusters it contains.
B3: for an erroneously identified singleton cluster The rightmost graph of Figure 3 shows the
containing mentionn, LB? setsP(m) to O while LCEAF. and CEAE F-scores. Like LB,
B? setsP(m) to 1. In other words, LB puts a LCEAF, returns the same score when it is used
higher penalty on precision given erroneous sinin combination withi¥;, W, andWWs, because the
gleton clusters. This difference causes’la®d B? ¢, similarity function returns 0 or 1 when the key
to evaluate responses (a) and (e) differently. Recallluster or the system cluster it is applied to is a
that responses (a) and (e) are quite different: resingleton cluster, regardless of the valueugf,,.
sponse (e) correctly finds informative antecedent$n addition, we can see that LCEAPenalizes er-
for m}, ml, m2, m? andm3, whereas response (a) roneous singleton clusters more than CEAlBes

C
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ch-

MUC

LMUC

B3

LB3

CEAF,,

LCEAF,,

CEAF.

LCEAF.

ains

R P F

R P F

R P F

R P F

R P F

R P F

R P F

R P F

@)
(b)
©
(d)
(€)

58.3 100 73.
66.7 100 80.
66.7 100 80.
66.7 100 80.
91.7 91.7 91.

7 50.7 58.6 54.4
0 53.7 64.3 58.f
D 64.2 68.3 66.p

7 76.1 92.7 83.

64.3 100 78.
71.3 100 83.
71.3 100 83.
71.3 100 83.
79.0 79.0 79.

B39.2 70.0 50.p
B43.1 75.0 541
B 50.8 75.0 60.4

065.0 72.5 68.

75.0 75.0 75.
80.0 80.0 80.
80.0 80.0 80.
80.0 80.0 80.
70.0 70.0 70.

050.7 58.6 54.4
053.7 64.3 58.f
0 64.2 68.3 66.p

058.2 70.9 63.

91.1 56.1 69.
91.9 61.3 73,
91.9 61.3 73.
91.9 61.3 73,
86.5 86.5 86.

¥ 73.8 45.4 56.
674.5 49.7 59.
676.7 51.1 61.
678.4 52.3 62.
b 85.8 85.8 85.

oo ON

D746 71.4 73.& B 58.6 75.0 65.& 0746 71.4 73.@

Table 1: Comparison of theMetrics(WW,) scores and th©Metricsscores.

for the same reason that ERenalizes erroneous OMetricsignore the type of mentions while scor-
singleton clusters more thar’ Bloes. ing, they are unable to distinguish the differences
In sum, the value ofv;,,, does notimpact LB~ among these three system responses: Gheet-
and LCEAE. On the other hand, LMUC and ricsresults in Figure 3 and their results in rows 2, 3
LCEAF,, pay more attention to singleton clustersand 4 of Table 1 show that the scores for responses
aSwging INCreases. (b), (c) and (d) are identical. Linguistically speak-
ing, however, they should not be. Response (d)
contributes the most to document understanding,
because the presenceofME mentionm? in its

4.3 Impact of wyam, Wnom and wp,,

When we were analyzing tHeMetricsin the pre- : _
vious subsection, by Settingnam, wnom, and outpu_t enables one to |_nfer the entitlefusalern
wyro 10 the same value, we were not exploitingto which the mentions i, ref(_er. In contrast,
their capability to be linguistically aware. In this &/though response (b) correctly linkg,, to PRO-
subsection, we investigate the impact of linguis-NOUN mentlonr_nfc, one cannot infer the entity to
tic awareness using’, and W5, which employ which the men'ugn; i%,0,, refer. The contribution
different values for the three weigttsTo better ~ Of response (c) is in-between, bec_ausem@a we
understand the differences in recall and precisiofft 1€ast know that the mentions £, point to
scores for each of the five system responses, w€City, although we do not know whichity it
show these scores as computed by Lihdetrics ~ 1S- Such dlfferences_ in responses (b)_, (c) and (d)
when they are used in combination with;. are captured biMetrics(IW4) andLMetricg(Ws).

First, consider response (a). As we can see frorpPecifically, theLMetrics scores for response (d)
Figure 3 and the first row of Table 1, tMetrics ~ are higher than those for response (c), which in
give decent scores to this output. Linguistically UM &re higher than those for response (b).
speaking, however, the system should be penal- It is worth noting that the performance gaps be-
ized more. The reason is that its output contribute§Veen responses (b) and (c) and between responses
little to understanding the document: in responsd®) @nd (d) are larger unddrMetrics(W;) than
(a), only the links between theronoun men-  underLMetrics(IW,). This is because;,» and
tions are established, and none of #oNOUN ~ Wpro IN W5 are comparatively smaller. These re-
or NOMINAL mentions is linked to a more infor- sults enable us to conclude that as the difference

mative mention that would enable the underlyingin the three edge weights becomes larger, the per-
entity to be inferred. formance gap between a less informative resolver

As expected|_Metricg( W) andLMetrics( W) and a more informative resolver according to the
assign much lower scores to response (a) than tHgIetricswidens.

OMetrics owing to a relatively small value of
wpro. Also, we see that theMetricgWWs) scores

are even lower than tHeMetricg(Wy) scores. This  we addressed the problem of linguistic agnos-
suggests that the smaller the valuesugf, and ticity in existing coreference evaluation metrics
wyom are, the more heavily a resolver will be pe-py proposing a framework that enables linguistic
nalized for its failure to link a mention to a more awareness to be incorporated into these metrics.
informative coreferent mention. While our experiments were performed on gold

Next, consider responses (b), (c) and (d). As thenentions, it is important to note that our linguisti-
cally aware metrics can be readily combined with,
for example, Cai and Strube’s (2010) method, so
that they can be applied to system mentions.

5 Conclusion

SLike W35, we Setwsing t0 1 in W4 andWs, because this
assignment makes CEAR W3) rank response (e) above re-
sponse (a), which we think is reasonable.
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