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Abstract

Many NLP tools are released as programs
that include statistical models. Unfortu-
nately, the models do not always match
the documents that the tool user is inter-
ested in, which forces the user to update
the models.

In this paper, we investigate model adap-
tation under the condition that users can-
not access the data used in creating the
original model. Transfer learning and on-
line learning are investigated as adaptation
strategies. We test them on the category
classification of Japanese newspaper arti-
cles. Experiments show that both trans-
fer and online learning can appropriately
adapt the original model if the dataset for
adaptation contains all data, not just the
data that cannot be well handled by the
original model. In contrast, we confirmed
that the adaptation fails if the dataset con-
tains only erroneous data as indicated by
the original model.

1 Introduction

Recent natural language processing (NLP) sys-
tems are built using machine learning (supervised
learning). The developers of these systems basi-
cally create annotated corpora from which statis-
tical models are generated. However, if the docu-
ments that users want to apply the systems to do
not belong to the domain of the annotated corpora,
the resulting accuracy tends to be unsatisfactory.

For instance, Figure 1 shows the typical drop
in accuracy in the category classification task of
newspaper articles over time; the statistical model
was trained using supervised data from 1995 (de-
tails are described later). Even though the test
data were obtained from newspaper articles (i.e.,
the same domain data), the accuracy against 2007
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Figure 1: Accuracy of Category Classification
with training by 1995 Dataset

articles fell by about 10% from the 1996 articles.
The reasons for this include the emergence of new
words and changes in word distribution. In order
to recover this degradation, we have to re-train the
models.

To overcome this problem, transfer learning
methods have been proposed (Pan and Yang,
2010). Many transfer learning methods assume
that the users can obtain both the original data and
additional data for adaptation. However, in most
practical cases, the users sometimes are unable to
access the original data. For example, only the de-
velopers are licensed to handle the original data,
not the users.

NLP tools, such as taggers, parsers, and clas-
sifiers, are commonly released as programs that
include the original models. Since many users
cannot update the original models, they continue
to use them even if the user’s documents do not
match the models (Figure 2).

The objective of this paper is to investigate
methods that, given an additional dataset, permit
adaptation of original models under the constraint
that the original dataset is unavailable.

The target task of this paper is category classi-
fication of newspaper articles. Because NLP tools
such as taggers or parsers are founded on struc-
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tured learning, which extends the classification,
we select the linear classification task.

In this paper, we investigate the combination
of the following learning methods and additional
datasets.

• We test two learning methods, batch and online
learning. In batch learning, we use a maximum
entropy classifier (Berger et al., 1996; Chen
and Rosenfeld, 2000) and adapt the model us-
ing transfer learning. In online learning, we se-
lect soft confidence-weighted learning (Wang
et al., 2012).

• We test two kinds of additional datasets. One is
that all data are used for adaptation. The other
is that only the data that failed to predict cor-
rect categories by the original model are used.
We consider the active learning strategy for the
second dataset.

The remainder of this paper is organized as fol-
lows. In Section 2, we detail the task, datasets, and
learning methods (batch and online learning). Sec-
tion 3 describes the experiments conducted and
their results, and Section 4 summarizes the find-
ings of this study.

2 Settings and Adaptation Methods

2.1 Task and Data

The task of this study is category classification
of Japanese newspaper articles. We selected ar-
ticles from Mainichi Shinbun newspapers for the
years of 1995, 1996, 2005, and 2006. A part
of the 1995 data is widely used in the Japanese

Set Name Period # of Data
Original Dataset Jan.,1995 - Nov.,1995 102,454
Additional Dataset Jan.,2005 - Nov.,2005 88,202
Development set Dec.,1995 9,043
Test set 1 Jan.,1996 - Dec.,1996 114,116
Test set 2 Jan.,2006 - Dec.,2006 95,761

Table 1: Statistics of Data Used

NLP community because its dependency struc-
tures and predicate-argument structures have been
annotated 1.

One of 16 categories is assigned to each article.
The category denotes type of the article, such as
‘Economics’, ‘International’, ‘Sports’, ‘Top page’,
and so on. The task of this study is to predict the
category of each article from its content (text).

Figure 3 shows the relationships among datasets
(for learning and testing) and models. We took ar-
ticles from Jan. to Nov. in 1995 as the original
dataset, and used them to train the original model.
The original dataset was not used thereafter. Arti-
cles from Dec. 1995 were used to tune the model’s
hyperparameters. The additional dataset for adap-
tation was created from articles from Jan. to Nov.
2005. We prepared two test sets. The first con-
sisted of 1996 articles (Test set 1), and the second
consisted of 2006 articles (Test set 2). Our objec-
tive is to improve the accuracy against Test set 2.
The statistics of the datasets are shown in Table 1.

Features for classification are ‘bag-of-words’ of
the title and the first paragraph of the article. Only
content words (nouns, verbs, adverbs, adjectives,
and interjections) that appear more than once are
used as features.

2.2 Transfer Learning from Batch Learning

2.2.1 Regularized Adaptation
The problem setting of this paper is a sort of trans-
fer learning (domain adaptation). Because we can-
not access the original data, this problem is re-
garded as “model-based domain adaptation” ac-
cording to the taxonomy of transfer learning by
Sha and Kingsbury (2012). Regularized adapta-
tion (Evgeniou and Pontil, 2004; Xiao and Bilmes,
2006) is a variant of model-based domain adap-
tation. As the regularizer, it uses the differences

1Dependency structures are published as Ky-
oto University Text Corpus (http://nlp.ist.i.kyoto-
u.ac.jp/EN/index.php?Kyoto University Text Corpus).
Predicate-argument structures are published as NAIST Text
Corpus (Iida et al., 2007) (http://cl.naist.jp/nldata/corpus/).
Note that the texts of the articles must be purchased from the
newspaper company.
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in parameters between the adapted model and the
original model, not adapted parameters. This is
done to minimize the differences between the orig-
inal model and the adapted model.

Although Evgeniou and Pontil (2004) proposed
regularized adaptation for SVMs, and Xiao and
Bilmes (2006) proposed the same for neural net-
works, they can also be applied to maximum en-
tropy classifiers 2. The loss function, `, is repre-
sented as follows.

` = −
∑

i

log P (yADi |xADi ; wAD)

+
1

2C

d∑
k=1

(wADk
− wORk

)2, (1)

where P (y|x; w) denotes the posterior probability
of a sample computed with the weight parameters
of the model w; yADi and xADi are the input and
output of the ith sample in the additional dataset,
respectively, wADk

and wORk
denote weight pa-

rameters of the adapted and the original model, re-
spectively; both have dimensions of d, and C is a
hyperparameter.

The maximum entropy classifier used in this pa-
per estimates the weight parameters to minimize
the above loss function. The first term in Equa-
tion (1) suppresses discriminative errors of the ad-
ditional data at minimum, and the second term
suppresses differences between the original model
and the adapted model.

2.2.2 Regularization with Two
Hyperparameters

The output classes of the adapted model are iden-
tical to those of the original model in this task. In
contrast, features for classification are not identi-
cal because new words appear over time.

2Regularized adaptation is used as a re-training function
of the Japanese morphological analyzer MeCab (Kudo et al.,
2004), which is based on conditional random fields (CRFs).
http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html

In Equation (1), all features, which include fea-
tures from the original data and the additional data,
are treated equally. However, if we significantly
change weight parameters of the original model
features, the original model can correctly class
less data due to errors. In contrast, with regard to
the new features from the additional data, we can
change the parameters without limitation. There-
fore, it is natural to distinguish new features from
those of the original model.

Here, assuming that the number of dimensions
of the parameters in the original model is dOR, and
that in the adapted model (i.e., the features include
the original and additional data) is dAD, the loss
function becomes,

` = −
∑

i

log P (yADi |xADi ; wAD)

+
1

2CAD

dOR∑
k=1

(wADk
− wORk

)2

+
1

2COR

dAD∑
k=dOR+1

w2
ADk

, (2)

where COR denotes the hyperparameter that was
used while learning the original model, and CAD

denotes the hyperparameter for the additional data.
If we set them as COR ≥ CAD, only the new fea-
tures from the additional data can change signifi-
cantly; changes to the existing features of the orig-
inal model are suppressed.

2.3 Online Learning
Online learning is a strategy that updates current
parameters in order to correctly classify training
samples one-by-one. It matches the problem set-
ting in this paper because it can train a new model
by altering the original model to suit the additional
data. However, it usually loses information about
old samples (in our case, the original data). There-
fore, we need to iterate the learning process on the
entire dataset several times.
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The recent proposal Confidence-weighted
learning (CW) generates each weight parameter
from a Gaussian distribution whose mean is µ
and standard deviation is σ (Dredze et al., 2008;
Crammer et al., 2009a). This method expresses
confidence in frequently updated parameters,
and accepts only small changes to them. Rarely
updated parameters can be greatly changed.
Confidence is expressed by a covariance matrix.
CW is known to offer faster convergence than the
conventional online learning algorithms such as
perceptrons and passive-aggressive methods. In
other words, CW makes learned samples hard to
forget. The CW algorithm offers the possibility of
adapting to the additional data without referring
to the original data.

It is known that the training performance of
the original CW algorithm suffers if the training
samples contain significant noise components that
are linearly-inseparable. The adaptive regulariza-
tion of weight algorithm (AROW; (Crammer et al.,
2009b)) and the soft confidence-weighted learning
algorithm (SCW; (Wang et al., 2012)) were pro-
posed to overcome this weakness. In this paper,
we employ the SCW algorithm.

In SCW-I, which uses a linear penalty, parame-
ter updating is represented as follows.

(µt+1, Σt+1) =

arg min
µ,Σ

{DKL(N (µ, Σ)‖N (µt, Σt)) +

C`φ(N (µ, Σ), (xt, yt))}, (3)

where µ denotes a mean vector and Σ denotes a
covariance matrix of the parameters, DKL(·‖·) de-
notes Kullback-Leibler divergence, N (µ, Σ) de-
notes a multivariate normal distribution with mean
of µk and standard deviation of σk, `φ(·) is a loss
function based on the hinge loss, and C is a hy-
perparameter that restricts the maximum change
permitted in the update. Following Equation (3),
the loss of the correct class yt predicted from input
feature vector xt becomes minimum by the second
term, and simultaneously the change in parameters
is suppressed by the first term. (Final update for-
mulae are provided in (Wang et al., 2012)).

However, there are some problems in imple-
menting Equation (3) directly. The following ap-
proximations are applied in general.

• Weight parameters w should be generated from
Gaussian distribution N (µ, Σ), but the mean
vector µ is directly used as weight parameters.

• The size of the covariance matrix is d × d,
where d denotes the number of dimensions of
the parameters, and so memory consumption
is high. To avoid this problem, only diagonal
elements are considered (the matrix is degen-
erated to a vector).

In addition, the hyperparameters that control the
maximum change and the confidence value, C and
φ, must be set manually.

To apply the SCW algorithm, we first con-
struct the original model from the original data us-
ing Equation (3) until classification errors become
minimum on the development set. Note that the
original model retains not only the mean vector but
also the covariance matrix. In adaptation, we re-
gard the original model as (µ0, Σ0) and similarly
update it using the additional data, one-by-one.

3 Experiments

3.1 Experimental Settings
Methods We test the methods described in Sec-
tions 2.2 and 2.3 (represented as ‘Transfer’ and
‘Online,’ respectively). The following baselines
are also tested.

(a) Original Model. This case yields the upper
bound of Test set 1.

(b) The model is trained using only the additional
dataset. If there is enough data, this yields the
upper bound of Test set 2.

(c) The model is trained by the feature augmenta-
tion method (Daumé, 2007) using the original
data and the additional data, which is one of the
domain adaptation techniques. This case yields
the upper bound if we can access the original
data.

(d) The case in which the models of (a) and (b) are
interpolated at the ratio of 1:1. This provides
a baseline for the lack of access to the original
data.

Additional Datasets We used two types of ad-
ditional datasets. One is (e) all data in 2005 news-
papers are used for adaptation (Normal Case). The
other is (f) only the data unknown to the origi-
nal model are used (Active Learning). In practical
cases, we want to adapt the model when we find
a failure of the original model. Therefore, case
(f) is a practical setting. The additional datasets
of the original models have different numbers of
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Transfer Online
Type Method/Dataset Test1 Test2 Test1 Test2

Baselines

(a) Original Model 70.90% 61.49% 71.41% 62.60%
(b) Additional Only 56.73% 75.66% 57.07% 76.36%
(c) Original + Additional Data 70.99% 75.77% 72.00% 76.58%
(d) Interpolation 68.70% 72.28% 68.49% 72.98%

Model Adaptation (e) Normal Case 64.26% 75.78% 66.87% 75.78%
(f) Active Learning 50.32% 63.29% 57.28% 65.81%

Table 2: Test Set Accuracies of Methods and Datasets

entities, 34,950 and 33,633 for the Transfer and
Online cases, respectively.

Tuning The hyperparameters are optimized
against the development set when the original
models are trained and the same values are used
in all experiments.

3.2 Results of the Methods
The results are shown in Table 2.

First of all, focusing on baselines (a) and (b),
Test set 1 yielded basically the highest accuracies
for case (a), while for (b) it was Test set 2. Using
datasets that are near to the test sets yields better
model training in this task.

Focusing on case (c), in which training uses
both the original and the additional datasets, the
advantages of cases (a) and (b) are secured. How-
ever, although we applied domain adaptation, the
improvements from cases (a) and (b) were lit-
tle. This result indicates that the size of the ad-
ditional dataset was sufficient and that the model
matched the upper bound by using just the addi-
tional dataset. In addition, we confirmed that the
accuracies of interpolation (d) were intermediate
between those of (a) and (b).

While accuracy slightly differed with the learn-
ing method, the Transfer and Online cases exhib-
ited the same tendency.

Next, for normal case (e) in model adaptation,
both Transfer and Online achieved basically the
highest accuracies against Test set 2. This re-
sult shows that model adaptation worked effec-
tively. On the other hand, focusing on the accu-
racies of Test set 1, Online learning exhibited a
smaller degradation from the original model (a)
than Transfer. We suppose that this difference
is due to the difference between maximum en-
tropy and SCW-I, rather than that between the
transfer/online learning. The maximum entropy
method optimizes parameters based on the max-
imum a posteriori (MAP), and it is sensitive to
probability distribution. In contrast, SCW-I used

in Online is based on margin criteria, and ignores
data outside the margin. Therefore, Online yielded
smaller degradation.

In the case of active learning (f), the effects of
model adaptation were little compared to the other
cases. Namely, improvements against Test set 2
were slight and the accuracies of Test set 1 were
degraded from the original model (a). Because
transfer learning assumes that the target domain
should be similar to the source domain, the dataset
difference impacts performance significantly. We
can conclude that we should collect (and use) all
data for model adaptation regardless of whether or
not the original model can correctly classify it.

3.3 Accuracies according to Additional Data
Size

Figure 4 plots accuracy versus the size of the addi-
tional datasets. In the normal case (e), the accura-
cies of Test set 2 improved with both the Transfer
and the Online cases along with dataset size. In
contrast, the accuracy of Test set 1 with Trans-
fer degraded faster than Online, as described in
Section 3.2. The degradation with Online started
when over 2,000 data points were added. This
result shows that the SCW-I algorithm of Online
is relatively robust and remembers the previously
learnt data.

Focusing on active learning (f), the accuracies
of Test set 2 were degraded with both Transfer and
Online when all additional data was used. The ad-
dition of huge amounts of erroneous data causes
a harmful effect regardless of the learning method
used.

3.4 Hyperparameters in Transfer Learning

Finally, Table 3 shows the accuracies when the hy-
perparameters for the existing features in the orig-
inal model and the new features that appear only
in the additional data were distinguished by the
method described in Section 2.2.2. Here, hyper-
parameter COR was set when the original model
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Figure 4: Test Set Accuracy versus Size of Additional Data

Method COR CAD Test 1 Test 2
(e) Normal Case 0.1 0.001 70.33% 67.26%

0.1 0.01 68.09% 72.71%
0.1 0.1 64.26% 75.78%

(f) Active Learning 0.1 0.001 67.70% 65.15%
0.1 0.01 61.28% 66.87%
0.1 0.1 50.32% 63.29%

Table 3: Accuracies of Different Hyperparameters

was trained, and only CAD was changed.
In the normal case, while the changes to the ex-

isting parameters were suppressed (small CAD),
the accuracy of Test set 2 decreased. However, it
was higher than that of the original model (61.49%
→ 67.26%), and the accuracy on Test set 1 was al-
most constant (70.90% → 70.33%). If we have to
adapt the model under the condition that the orig-
inal performance is to be maintained, the two hy-
perparameter approach is effective.

In the active learning case, although we distin-
guished the hyperparameters, the results were not
improved from the normal case.

4 Conclusions

We investigated the characteristics of model adap-
tation wherein the original training data cannot be
accessed. We tested transfer learning (regularized
adaptation) on the maximum entropy classifier and
online learning (soft confidence-weighted learn-
ing). Our results are summarized as follows.

• If the additional dataset contains all data, re-
gardless of whether it can be correctly classi-
fied by the original model or not, both transfer
learning and online learning basically achieved
the highest accuracy.

• However, the maximum entropy classifier with
regularized adaptation changed more data,
which the original model correctly classified,
yielding more errors than online learning by
SCW-I.

• Restricting the additional data to the data that
the original model could not classify correctly
had negative effects in our problem setting (i.e.,
the original dataset cannot be accessed).

• We could slightly adapt the model while retain-
ing previous classification performance by dis-
tinguishing the hyperparameters for the exist-
ing features and those for the new features.

In natural language processing, structured
learning is frequently used for sequential labeling,
parsing, and so on. Our future work is to apply
model adaptation to structured learning.
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