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Abstract

We introduce an online framework for dis-
criminative learning problems over hidden
structures, where we learn both the latent
structure and the classifier for a supervised
learning task. Previous work on lever-
aging latent representations for discrimi-
native learners has used batch algorithms
that require multiple passes though the en-
tire training data. Instead, we propose
an online algorithm that efficiently jointly
learns the latent structures and the classi-
fier. We further extend this to include mul-
tiple views on the latent structures with
different representations. Our proposed
online algorithm with multiple views sig-
nificantly outperforms batch learning for
latent representations with a single view
on a grammaticality prediction task.

1 Introduction
Natural language data is implicitly richly struc-
tured, and making use of that structure can be
valuable in a wide variety of NLP tasks. How-
ever, finding these latent structures is a complex
task of its own right. Early work used a two-
phase pipeline process, in which the output of a
structure prediction algorithm (e.g. a noun phrase
finder) acts as fixed input features to train a classi-
fier for a different task (e.g. grammaticality predic-
tion). Chang et al. (2009), Das and Smith (2009),
Goldwasser and Roth (2008), and Mccallum and
Bellare (2005) have shown that this approach can
propagate error from the structured prediction to
the task-specific classifier. Recent work has com-
bined unsupervised learning of (latent) structure
prediction with a supervised learning approach for
the task. Work in this vein has focused on jointly
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learning the latent structures together with the
task-specific classifier (Cherry and Quirk, 2008;
Chang et al., 2010). Chang et al. (2010) in partic-
ular introduce a framework for solving classifica-
tion problems using constraints over latent struc-
tures, referred to as Learning over Constrained
Latent Representations (LCLR). We extend this
framework for discriminative joint learning over
latent structures to a novel online algorithm. Our
algorithm learns the latent structures in an unsu-
pervised manner, but it can be initialized with the
model weights from a supervised learner for the
latent task trained on some (other) annotated data.
This can be seen as a form of domain adaptation
from the supervised latent structure training data
to the different classification task.

We evaluate our algorithm in comparison to
the LCLR batch method on a grammaticality test
using a discriminative model that learns shal-
low parse (chunk) structures. Our online method
has standard convergence guarantees for a max-
margin learner, but attains higher accuracy. Fur-
thermore, in practice we find that it requires fewer
passes over the data.

We also explore the use of allowing multiple
views on the latent structures using different rep-
resentations in the classifier. This is inspired by
Shen and Sarkar (2005), who found that using a
majority voting approach on multiple representa-
tions of the latent structures on a chunking task
outperformed both a single representation as well
as voting between multiple learning models. We
show that the multiple-view approach to latent
structure learning yields improvements over the
single-view classifier.

2 The Grammaticality Task

To evaluate our algorithms, we use a discrimina-
tive language modeling task. A well-known lim-
itation of n-gram LMs is that they are informed
only by the previously seen word histories of a
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fixed maximum length; they ignore dependencies
between more distant parts of the sentence. Con-
sider examples generated by a 3-gram LM:

• chemical waste and pollution control ( amendment )
bill , all are equal , and , above all else .

• kindergartens are now .

These fragments are composed of viable trigrams,
but a human could easily judge them to be un-
grammatical. However, if a language model used
latent information like a shallow syntactic parse, it
could also recognize the lack of grammaticality.

Discriminative models can take into account ar-
bitrary features of data, and thus may be able to
avoid the shortcomings of n-gram LMs in judging
the grammaticality of text. In the case of language
modeling, however, there is no obvious choice of
categories between which the model should dis-
criminate. Cherry and Quirk (2008) show that by
following the pseudo-negative examples approach
of Okanohara and Tsujii (2007), they can build a
syntactic discriminative LM that learns to distin-
guish between samples from a corpus generated
by human speakers (positives) and samples gener-
ated by an n-gram model (negatives).

Our approach is similar to Cherry and Quirk
(2008), but they use probabilistic context-free
grammar (PCFG) parses as latent structure, use a
latent SVM as the learning model (we use latent
passive-aggressive (PA) learning), and they handle
negative examples differently. Instead of PCFG
parsing, we use a chunking representation of sen-
tence structure, which can be seen as a shallow
parse, in which each word in the sentence is tagged
to indicate phrase membership and boundaries.

Our model simultaneously learns to apply mul-
tiple sets of chunk tags to produce chunkings rep-
resenting sentence structure and to prefer the shal-
low parse features of the human sentences to those
sampled from an n-gram LM. The latent chunker
will assign chunk structure to examples that yield
the widest margin between the positive (grammat-
ical) and negative (ungrammatical) examples.

3 Latent Structure Classifier
Our classifier is trained by simultaneously search-
ing for the highest scoring latent structure while
classifying data instances. Here we extend the
latent learning framework due to Chang et al.
(2010) from a batch setting to an online setting
that uses passive-aggressive (PA) updates (Cram-
mer and Singer, 2001).

3.1 PA Learning

The latent structure classifier training uses a deci-
sion function that searches for the best structure
z∗i ∈ Z(xi) for each training sentence xi with
a space of possible structures Z(xi) according to
feature weights w, i.e.:

fw(xi) = arg max
zi

w · φ(xi, zi) (1)

where φ(xi, zi) is a feature vector over the
sentence-parse pair. The sign of the prediction
y∗i w ·φ(xi, z

∗
i ) determines the classification of the

sentence xi.
Using PA max-margin training (Crammer and

Singer, 2001), we incorporate this decision func-
tion into our global objective, searching for the w
that minimizes

1

2
‖w‖2 +

X∑
i=1

`(w · (f(xi), yi)), (2)

where ` is a loss function; we use hinge loss.
At each iteration, for each example xi we find and
update according to a new weight vector w′ that
minimizes:

1

2
‖w −w′‖2 + τ(1− yi(w

′ · φ(xi, z
∗
i )), (3)

where w is the previous weight vector, z∗i
is the structure found by Eqn. (1), yi ∈
{−1, 1} is the example’s true label (ungrammat-
ical/grammatical), and τ ≥ 0 is a Lagrange multi-
plier proportional to the example loss, thus penal-
izing classification examples in proportion to the
extent that they violate the margin (see Alg. 1).

3.2 Optimization Method

Since Eqn. (3) contains an inner max over z∗i , it is
not convex for the positive examples, since it is the
maximum of a convex function (zero) and a con-
cave function (1−yi(w

′ ·φ(xi, z
∗
i )). In hinge loss,

driving the inner function to higher values min-
imizes the outer problem for negative examples,
but maximizes it for the positives. So, as in LCLR,
we hold the latent structures fixed for the positive
examples but can perform inference to solve the
inner minimization problem for the negatives.

3.3 Online Training

Our online training method is shown as algorithm
1. It applies the structured prediction and PA up-
date of section 3 on a per-example basis in a vari-
ant of the cutting plane algorithm discussed in
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1 initialize w0

2 for t = 0, ..., T − 1 do
3 for each training example xi in X do
4 repeat
5 find z∗i = arg maxzi

wt · φ(xi, zi)

6 let y∗i = wt · φ(xi, z
∗
i )

7 let loss lt = max{0, 1− yiy∗i )}
8 let multiplier τt = lt

‖φ(xi,z
∗
i )‖2

9 update wt+1 := wt + τtyiφ(xi, z
∗
i )

10 until yi > 0 or (y∗i = yi if yi < 0);
11 return wT

Algorithm 1: Online PA algorithm for binary classification

with latent structures.

Joachims and Yu (2009). Since for the positive ex-
amples the latent structures are fixed per-iteration,
it does a single search and update step for each ex-
ample at each iteration. For negative examples it
repeats the prediction and PA update for each ex-
ample until the model correctly predicts the label
(i.e. until y∗i = yi). Because of the intractability
to compute all possible negative structures, we use
the approximation of the single-best structure for
each negative example. We re-decode the negative
examples until the highest scoring structure is cor-
rectly labeled as negative. This approximation is
analogous to the handling of inference over nega-
tive examples in the batch algorithm described in
Chang et al. (2010). In the batch version, however,
updates for all negative examples are performed at
once and all are re-decoded until no new structures
are found for any single negative example.

3.4 Multiple Views on Latent Representations

Shen and Sarkar (2005) find that using multiple
chunking representations is advantageous for the
chunking task. Moreover, they demonstrate that
the careful selection of latent structure can yield
more helpful features for a task-specific classifier.
We thus perform inference separately to gener-
ate distinct latent structures for each of their five
chunking representations (which are mostly from
(Sang and Veenstra, 1999)) at line 5 of Alg. 1; at
line 6 we evaluate the dot product of the weight
vector with the features from the combined out-
puts of the different views.

Each of the views use a different representa-
tion of the chunk structures, which we will only
briefly describe due to space limitations; for more
detailed information, please see Shen and Sarkar
(2005). Each representation uses a set of tags to la-
bel each token in a sentence as belonging to a non-
overlapping chunk type. We refer to the chunking

Token IOB1 IOB2 IOE1 IOE2 O+C
In O O O O O
early I B I I B
trading I I I E E
in O O O O O
Hong I B I I B
Kong I I E E E
Monday B B I E S
, O O O O O
gold I B I E S
was O O O O O
quoted O O O O O
at O O O O O
$ I B I I B
366.50 I I E E E
an B B I I B
ounce I I I E E
. O O O O O

Table 1: The five different chunking representations for the
example sentence “In early trading in Hong Kong Monday ,
gold was quoted at $ 366.50 an ounce .”

schemas as IOB1, IOB2, IOE1, IOE2, and O+C.
The total set of tags for each of the representations
are B- (current token begins a chunk), I- (current
token is inside a chunk), E- (current token ends a
chunk), S- (current token is in a chunk by itself),
and O (current token is outside of any chunk). All
chunks except O append the part-of-speech tag of
the token as a suffix. Table 1 shows the different
chunking schemas on an example sentence.

Each of these chunking schemas can be con-
ceived as a different kind of expert. Of the in-
side/outside schemas, the IOB variants focus on
detecting where a chunk begins; the IOE variants
focus on the chunk’s end. O+C gives a more fine-
grained representation of the chunking.

We use dynamic programming to find the best
chunking for each representation. The features of
φ(x, z) are 1-, 2-, 3-grams of words and POS tags
paired with the chunk tags, as well as bigrams of
chunk tags. We use entirely separate chunk tags
for each representation. E.g., although each repre-
sentation uses an “O” tag to indicate a word out-
side of any phrase, we consider the “O” for each
representation to be distinct.

We combine the multiple views in two different
ways: 1) we simply concatenate the features from
each structured prediction view into a larger fea-
ture vector and the weights are trained on the su-
pervised learning task, and 2) before training on
the supervised learning task we first convert all
representations to a common representation, O+C
(since it includes the union of the tagging distinc-
tions from all 5 views, it does not cause loss of
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information from any single view), and then we
perform a majority vote for each tag in the pre-
diction. We convert the winning sequence of pre-
dicted tags back to each representation and con-
catenate the features from each view as before and
train on the supervised learning task.

4 Experiments
For the chunkers we used the CONLL 2000 tagset
(23 chunk tags), modified for the five chunking
representations of (Shen and Sarkar, 2005). We
initialized the weights using a perceptron chun-
ker. The chunker-classifier can either be started
with a zero weight vector or with weights from
training on the chunking task. For the latter, we
used weights from supervised discriminative train-
ing against gold-standard chunking. To transfer
the weights to the classifier, we scaled them to the
range of values observed after training the zero-
initialized chunker-classifier. For training data we
used the English side of the HK Chinese-English
parallel corpus, using 50,000 sentences as posi-
tive examples. For negative examples we used the
pseudo-negative approach of Okanohara and Tsu-
jii (2007): we trained a standard 3-gram language
model on the 50,000 sentences plus 450,000 addi-
tional sentences from the same corpus. From this
we sampled 50,000 sentences to create the nega-
tive training data set.

We evaluated the discriminative LMs on the
classification task of distinguishing real grammati-
cal sentences from generated pseudo-negative sen-
tences. As test data we used the Xinhua data from
the English Gigaword corpus. We used the first
3000 sentences as positive examples. For nega-
tive examples we trained a 3-gram LM on the first
500,000 examples (including those used for posi-
tive data).We used this 3-gram LM to generate five
separate 3000 example negative data sets. To ac-
count for random variation due to using pseudo-
negatives, results are reported as a mean over the
positive data paired with each negative set. We
evaluated our algorithms against LCLR as a base-
line.1 Table 2 shows that our online algorithm with

1We implemented two batch baselines. The first is a strict
implementation of the LCLR algorithm as in Chang et al.
(2010), with per-outer-iteration example caching (LCLR); we
use a PA large-margin classifier instead of an SVM. How-
ever, we found that this algorithm severely overfits to our
task. So, we also implemented a variant (“LCLR-variant”)
that skips the inference step in the inner loop. This treated
the latent structures from the inference step of the outer loop
as fixed, but relabeled and updated accordingly until conver-
gence, then resumed the next outer iteration.

Model Accuracy %
LCLR 90.27
LCLR-variant 94.55
online single-view 98.75
+ multi-view 98.70
+ majority vote 98.78

Table 2: Classification accuracy after 40 outer iterations.

multiple views significantly outperforms the pre-
vious approaches. We omit a detailed experimen-
tal report of the behaviour of the online algorithm
due to lack of space, but our findings were 1) that
the batch models were slower to improve than the
online versions on test-set accuracy, and 2) the on-
line algorithm requires fewer updates total in train-
ing compared to the batch version.

5 Related and Future Work

As discussed, our work is most similar to Chang
et al. (2010). We expand upon their framework
by developing an efficient online algorithm and
exploring learning over multiple views on latent
representations. In terms of the task, max-margin
LMs for speech recognition focus on the word pre-
diction task (Gao et al., 2005; Roark et al., 2007;
Singh-Miller and Collins, 2007). This focus is
also shared by other syntactic LMs (Chelba and
Jelinek, 1998; Xu et al., 2002; Schwartz et al.,
2011; Charniak, 2001) which use syntax but rely
on supervised data to train their parsers. Charniak
et al. (2003) and Shen et al. (2010) use parsing
based LMs for machine translation which are not
whole-sentence models and they also rely on su-
pervised parsers. Our focus is on using unsuper-
vised latent variables (optionally initialized from
supervised data) and training whole-sentence dis-
criminative LMs. Our chunker model is related to
the semi-Markov model in Okanohara and Tsujii
(2007), but ours can take advantage of latent struc-
tures. Our work is related to Cherry and Quirk
(2008) but differs in ways previously described.

In future work, we plan to apply our algorithms
to a wider range of tasks, and we will present an
analysis of the properties of online learning algo-
rithms over latent structures. We will explore other
ways of combining the latent structures from mul-
tiple views, and we will examine the use of joint
inference across multiple latent representations.
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