
International Joint Conference on Natural Language Processing, pages 1052–1056,
Nagoya, Japan, 14-18 October 2013.

Interoperability between Service Composition and Processing Pipeline:
Case Study on the Language Grid and UIMA

Mai Xuan Trang, Yohei Murakami, Donghui Lin, and Toru Ishida
Department of Social Informatics, Kyoto University

Yoshida-Honmachi, Sakyo-Ku, Kyoto, 606-8501, Japan
trangmx@ai.soc.i.kyoto-u.ac.jp, {yohei,lindh,

ishida}@i.kyoto-u.ac.jp

Abstract
Integrating language resources is a critical
part in building natural language process-
ing applications. Processing pipeline and
service composition are two approaches
for sharing and combining language re-
sources. However, each approach has its
drawback. While the former lacks con-
sideration about property rights of lan-
guage resources, the later is not efficient to
process and transfer huge amount of data
through web services. In this paper we ad-
dress the issue of interoperability between
two approaches to mutually complement
their disadvantages. We show an integra-
tion of service composition and processing
pipeline, and how the integration can be
used to help developers seamlessly build
NLP applications. We then present a case
study that adopts the integration to inte-
grate two representative frameworks: the
Language Grid and UIMA.

1 Introduction

The creation of language resources (LRs) remains
a fundamental activity in the field of language
technology. The number of language resources
has been increasing year by year. Based on these
resources, developers build advanced Natural Lan-
guage Processing (NLP) applications (hereafter
referred to as the applications) such as Watson
and Siri by combining some of these resources.
However, it is difficult for developers to collect
and combine the most suitable set of language re-
sources in order to achieve the developers’ goals.

There are two types of language resource coor-
dination frameworks supporting developers shar-
ing and combining language resources and tools:
Framework-based processing pipeline such as
GATE (Cunningham et al. 2002) and UIMA (Fer-
rucci el al., 2004) and framework-based service

composition such as the Language Grid (Ishida,
2006). Interoperability between components in
one framework is dealt by defining Common Data
Exchange or standard interface for components.
For example, UIMA defines Common Analysis
Structure as data exchange between components,
the Language Grid defines standard interfaces in
a ontology for their language services (Hayashi,
2007). Interoperability among formats of two pro-
cessing pipeline frameworks UIMA and GATE is
explored in (Ide et al., 2009a). This paper ad-
dresses the issue of how to bridge the gap between
two data structures of common data exchange for-
mat. In this work we focus on interoperability of
two different types of frameworks.

Therefore, this paper realizes interoperability
between those two types of frameworks to mutu-
ally complement their disadvantages. To this end,
we address the following issues:

• Integration between two types of frame-
works: Service composition and processing
pipeline. The integration provides ability to
wrap components of one framework as com-
ponents of another. This will lead to more
language resources and tools becoming avail-
able in both frameworks, facilitating the de-
velopment process of NLP applications.

• A case study of integration two representative
frameworks: The Language Grid and UIMA
is implemented to realize the integration con-
cept framework.

The remainder of this paper is organized as fol-
lows: in section 2 we will briefly discuss features
of the two types of language resource coordination
frameworks. The integration of the service com-
position and processing pipeline will be presented
in section 3. We show a case study on integration
between the Language Grid and UIMA in section
4. Finally, section 5 concludes this paper.

1052



Tokenizer

POSTagger

Parser

Assign

Assign

Assign

Text

Tokens

Tokens

POSes

POSes

ParseTrees

Tokens

POSes

ParseTrees

Receive

Reply

Figure 1: Service composition approach

2 Language Resource Coordination
Frameworks

2.1 Service Composition Approach

In this approach, language resources are wrapped
as web services that users can combine to create
customized composite language services for their
need. Figure 1 shows a composite service compos-
ing three language services: Tokenizer, POSTag-
ger and Parser. Each service in the workflow is
defined by an interface with input and output. In-
teroperability between services in a workflow is
ensured by conforming interfaces of the services.
Output of a previous service and input of the later
service in the workflow must be compatible.

Language resources available on these frame-
works are provided by variety of providers. For
instance, PANACEA currently has more than 160
services provided by 11 service providers. On the
Language Grid, over 170 services are provided by
140 groups from 17 countries. Providers need to
protect their resources with intellectual rights, so
that they can configure permission and monitor us-
age statistics of their resources. Service composi-
tion approach provides access control functional-
ity to deal with this issue. This advantage encour-
ages providers to share their language resources,
increasing availability of language services.

2.2 Processing Pipeline Approach

This approach focuses on providing a setting for
creating analysis pipelines, oriented towards lin-
guistic analysis and stand-off annotation model.
The purpose of these frameworks is to combine
language resources to analyze huge amounts of
data at the local environment.

Processing tools are combined into a pipeline
to analyze documents. Each tool is defined as
an annotator to annotate the document with anno-

Tokenizer

POSTagger

Parser

Input text

Text

Tokens

Text

Tokens

POSes

Text

Tokens

POSes

ParseTrees

Figure 2: Processing pipeline approach

tations represented as stand-off annotation. The
document together with annotations is formed in
a Common Data Exchange Format (CDEF). The
CDEF document is then exchanged between com-
ponents in the pipeline. Figure 2 shows a pipeline
of three annotators: Tokenizer, POSTagger, and
Parser. The pipeline enriches input text with three
annotation types: Token, POS, and ParseTree.

A disadvantage of this approach is the lack of
access control to share language resources dis-
tributedly with intellectual rights. This limits the
availability of language resources.

3 Integration of Service Composition
and Processing Pipeline

3.1 Mapping Service Interface Invocation
and Stand-off Annotation

The CDEF data structure is defined based on
widely used de-facto standards such as TEI (Van-
houtte, 2004), CES (Ide, 2000), and common in-
terface format being developed under the con-
text of ISO committee TC 37/SC 4 (Ide, 2009b).
CDEF basically consists of two parts: one repre-
senting document text, and the other representing
annotations. Figure 3 shows an example of CDEF
in XML-based format:

• <doc>: represents the document, the id at-
tribute is used to distinguish documents when
a pipeline processing with multiple docu-
ments.

• <annotations>: represents all annotations
produced by a pipeline. An annotation is de-
scribed by <annot> tag, the type attribute in-
dicates type of the annotation, two attributes
begin and end define annotation’s offset and
the componentID attribute shows the annota-
tor producing this annotation. The structure
of the annotation is defined by feature struc-
ture (fs) tag and feature (f ) tags.

Each language service has its own interface
with input and output. For an annotator in pro-
cessing pipeline, we can assume that it’s input

1053



<?xml version="1.0" encoding="UTF-8"?>
<annotatedDoc>
<doc id="1" mimeType="text"

docString="Text of the document"/>
<annotations>

<annot type="POS" docID="1" begin="1"
end="5" componentID="POSTager">

<fs>
<f name="lemma" value="Text"/>
<f name="postag" value="noun"/>
...

</fs>
</annot>
...

</annotations>
</annotatedDoc>

Figure 3: Structure of common data exchange

Annotator
CDEF 

Maker

CDEF CDEF 

Extractor

CDEF

Analysis 

result
Service input

(a) Language service wrapper

Language

Service

CDEF 

Extractor

CDEF 

Maker

CDEF
CDEFAnnotation

Service

result

Annotation’s offset

(b) Language service wrapper

Figure 4: Wrappers

and output are CDEF. The mapping is defined to
map input/output of language services with anno-
tation types in CDEF. We define CDEF Maker and
CDEF Extractor to conduct the mapping and cre-
ate two wrappers: Language Service Wrapper and
Annotator Wrapper as shown in Figure 4(a) and
Figure 4(b) respectively. The former is used to
wrap an annotator as a language service, the later
is used to wrap a language service as an annotator:

• CDEF Extractor manipulates with CDEF
to extract annotation and maps it with in-
put/output of a language service. The Ex-
tractor uses XML parsing technique such as
DOM and SAX to parse CDEF document and
extract annotation. the annotation type and
offset are extracted from the element <an-
not>. The annotation structure with features
and values is extracted from <fs> node and
sub-nodes <f>s. The Extractor then maps
the annotation with a corresponding language
service type which is served as input or out-
put of a language service.

• CDEF Maker maps input/output of language
services to annotation types and creates
CDEF document. When wrapping an anno-
tator as a language service with defined in-
put and output, CDEF Maker first finds the
offset of the defined input in the original text
and then maps it with an annotation. Finally,
it creates CDEF document from the original
text and the annotation. In case of the input is

Processing pipeline frameworkService composition framework

Composite service container

Composite service

Atomic service container Component repository

Language 

Service 

Wrapper

Atomic 

service

Annotator 

Wrapper

Atomic 

service

Annotator

Annotator

Flow controller

Pipeline flow 

engine

Composite 

service 

Transformer

Figure 5: Integration Framework

text, the CDEF document is created with only
doc part. When wrapping a language service
as an annotator, CDEF Maker maps structure
of the language service output with structure
of a corresponding annotation type and use
annotation’s offset, extracted by CDEF Ex-
tractor, to create an annotation. This annota-
tion is then added to the CDEF document.

3.2 Integration Framework

Integration framework enables users easily com-
bine both types of components: language service
and annotator. Users can use annotators to cre-
ate composite services, use language services in a
pipeline flow, or use both in composite services or
in pipeline flows. It also provides ability to create
a pipeline flow from a composite service.

Figure 5 illustrates integration of service com-
position and processing pipeline. A wrapper sys-
tem consisting of Language Service Wrapper and
Annotator Wrapper is used in this integration
framework. Annotator providers use the Language
Service Wrapper to wrap an annotator as a lan-
guage service. This service is then shared with
access control in the service composition frame-
work. Users who have access rights to the system
can invoke this service or can use this service to
compose composite services. The language ser-
vice providers use the Annotator Wrapper to wrap
a language service into an annotator, this annotator
can be executed and combined in a pipeline flow.

Language resources are shared as language ser-
vices with intellectual rights, it is easy to cre-
ate composite services. However, pipeline flow
has better performance when processing large
amounts of data compared to composite ser-
vice. We define Composite Service Transformer
to transfer composite services into pipeline flows.
A composite service contains information about
binding services. From the binding services,
names, providers and sequence of language re-
sources using in the composite service can be ex-

1054



tracted. The transformer uses this information to
build an abstract pipeline flow of these language
resources. Later on, developers will negotiate
with the providers to get the concrete language re-
sources for the pipeline.

4 Case study: Integration of the
Language Grid and UIMA

Using the integration framework concept, we in-
tegrate the Language Grid and UIMA. We imple-
ment two wrappers: Language Service Wrapper
and Analysis Engine Wrapper. The former is used
to wrap an analysis engine as a language service,
while the later is used to wrap language service
into an Analysis Engine. A composite service
transformer is also implemented to help develop-
ers transfer composite services to UIMA flows.

CAS is common data exchanged between
UIMA components. We implement CAS Maker
and CAS Extractor to manipulate with CAS docu-
ment and create the wrappers:

• CAS Extractor extracts annotation from CAS
document and maps with input/output types
of language services.

• CAS Maker maps the input/output types
of language services with UIMA annotation
types and creates CAS documents which are
served as input/output of an analysis engine.

We use some libraries from the Language Grid and
UIMA such as jp.go.nict.langrid.client.ws 1 2.*
and org.apache.uima.* to manipulate with the
Language Grid types and UIMA CAS. We also de-
fined a new language service interface in the Lan-
guage Grid to represent an analysis engine. This
service interface has analyze operation with input
is a string representing document, and output is a
collection of annotations.

A mapping between UIMA annotation types
and the Language Grid types is defined. We col-
lect popular UIMA types defined for popular NLP
functionalities. For each UIMA type we find a cor-
responding type in the Language Grid and create
a mapping between these two types. For exam-
ple, a uima.annotation.Lemma annotation can be
mapped with langrid.types.Morphem type in the
Language Grid, since these types contain similar
morphological information such as partOfSpeech.

Composite Service Transformer extracts infor-
mation about language resources used in a com-
posite service and builds an UIMA flow by cre-
ating a descriptor file of the flow from the infor-

mation. This process may be complex, since it
is transformation between two different types of
flow. To facilitate the transformer, we adapt UIMA
Flow Engine into the Language Grid Composite
Service Container (Murakami et al. 2011), so that
users can use this engine to create composite ser-
vices. This kind of composite service is much eas-
ier to be transferred into an UIMA flow.

Analysis engines are wrapped as web services
and shared in the Language Grid. Developers
can easily collect and combine services to build
a workflow for their application. However, using
web services, transformation of huge data is not
efficient. After testing the workflow with small
amount of data and examine the output, if it sat-
isfies the users requirement, then this workflow is
transferred to a UIMA flow. Moreover, with the
integration we can create hybrid applications com-
bining analysis engines and language services.

The integration of UIMA and the Language
Grid enhances the number of language resources
available in both frameworks. Especially, this in-
creases the number of language services related
NLP in the Language Grid, and increases the ro-
bustness of the Language Grid.

5 Conclusion

In this paper we proposed an integration of two
types of language resource coordination frame-
works: framework-based service composition and
framework-based processing pipeline. The main
contributions of this paper are as follows:

• The integration framework increases avail-
ability of language resources. Thus, it facili-
tates the process of creating applications.

• Integration of the Language Grid and UIMA
is implemented to realize the framework.

In this paper, the type mapping between differ-
ent frameworks is manually created. This tech-
nique is not very sufficient, due to the significant
increase in number of types. Our future work will
focus on using ontologies or extendable type sys-
tem for a better approach of the type mapping.

Acknowledgments

This research was partly supported by a Grant-in-
Aid for Scientific Research (S) (24220002, 2012-
2016) from Japan Society for Promotion of Sci-
ence (JSPS) and Service Science, Solutions and
Foundation Integrated Research Program from
JST RISTEX.

1055



References
Bel N. 2010. Platform for Automatic, Normalized

Annotation and Cos-Effective Acquisition of Lan-
guage Resources for Human Language Technolo-
gies: PANACEA. In Proceedings of the 26th An-
nual Congress of the Spanish Society for Natural
Language Processing (SEPLN-2010).

Cunningham H., Maynard D., Bontcheva K., and
Tablan V. 2002. GATE: A framework and graphical
development environment for robust NLP tools and
applications. In proceedings of the 40th Anniver-
sary Meeting of the Association for Computational
Linguistics.

Ferrucci D., and Lally A. 2004. UIMA: an architec-
tural approach to unstructured information process-
ing in the corporate research environment. Natural
Language Egnineering, 10, pp. 327-348.

Hayashi Y. 2007. Conceptual Framework of an Up-
per Ontology for Describing Linguistic Services. In:
Toru Ishida, Susan R. Fussel, Piek T. J. M. Vossen
(Eds.): Intercultural Collaboration, LNCS 4568,
Springer-Verlag, pp.31-45.

Ide, N., Bonhomme, P., and Romary, L. 2000. An
XML-based Encoding Standard for Linguistic Cor-
pora In Proceedings of the Second International
Conference on Language Resources and Evaluation,
pp. 825-830.

Ide N., and Suderman L. 2009a. Bridging the Gaps:
Interoperability for GrAF, GATE and UIMA. In
Proceeding of the Third Linguistic Annotation Work-
shop. Singapore, August 2009, pp. 27-34.

Ide, N., and Romary, L. 2009b. Standards for language
resources. arXiv preprint arXiv:0909.2719.

Ishida T. 2006. An Infrastructure for intercultural col-
laboration. In IEEE/IPSJ Symposium on Applica-
tions and the Internet (SAINT-06), pp. 96100.

Kano Y., Miwa M., Chohen K. B., Hunter L. E., Ana-
niadou S., and Tshujii J. 2011. U-Compare: A mod-
ular NLP workflow construction and evaluation sys-
tem. IBM Journal of Research and Development,
55(3).

Murakami Y., Lin D., Tanaka M., Nakaguchi T., and
Ishida T. 2011. Service Grid Architecture. In
The Language Grid: Service Oriented Collective In-
telligence for Language Resource Interoperability,
Ishida T., Ed. Springer 2011, pp. 19-34..

Schäfer U. 2006. Middleware for Creating and
Combining Multi-dimensional NLP Markup. In
Proceedings of the EACL-2006 Workshop on Mul-
ti-Dimensional Markup in Natural Language Pro-
cessing. Trento, Italy, April 2006, pp. 8184.

Vanhoutte, E. 2004. An Introduction to the TEI and the
TEI Consortium. Literary and linguistic computing,
19(1), 9-16.

1056


