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Abstract

The popularity of microblogging systems
has resulted in a new form of Web data –
microtext – which is very different from
conventional well-written text. Microtext
often has the characteristics of informal-
ity, brevity, and varied grammar, which
poses new challenges in applying tradi-
tional clustering algorithms to analyze mi-
crotext. In this paper, we propose a novel
two-phase approach for clustering stream-
ing microtext, in particular Twitter mes-
sages, into event-based clusters. In the on-
line phase, an incremental process is ap-
plied to discover base clusters and main-
tain detailed summary statistics. Upon de-
mand for any user-specified time horizons,
an offline phase is triggered to merge re-
lated clusters together. We demonstrate
that our proposed approach can achieve
better clustering accuracy than state-of-
the-art methods.

Introduction

Microtext is a newly emerging type of Web data
which is generated in enormous volumes with
the proliferation of online microblogging systems.
These systems, such as Twitter and Facebook, pro-
vide a light-weight, easy form of communication
that enables individuals around the globe to share
information and express their opinions in fluid
and less formal ways. Microtext streams gener-
ated from these sites offer a rich source of real-
time information about a wide variety of real-
world events, ranging from planned occurrences
such as political campaigns or sports games, to
unexpected incidents such as earthquakes or ter-
rorist riots. To provide insight into user-generated
content broadcast in microtext streams, clustering
approaches have demonstrated great potential for

identifying what topics people are talking about
and tracking how events unfold over time.

Clustering microtext streams poses a number of
new challenges, due to short, noisy and informal
nature of microtext [Ellen, 2011]. First, clustering
techniques should be scalable to the sheer volume
of data generated in microblogging systems. Twit-
ter, for example, generates over 400 million tweets
per day in early 2013. Thus, it is crucial to develop
efficient clustering algorithms that can handle such
massive amounts of streaming data. Second, mi-
crotext often has the characteristic of informal-
ity, brevity, varied grammar, and free-style. De-
pending on various personal style or background
knowledge, people tend to use different words to
convey the same or similar meanings, when writ-
ing about a particular event. Therefore, it is highly
desirable to design effective clustering algorithms
that can discover event-based clusters over time.

To cope with the sparsity and brevity of micro-
text, different methods have been proposed for mi-
crotext clustering in recent years. The majority of
previous work has primarily focused on cluster-
ing a static collection of short documents [Rangrej
et al., 2011, Tsur et al., 2012], or on using surface
features to compute pairwise similarity between
microtext [Reuter et al., 2011, Li et al., 2012].
However, the challenge of how to effectively clus-
ter microtext in dynamic data streams has not been
well addressed.

In this paper, we propose a novel framework
for automatically grouping streaming microtext, in
particular Twitter messages, into a set of event-
based clusters; it intelligently divides the cluster-
ing process into an online component which main-
tains summary statistics, and an offline compo-
nent which uses these compact statistics to dis-
cover event-based clusters. In the online phase,
an incremental process is applied to discover base
clusters and maintain detailed summary statistics
about the clusters. This process can be efficiently
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performed for the purpose of online social me-
dia monitoring. The generated base clusters serve
as an intermediate statistical representation of the
stream. Upon request, an offline phase is thereafter
utilized to perform more computational analyses
which merge similar clusters together in a bottom-
up manner within a given time horizon. Experi-
mental results show that our proposed clustering
algorithm improve the clustering quality of other
state-of-the-art approaches.

Related Work

This section reviews two primary related research
areas: first, short text clustering which deals with
very short and informal text; and second, studies
that address event identification in social media.

Short Text Clustering

Although document clustering is well studied in
the past decade, clustering very short, noisy and
informal text has remained a challenging task.
Rosa et al. [2010] studied the problem of clus-
tering tweets into several pre-specified categories.
They used hashtags as indicators of topics and ar-
gued that the clusters produced by traditional un-
supervised methods can often be incoherent from
a topical perspective. Rangrej et al. [2011] com-
pared the performance of three document clus-
tering techniques on Twitter data, and found that
graph-based approach using affinity propagation
performs best in clustering tweets. To cope with
the sparsity of tweets, Tsur et al. [2012] con-
structed a virtual document by concatenating all
micro-messages having the same hashtag, and
then applied k-means algorithm to cluster virtual
documents. Existing research has primarily fo-
cused on clustering a static collection of short text,
while the challenge of continuously clustering mi-
crotext streams has not been well addressed.

Event Identification in Social Media

In recent years, identifying events from social me-
dia has attracted much attention. Petrović et al.
[2012] applied a k-nearest neighbor approach to
detect the first message talking about an event in
a stream of Twitter messages, and used locality-
sensitive hashing to speed up the computational
process. Reuter et al. [2011] formulated the event
identification problem as a record linkage task,
in which a blocking strategy was used to re-
duce the number of pairs of documents consid-

ered for computing pairwise similarity. Becker
et al. [2011] proposed an incremental clustering
approach to group Twitter messages into clusters,
which was similar to the method developed for de-
tecting events in streams of text documents [Al-
lan et al., 1998]. This approach determines the
assignment of a message based on its similarity
to textual centroids of existing clusters. Li et al.
[2012] proposed to first detect bursty tweet seg-
ments as event segments and then use graph-based
clustering to cluster event segments into events.
Most of these works have either relied on comput-
ing pairwise similarity between static messages,
or considered only the textual features of mes-
sages. In our work, however, we focus on develop-
ing an efficient framework for clustering a contin-
uous stream of microtext, which groups clusters in
a single pass and has the flexibility to merge clus-
ters upon demand to identify event-based clusters.

Microtext Stream Clustering

We aim to design an effective microtext stream
clustering algorithm that can meet three require-
ments: (1) The ability to handle massive vol-
umes of microtext (i.e., tweets) under the one-pass
constraint of streaming scenarios; (2) The ability
to employ temporal information in the clustering
process, because tweets published within a cer-
tain time interval are more likely to correspond
to the same event in the stream; (3) The ability
to merge related clusters together when necessary.
To meet these needs, we propose a new clustering
framework which works in two phases, i.e., an on-
line discovery phase and an offline cluster merging
phase. The basic idea is to carefully balance the
computational load between the online component
and the offline component. In the online phase,
the Twitter stream is processed in a single pass
to maintain sufficient summary statistics about the
evolving stream. The offline phase provides the
flexibility for an analyst to perform queries about
clusters and retrieve event-based clusters upon de-
mand over different time horizons.

Below, we detail the two phases in the following
two subsections.

Online Discovery Phase

The main task of the online phase is to provide
a one scan algorithm over the incoming Twit-
ter stream for identifying base clusters, with each
cluster consisting of a set of similar tweets. For

720



this purpose, we design an efficient single-pass
clustering algorithm which clusters the stream of
tweets in an incremental manner.

To represent textual information of tweets, we
employ a traditional vector-space model which
uses the bag-of-words representation. A tweet
is represented using a vector of words (terms
or features), which are weighted using the term
frequency (TF) and the inverse document fre-
quency (IDF) [Salton and Buckley, 1988]. Using
this model, a tweet represents a data point in d-
dimensional space, mi = (v1, v2, . . . , vd), where
d is the size of the word vocabulary and vj is the
TF-IDF weight of jth word in tweet mi. However,
in a dynamic microtext stream, word vocabulary
changes and the number of tweets increases over
time, making it computationally expensive to re-
calibrate the inverse document frequency of TF-
IDF. Therefore, we resort to using term frequency
as the term weight and adopting a sparse matrix
representation of tweets to deal with dynamically
changing vocabulary in our clustering algorithm.

To discover meaningful clusters, one important
factor is defining an effective similarity measure.
In our work, we use cosine similarity to measure
textual similarity between two tweets, which is de-
fined as

simtext(mi,mj) =
mi ·mj

||mi|| × ||mj ||
, (1)

where mi ·mj indicates the dot product of vectors
mi and mj . Besides, ||mi|| and ||mj || denotes the
norm of vectors mi and mj , respectively.

Since real-world events typically span a limited
time interval, tweets that largely differ on their
publication times are much less likely to belong
to the same event. Therefore, in order to cluster
tweets into temporally-related groups, we also ex-
ploit a time similarity measure defined as

simtime(mi,mj) = exp(−
|tmi − tmj |

λ
), (2)

which is based inversely on the distance between
tweets’ publication dates/times. |tmi − tmj | indi-
cates the time difference between tweets mi and
mj , represented as the number of days, and λ is
the number of days of one month, whose value is
application dependent. In our case, if tmi and tmj

are more than one month apart, we consider time
similarity between mi and mj to be very small.

Putting together, our clustering algorithm uses a

combined similarity measure defined as:

sim(mi,mj) = simtext(mi,mj)·simtime(mi,mj).
(3)

This similarity measure not only captures the simi-
larity between the texual vectors of tweets, but also
penalizes the similarity between tweets if their
publication dates/times are far away.

To maintain sufficient information about clus-
ters, we represent each cluster Ci using a cluster
feature vector ψ(Ci), defined as follows:

• Textual centroid Cw
i : which is a vector in

which each element represents the average
weight of the corresponding words for all
tweets in cluster Ci.

• Time centroidCt
i : which is the average publi-

cation time of all tweets that form cluster Ci.

• Cluster size |Ci|: which is defined as the
number of tweets belonging to cluster Ci.

Now we describe the process of the incremen-
tal clustering algorithm. Given a Twitter stream
in which the tweets are sorted according to their
published times, the algorithm takes the first tweet
from the stream, and uses it to form a cluster. As
a new tweet m arrives, we calculate the similarity
between tweet m and any existing clusters Ci as

sim(m, Ci) = simtext(m, Cw
i )·simtime(tm, C

t
i ).

(4)
LetC be the cluster that has the maximum similar-
ity with m. If sim(m, C) is less than a similarity
threshold δsim, which is to be determined empiri-
cally, a new cluster is created to include m; Other-
wise, the tweet m is assigned to the closest cluster
C. By adjusting the threshold δsim, we can obtain
clusters at different levels of granularity. Once a
new tweet m is added to cluster Ci, we update the
corresponding cluster representatives ψ(Ci) using
the following equations:

Ĉw
i =

Cw
i × |Ci| + m

|Ci| + 1
, (5)

Ĉt
i =

Ct
i × |Ci| + tm
|Ci| + 1

, (6)

ˆ|Ci| = |Ci| + 1. (7)

This incremental algorithm is efficient as it con-
siders each tweet at once, and can thus scale to a
growing amount of tweets. To further improve ef-
ficiency, we maintain a list of active clusters over
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time in the online phase. If no more tweets are
added to a cluster for a period of time, which is de-
termined based on application needs, the cluster is
considered inactive and it is removed from the ac-
tive list. The algorithm considers only those clus-
ters in the active list as candidates to which a new
tweet can be added. The output of the algorithm
is a list of clusters C1, . . . , CH , together with their
cluster representatives ψ(C1), . . . , ψ(CH).

Offline Cluster Merging Phase
The base clusters generated by the online phase
serve as an intermediate statistical representation,
which can be maintained in an efficient way even
for a large volume of tweets. The subsequent of-
fline phase is utilized to merge a list of clusters into
event-based clusters. There is no need to process
the voluminous microtext stream, but the com-
pactly stored summary statistics of clusters.

For a particular event, since users tend to con-
vey the same or a similar meaning using different
words depending upon their own personal style,
the online phase would organize the tweets that
report the same event, but expressed using dif-
ferent words, into different base clusters. There-
fore, we propose to merge together the clus-
ters that are related with respect to the same
event in the offline phase. Concretely, we cal-
culate a cluster merge criterion, link(Ci, Cj) =
simtext(C

w
i , C

w
j ) · simtime(C

t
i , C

t
j), which cap-

tures the inter-similarity between two clusters Ci

and Cj . The principle is to merge a pair of clusters
that have a larger inter-cluster similarity. When
two clusters are merged, we merge a smaller clus-
ter into the larger one and in this way, larger clus-
ters are retained which can better represent signif-
icant events of interest.

The offline clustering phase provides the flex-
ibility to query the clustering results at any time
horizon. Given a list of clusters generated during
the online phase, we consider iteratively merging
two clusters Cj∗ and Ci∗ such that link(Ci∗ , Cj∗)
is maximized. Accordingly, cluster representatives
for cluster Ci∗ are updated as follows:

Ĉw
i∗ =

Cw
i∗ × |Ci∗ | + Cw

j∗ × |Cj∗ |
|Ci∗ | + |Cj∗ |

, (8)

Ĉt
i∗ =

Ct
i∗ × |Ci∗ | + Ct

j∗ × |Cj∗ |
|Ci∗ | + |Cj∗ |

, (9)

ˆ|Ci∗ | = |Ci∗ | + |Cj∗ |. (10)

To determine an optimal number of clusters,

we use the notion of separation to measure the
clustering quality, which is defined as the average
inter-cluster similarity over all the clusters, that
is, S(k) = 1

N(N−1)

∑
i

∑
j link(Ci, Cj), where

C1, . . . , CN are the clusters obtained at step k. The
smaller value this metric has, the better clusters
are separated from each other. Based on this met-
ric, we design a criterion to decide whether or not
to stop the merging process. At each step k, given
two candidate clusters to be merged, we compute
a validation index as

∆k =
S(k + 1) − S(k)

S(k)
, (11)

which represents the relative change in inter-
cluster similarity after a merge is made. If ∆k < 0,
that means a cluster merge can improve the sepa-
ration of clusters. We thus proceed with merging
the two clusters. Otherwise, if ∆k ≥ 0, we stop
the cluster merging process. In this way, the opti-
mal number of clusters can be automatically deter-
mined during the cluster merging process.

Experiments

We carry out experiments to evaluate the effective-
ness of our proposed algorithm, and compare its
performance with other baseline methods.

Dataset

The dataset we used is an annotated corpus of
tweets collected from the beginning of July 2011
to September 2011 [Petrović et al., 2012]. The cor-
pus was distributed as a set of tweet IDs, together
with their annotations. We re-retrieved the tweets
using Twitter search API1 and obtained a set of
2,633 tweets. Each tweet was annotated as one out
of 27 events, which cover a variety of real-world
events, such as London riots, terrorist attacks in
Norway, Earthquake in Virginia, and NASA’s an-
nouncement about discovery of water on Mars.
The annotations are used as the ground truth for
evaluating the clustering algorithms.

We preprocessed the tweets by removing stop-
words, user mentions (@username), and embed-
ded links, because such elements in tweets may
not be useful for indicating the topics. We com-
piled a list of stopwords that specifically suited
Twitter content. It includes formal English stop-
words such as is, am, informal English stopwords

1https://dev.twitter.com/docs/
using-search
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such as gonna, arent, and Twitter specific stop-
words such as RT that indicates a retweet. We
also performed a shallow lexical normalization on
tweets and stemmed words using Porter Stem-
mer. For lexical normalization, we only consid-
ered words that were emphasized by repeating one
or more letters. If a letter was repeated more than
three times, it was normalized to one instance of
that letter. For example, the word crazyyyyy was
turned to crazy.

For our clustering task, we constructed a Twit-
ter stream by sorting all tweets according to their
publication times. The stream was taken as input
to the clustering algorithms. For each tweet, we
mainly used bag-of-words and specific hashtags
(words preceded with a # sign) as features to con-
struct a vector model.

Baselines
Our proposed algorithm is referred to as MSC
(Microtext Stream Clustering). For comparison,
we use two other methods as baselines:

• IC: which is a standard incremental clus-
tering algorithm adopted by Becker et al.
[2011]. It determines the assignment of a
message solely based on its similarity to the
textual centroids of existing clusters.

• IC-Time: which differs from our proposed
algorithm in that it only uses the first on-
line phase to discover clusters. By comparing
with this baseline, we show how much gain
in clustering quality can be achieved with the
offline cluster merging.

In our experiments, we set parameter λ in Eq.(2)
to be 30. In addition, we set the similarity thresh-
old δsim = 0.2 for all the algorithms.

Evaluation Metrics
Let C = {C1, . . . , CK} denote the clustering re-
sult produced by one clustering algorithm, and
G = {G1, . . . , GL} denote the desired ground
truth. We use two evaluation metrics: F-measure
[Yin and Yang, 2005] and normalized mutual in-
formation (NMI) [Strehl and Ghosh, 2003], to val-
idate the effectiveness of the clustering algorithms.
we observe that the results are strongly correlated
on the two metrics.

Experimental Results
We first performed experiments to evaluate the
performance of three clustering algorithms on the

entire stream. Since hashtags are considered as
good indicators of topics in the tweets, we investi-
gated two different ways of using hashtags as fea-
tures: first, considering hashtags in the same way
as words, and second, removing the # symbol and
treating hashtags as normal words. Table 1 reports
the clustering accuracy using the three algorithms
on the two settings.

F-measure NMI

Hashtags
IC 0.892 0.897

IC-Time 0.905 0.907
MSC 0.958 0.955

Hashtags without #
IC 0.899 0.907

IC-Time 0.910 0.913
MSC 0.966 0.962

Table 1: Comparison of clustering algorithms on
F-measure and NMI metrics

The top part of the table compares the per-
formance of the three algorithms using bag-of-
words and original hashtags as features. We can
see that, our proposed MSC algorithm is superior
to the other two baselines, while IC-time performs
slightly better than IC. This is because, IC only
relies on the cosine similarity between textual fea-
tures of tweets to form clusters, while IC-Time en-
forces a time constraint in the similarity measure
to reflect the time locality of events, which thus
leads to better clustering accuracy. By explicitly
merging related clusters, MSC achieves the high-
est accuracy on both two metrics.

The bottom part of the table shows the cluster-
ing results by removing the # symbol and treating
hashtags as normal words. We can observe that,
this improves the clustering accuracy for all three
algorithms. We believe that this improvement is
because removing the # symbol contributes to in-
creasing the term frequency of the same topic
word in the tweets. It thus translates to yielding
better clustering accuracy. This can be illustrated
using the examples as follows.

Bold move as Google Buys Motorola for 12.5
Billion, and paid cash #google #motorola.

5.8 earthquake happened in Virginia just mo-
ments ago. #Earthquake #Virginia.
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Figure 1: Clustering accuracy over different time horizons
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Figure 2: Illustration of the cluster merge process

If we remove the # symbol, hashtags #google and
#motorola are turned into words google and mo-
torola, in the first tweet, and #Earthquake and
#Virginia are into Earthquake and Virginia, in the
second tweet. In both cases, this increases the term
frequencies of the topic words or main entities
of events, thus highlighting their contributions to
forming the clusters.

To better understand how our MSC algorithm
performs cluster merges, Figure 2 illustrates the
cluster merging process for the topic talking about
the death of Amy Winehouse2. There are seven
clusters generated from the online phase, each of
which is represented using top-ranked keywords
in the figure. In the offline phase, the clusters are
merged based on their similarity and relatedness
in a bottom-up manner, and finally three clusters
remain after two rounds of cluster merges.

The other important feature of our proposed
MSC algorithm is that it can merge related clus-
ters upon demand for any user-specified horizon.
Therefore, we carried out experiments to compare
the clustering quality of the three algorithms at dif-

2http://en.wikipedia.org/wiki/Amy_
Winehouse

ferent time horizons. Figure 1 shows the clustering
accuracy with respect to F-measure and NMI at
different time units in the stream. We can see that,
our proposed MSC algorithm consistently outper-
forms the other two baselines over time. This indi-
cates that, MSC has the ability to retain sufficient
statistics required for effective cluster merging in
the offline phase.

Conclusions and Future Work

In this paper, we proposed a new approach for
clustering microtext streams into event-based clus-
ters. Our proposed approach intelligently divides
the clustering process into an online component
which maintains summary statistics, and an offline
component which uses these compact statistics to
discover event-based clusters. Therefore, it has the
advantage of processing and scaling to large vol-
umes of microtext streams. Experiments and com-
parisons demonstrated that our proposed approach
achieves better clustering accuracy than state-of-
the-art methods, and merging similar clusters can
improve the performance of short text clustering.

This work can be extended in several direc-
tions. We will further evaluate the effectiveness
of our clustering algorithm in the ESA (Emer-
gency Situation Awareness) system [Yin et al.,
2012] in larger-scale datasets. In particular, we
will test its performance together with the burst
detection module for identifying significant event-
based clusters from the real-time Twitter stream.
Moreover, since short, informal microtext has high
degree of lexical variations, we will explore para-
graphing techniques to uncover hidden seman-
tic relatedness between microtext. Such informa-
tion can be leveraged to group clusters that talk
about the same event, but expressed using differ-
ent words, and thus improve the clustering quality.
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