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Abstract

Work on information retrieval has shown
that language model smoothing leads to
more accurate estimation of document
models and hence is crucial for achiev-
ing good retrieval performance. Several
smoothing methods have been proposed in
the literature, using either semantic or po-
sitional information. In this paper, we pro-
pose a unified proximity-based framework
to smooth language models, leveraging se-
mantic and positional information simul-
taneously in combination. The key idea
is to project terms to positions where they
originally do not exist (i.e., zero count),
which is actually a word count propa-
gation process. We achieve this projec-
tion through two proximity-based density
functions indicating semantic association
and positional adjacency. We balance the
effects of semantic and positional smooth-
ing, and score a document based on the
smoothed language model. Experiments
on four standard TREC test collections
show that our smoothing model is effec-
tive for information retrieval and generally
performs better than the state of the art.

1 Introduction

Recently, statistical language models have at-
tracted much attention in the information retrieval
community due to their solid theoretical back-
ground as well as their success in a variety of
retrieval tasks (Ponte and Croft, 1998; Zhai and
Lafferty, 2001b). Queries and documents are as-
sumed to be sampled from hidden generative mod-
els, and the similarity between a document and a
query is then calculated through the similarity be-
tween their underlying language models. Clearly,
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good retrieval performance relies on the accurate
estimation of the query and document models. As
queries are generally too short (Zhai and Lafferty,
2001a), the entire retrieval problem is essentially
reduced to the problem of estimating a document
language model (Lavrenko and Croft, 2001; Liu
and Croft, 2004).

Larger observed data generally allow people to
establish a more accurate statistical model. Un-
fortunately, in retrieval, we often have to esti-
mate a model based on a small sample of data
(e.g., a single document or only a few docu-
ments). Therefore, given limited data sampling, a
language model estimation sometimes encounters
with the zero count problem: the maximum like-
lihood estimator would give unseen terms a zero
probability, which is not reliable because a larger
sample of the data would likely contain the term.
Language model smoothing is proposed to address
the problem, and has been demonstrated to affect
retrieval performance significantly (Zhai and Laf-
ferty, 2001b).

To this end, the quality of retrieval tasks heavily
relies on proper smoothing of the document lan-
guage model. Although much work on language
model smoothing has been investigated, two re-
lated retrieval heuristics remain to be further ex-
plored: 1) intra-document smoothing, a propaga-
tion of word count to positions where the term
does not exist, within the local document; 2)
inter-document smoothing, a projection of non-
existence terms from the entire collection globally.
Both heuristics are implemented in this paper.

As the key idea is to propagate term counts via
intra-document and inter-document projection to
positions where they originally do not exist, we
have two ways of projection: we propose a uni-
fied proximity-based framework to smooth lan-
guage models, formulating semantic and position
information simultaneously into a single objective
function with balance. Intuitively, a smoothed lan-
guage model should enhance the coherence be-
tween terms with large semantic association, and
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analogously for those positional adjacent terms. In
other words, the terms that are close to each other
(either semantically related or positionally adja-
cent) should have similar (smoothed) language
models; the closer they are, the more similar their
smoothed language models are. The smoothing
method is based on two density functions of prop-
agated counts of words. Our proposed framework
can combine both semantic and positional prox-
imity for intra-/inter-document smoothing natu-
rally, which has not been addressed in the previous
works. To the best of our knowledge, we are the
first to balance the effect of these proximities for
both intra-/inter-document smoothing.

Another main technical challenge lies in how to
define the propagation functions of semantic pro-
jection and positional adjacency in order to esti-
mate the language model accordingly. As the ad-
jacency function has been carefully explored in
(Lv and Zhai, 2009), we mainly focus on propos-
ing and evaluating several different semantic as-
sociation functions for term propagation. In these
density functions, “close-by” terms would receive
more propagated counts than “far-away” terms,
which captures the proximity heuristics.

We evaluate the retrieval performance using
several standard TREC test collections. Experi-
mental results show that our proposed proximity-
based smoothing consistently outperforms the
baseline smoothing methods, indicating the effec-
tiveness of our approach. The results show that
the derived smoothing method can improve over
the baseline position-based smoothing method sig-
nificantly, and either outperform or perform com-
parably to the corresponding state-of-art semantic
proximity-based smoothing method.

The rest of the paper is organized as follows.
We start by reviewing previous works. Then we
introduce the balanced language model smooth-
ing, based on semantics and positions separately.
We describe the experiments and evaluation in the
next section and finally draw the conclusions.

2 Related Work

Language modeling approaches have recently en-
joyed much attention for many different tasks
ever since the pioneering work applying on in-
formation retrieval (Ponte and Croft, 1998). In
the past decade, many variants of language mod-
els have been proposed, mostly focusing on im-
proving the estimation of query language models
(Zhai and Lafferty, 2001a; Lavrenko and Croft,
2001) and document language models (Liu and
Croft, 2004; Tao et al., 2006). These methods

boil down to retrieval functions that implement
retrieval heuristics similar to those implemented
in a traditional model, such as TF-IDF weight-
ing and document length normalization (Zhai and
Lafferty, 2001b). Yet with sound statistical foun-
dation, language models make it easier to opti-
mize parameters and often outperform traditional
retrieval models (Song and Croft, 1999).

Due to the importance of smoothing, many
approaches have been proposed and tested. To
smooth a document language model, most early
smoothing methods relied on using a background
language model, which is typically estimated
based on the whole document collection (Ponte
and Croft, 1998; Zhai and Lafferty, 2001b; Miller
et al., 1999). In contrast to the simple strat-
egy which smoothes all documents with the same
background, recently corpus structures have been
exploited for more accurate smoothing. The ba-
sic idea is to smooth a document language model
with the documents similar to the document under
consideration through clustering (Liu and Croft,
2004; Xu and Croft, 1999; Mei et al., 2008), doc-
ument expansion (Kurland and Lee, 2004; Tao et
al., 2006), or relevance propagation (Kurland and
Lee, 2010; Kurland and Lee, 2006; Qin et al.,
2005). All these methods are based on document-
level semantics similarity to offer “customized”
smoothing for each individual document.

Besides semantics, positional heuristics for re-
trieval have been examined in (Keen, 1992; Tao
and Zhai, 2007; Liu and Croft, 2002; Büttcher et
al., 2006). Positional language models are pro-
posed to examine the positional proximity in (Lv
and Zhai, 2009; Zhao and Yun, 2009). In their
work, the key idea is to define a language model
for each position within a document, and score
it based on the language models on all its posi-
tions: hence the effect of positional adjacency is
revealed, while semantic information is hardly in-
corporated.

There is a study in (Karimzadehgan and Zhai,
2010) which smooths language model by term
translation model with backgrounds, while we op-
erate term-to-term association on every term posi-
tion, which is actually a new granularity. Besides,
our method takes both semantic and positional in-
formation into account, and formulates the two
intrinsically different proximity-based heuristics
into a unified term-level smoothing framework. To
the best of our knowledge, this is the first approach
that achieves the combined smoothing.
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3 Proximity Based Language Smoothing

We propose a term-level proximity based smooth-
ing approach in the positional language model
framework. Each word propagates the evidence
of its occurrence to all other positions in the docu-
ment based on semantic and/or positional projec-
tion via density functions. To capture the prox-
imity heuristics, we assign “close-by” words with
higher propagated counts than those “far away”
from the current word. In other words, most prop-
agated counts come from “nearby” words. Here,
close and far could either be semantic or posi-
tional. Each position receives propagated counts
of words from an intra-document or an inter-
document vocabulary set. All positions have a full
vocabulary with different term distributions: each
word has a certain non-zero probability to occur in
each of the positions, as if all words had appeared
in any position with a variety of discounted counts,
shown in Figure 1.

Figure 1: Illustration of different term distribu-
tions on different positions for the short document
of “To be or not to be”. x-axis denotes all terms
in vocabulary, while y-axis indicates the term oc-
currence probability.

3.1 Semantic Proximity based Propagation
The idea for semantic projection is that if a wordw
occurs at position i, we would like to assume that
the highly associated words have also occurred
here, with a discounted count. The larger the se-
mantic association is, the larger the propagated
count will be. Generally, each propagated count
has a value less than 1, which is estimated as the
count of w at position i.

Let d = (w1, . . . , wi, . . . , wj , . . . , w|d|) be a
document, where 1, i, j, and |d| are absolute posi-
tions of the corresponding terms in the document,
and obviously |d| is the length of the document.
c(w, i, d): the original count of term w at posi-

tion i in document d before smoothing. Ifw occurs
at position i, c(w, i, d) is 1, otherwise 0. Similarly,
c(w, d) is the term count in d and c(w) is the term
count within the collection.
ϕ(wi, w): the propagated count of w to position

i based on the existence of wi. Intuitively, ϕ(wi,
w) serves as a discounting factor measured by the
semantic association between the term wi and w.

c′(w, i, d): the total propagated count of
term w at position i from its occurrences
in all the positions in the document d, i.e.,
c′(w, i, d)=

∑|V |
j=1 c(w, j, d)ϕ(wi, w)=c(w, d)ϕ(wi, w).

Even if c(w, i, d) is 0, c′(w, i, d) may be greater
than 0.

Note that the semantic association function
ϕ(.) here is not the same as “similarity”. Gener-
ally, association denotes the association between
two terms based on the broader background, e.g.,
co-occurrence or mutual information, etc. Clearly,
a major technical challenge for semantic based
smoothing lies in a proper model to define the as-
sociation function. We present here 4 representa-
tive association calculations.

Co-occurrence Likelihood. Given the term wi

at position i, we calculate the co-occurrence prob-
ability for the word w from other positions using:

p(w|wi) =
#c(w,wi)

#c(wi)
(1)

#c(w,wi) is the times of co-occurrence for
these two terms. Generally, we need to predefine
a sliding window to measure this co-occurrence
count, and hence we count #c(w,wi) within the
same sentence out of the whole collection. #c(wi)
is the term frequency in the document collection.
p(w|wi) denotes the occurrence probability of w
when wi occurs.

Apparently, this definition is asymmetric be-
cause p(w|wi) ̸= p(wi|w). When calculate the
propagated counts for w, it is more reasonable
to measure the probability given the existence of
wi. Especially when wi is a low-frequency term,
we will find the most likely terms with high co-
occurrence probability. The semantic associa-
tion by co-occurrence likelihood is ϕcl(wi, w) =
p(w|wi).

Mutual Information. In Information Theory,
the mutual information of two random variables
is a quantity that measures their mutual depen-
dence, which in our case, is the dependence of
co-occurrence probability. The mutual informa-
tion between the two terms w and wi can be rep-
resented as:

MI(wi, w) = log
p(w,wi)

p(w)p(wi)
(2)

where

p(wi, w) = p(w|wi)p(wi) (3)

p(w|wi) is defined in Equation (1), and p(w) =
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#c(w)∑
w′∈V #c(w′) . Equation (2) can be rewritten as:

MI(wi, w) = log
(

#c(w,wi)

#c(w)#c(wi)

∑
w′∈V

#c(w′)

)
(4)Generally, a larger value of mutual informa-

tion between terms indicates larger association
while low value or negative value indicates inde-
pendency. Although low mutual information is
proved to be less dependent, high mutual informa-
tion does not necessarily guarantee high associa-
tion, especially for low-frequency terms. There-
fore, we apply the Refined Mutual Information
(RMI) as an improvement (Manning and Schütze,
1999).

RMI(wi, w) =

{
#c(w,wi)MI(w,wi)

0 (if MI(w,wi) < 0)
(5)

Finally, we normalize RMI into [0, 1] by using
RMImax, the maximum value of RMI, as the se-
mantic association by mutual information:

ϕmi(wi, w) =
RMI(w,wi)

RMImax
(6)

Thesaurus-Based Correlation. A word the-
saurus represents the semantic associations of
terms, which is often formed into a tree with
synonyms, hyponyms and hypernyms modeled by
“parent-to-child” relationships, e.g., WordNet1 or
Wikipedia2. We illustrate part of WordNet as fol-
lows in Figure 2:

Figure 2: Hierarchical structure of WordNet: red
lines imply a possible path between car and bike.

There could be many paths from one term to the
other, and we define the shortest path as the dis-
tance between two terms, denoted as dist(wi, w).
Intuitively, the shorter distance is, the larger se-
mantic association is expected. Hence, we utilize
a decreasing sigmoid function to model the seman-
tic association based on thesaurus, denoted as ϕtc:

ϕtc(wi, w) =
1

1 + e(dist(wi,w))
(7)

1http://wordnet.princeton.edu
2http://wikipedia.org

Topic Distribution. “Topics” have long been
investigated as the significant latent aspects for lin-
guistic analysis (Hofmann, 2001; Landauer et al.,
1998). The utilization of topic models provides a
new horizon to investigate the latent correlations
between terms and documents. We apply the un-
supervised Latent Dirichlet Allocation (Blei et al.,
2003) to discover topics3. We obtain the probabil-
ity distribution over topics assigned to a term w,
i.e., p(w|z). The inferred topic representation is
the probabilities of terms belonging to the topic z,
which is

z = {p(w1|z), p(w2|z), . . . , p(wi|z)}

We empirically train a k-topic model (k=100)
and invert the topic-term representation in Table
1, where each w is represented as a topic vector w⃗.
The semantic association based on topic distribu-
tion ϕtd(wi, w) between wi and w is measured by
the cosine similarity on topic vector w⃗i and w⃗.

ϕtd(wi, w) =
w⃗i · w⃗

||w⃗i||||w⃗||
(8)

Table 1: Inverted topic-term vector representation.
w⃗1 p(w1|z1) p(w1|z2) . . . p(w1|zk)
w⃗2 p(w2|z1) p(w2|z2) . . . p(w2|zk)
...

...
...

...
...

w⃗|V | p(wV |z1) p(wV |z2) . . . p(wV |zk)

3.2 Intra-/Inter-Document Smoothing
For every position i to estimate the language
model, we can project a term from other positions
within the document through the defined seman-
tic association functions, namely intra-document
smoothing. We can also project all terms from
the whole vocabulary set to position i via ϕ(.),
which is actually an inter-document smoothing ef-
fect from the global collection and hence solve the
zero probability problem.

Before smoothing, the original word count dis-
tribution for position i in document d is D(i, d),
with only c(wi, i, d)=1 while all other items are 0.

D(i, d) =[
[c(w1, i, d), . . . , c(wi, i, d), . . . , c(w|Vd|, i, d)]︸ ︷︷ ︸

Vd

, 0, . . . , 0︸ ︷︷ ︸
V \Vd

]

After the semantic based intra-document
smoothing, the word count distribution becomes:

Ds(i, d) =[
[c′(w1, i, d), . . . , c′(wi, i, d), . . . , c′(w|Vd|, i, d)]︸ ︷︷ ︸

Vd

, 0, . . . , 0︸ ︷︷ ︸
V \Vd

]

3We use Stanford TMT (http://nlp.stanford.
edu/software/tmt/), with default parameter settings.
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Imagine the whole collection as a long vir-
tual document, the terms outside the docu-
ment vocabulary of Vd could also be smoothed
by inter-document smoothing, i.e., c′(w, i) =
c(w)ϕ(wi, w). To control the impact of out-of-
document vocabulary, we add a parameter µ ∈
[0,+∞) here:

Ds(i, d) =[
[c′(w1, i, d), . . . , c′(w|Vd|, i, d)]︸ ︷︷ ︸

Vd

, µc′(wj , i), . . . , µc′(w|V |, i)︸ ︷︷ ︸
V \Vd

]

3.3 Positional Proximity based Propagation
Analogously, for the positional-based smoothing,
the smoothed count by positional proximity is
c′′(w, i, d)=

∑|V |
j=1 c(w, j, d)ψ(i, j). We apply the

best positional proximity based density function
of Gaussian projection ψ(i, j) in (Lv and Zhai,
2009). σ is a fixed parameter here.

ψ(i, j) = exp[
−∆(i, j)2

2σ2
] (9)

Analogously to the semantic smoothing, we
also include the intra-/inter-document smoothing
in the positional count propagation. It is natural
to measure the distance offset between two terms
within the same document. To measure the posi-
tion distance between terms from different docu-
ments, we define ∆(i, j) = +∞ when the term
w at a certain position j is not from the document
which contains wi, i.e.,

∆(i, j) =

{
|i− j| (wj ∈ d)
+∞ (wj /∈ d)

(10)

In this way, the projection value ofψ(i, j) is cal-
culated to be 0 when wj /∈ d. Actually the defini-
tion is rather flexible, the value of projection for
terms from different documents is easy to adjust
to be non-zero when Equation (10) is changed.

The word count distribution Dp(i|d) is as fol-
lows after positional proximity based smoothing:

Dp(i, d) =[
[c′′(w1, i, d), . . . , c′′(wi, i, d), . . . , c′′(w|Vd|, i, d)]︸ ︷︷ ︸

Vd

, 0, . . . , 0︸ ︷︷ ︸
V \Vd

]

3.4 Balanced Proximity Combination
We can estimate a language model for the position
i based on the propagated counts reaching the po-
sition. Since we have two smoothed language dis-
tributions, i.e., Ds(i|d) and Dp(i|d), with uniform
representation, we can combine both smoothing

Figure 3: Linear interpolation of two smoothed
language models. The upper two word distribu-
tions are overlaid into one.
strategies with balance by distribution function su-
perposition, illustrated in Figure 3.

Based on the term propagation, we have a term
frequency vector<w1, w2, . . . , w|Vd|, . . . , wV> at
position i, forming a virtual document di. λ is
to control the relative contributions from semantic
proximity based smoothing and positional proxim-
ity based smoothing, formulated as:

ĉ(w, i, d) =λc′(w, i, d) + (1− λ)c′′(w, i, d)

=λ
∑|V |

j=1
c(w, j, d)ϕ(wi, w)+

(1− λ)
∑|V |

j=1
c(w, j, d)ψ(i, j)

(11)
ϕ(wi, w) is to measure the semantic association

between w and the word wi from position i, and
ψ(i, j) is the distance discount factor.

Thus the language model of this virtual docu-
ment can be estimated as:

p(w|i, d) =
ĉ(w, i, d)∑

w′∈V ĉ(w
′, i, d)

(12)

where V is the vocabulary set.
∑

w′∈V ĉ(w
′, i, d)

is actually the length of the virtual document.
p(w|i, d) is the language model at position i. Thus
given a query q, we can adopt the KL-divergence
retrieval model (Lafferty and Zhai, 2001) to score
each language model at every position as follows:

Score(q, d, i) = −
∑
w∈V

p(w|q)log
p(w|q)
p(w|i, d)

(13)
p(w|q) is a query language model. We apply

the 1) best scoring and 2) average scoring of all
positions in the document as the retrieval ranking
strategy (Lv and Zhai, 2009).
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4 Experiments

4.1 Dataset and Evaluation
In this section, we evaluate the effectiveness of
our smoothing strategies empirically. We use four
representative TREC data sets: AP (Associated
Press news 1988-90), LA (LA Times), WSJ (Wall
Street Journal 1987-92) and TREC8 (Disk 4 & 5,
the ad hoc data used in TREC8). They represent
different sizes and genres, with the same source,
queries, and preprocessing procedure as in (Tao et
al., 2006; Lv and Zhai, 2009). Table 2 shows the
basic statistics of these datasets in detail. We used
the title field of a TREC topic description to simu-
late short keyword queries in our experiments.

Table 2: Detailed basic information of 4 datasets.
AP LA WSJ TREC8

#doc 242,918 131,896 173,252 528,155
avg(dl) 442.4 492.5 388.7 468.3

qry id 51-150 301-400 51-100
151-200 401-450

#qry 100 100 100 50
#t qrel 21,819 2,350 10,141 4,728
avg(ql) 4.55 2.63 4.68 2.46

#doc/#qry: number of docs/queries; #t qrel: number of
relevant docs; avg(dl)/avg(ql): average length of doc/qry.

In each experiment, we first use the baseline
model (KL-divergence) to retrieve 2,000 docu-
ments for each query, and then use the smoothing
methods (or a baseline method) to re-rank them.
The top-ranked 1,000 documents for all runs are
compared using P@10 and the Mean Average Pre-
cisions (MAP) as the main metric.

MAP =
1

|Q|
∑
q∈Q

1

|Dr|

k∑
i=1

Pi × reli

|Q| is the number of queries, |Dr| denotes the
total number of relevant documents, Pi is the pre-
cision at i-th position for, also called P@i (Man-
ning et al., 2008). reli is an indicator function
equaling 1 if the item at rank i is a relevant docu-
ment, 0 otherwise.

4.2 Algorithms for Comparison
We examine the retrieval performance on the stan-
dard datasets. The first baseline group is based
on the traditional language model. LM is the
language model without smoothing at all, while
LM+JM and LM+Diri are to smooth the lan-
guage model with the whole collection as back-
ground information, using Jelinek-Mercer (JM)
and Dirichlet (Diri) smoothing methods corre-
spondingly (Zhai and Lafferty, 2001b).

We also examine a series of semantic based
language smoothing. The most representative se-
mantic smoothing is the Cluster-Based Document

Model (CBDM) proposed by Liu et al. (2004).
We apply the default settings for the method, (e.g.,
clustering methods, etc). Semantic based methods
use semantically similar documents as a smooth-
ing corpus for a particular document: CBDM clus-
ters documents and smooths a document with the
cluster where that document belongs to. However,
this method is only based on document-level se-
mantic similarity rather than term-level semantic
association.

We also include Positional Language Model
(PLM) proposed by Lv et al. (2009), which is the
state-of-art positional proximity based language
smoothing. PLM mainly utilizes positional infor-
mation while no semantic association is consid-
ered. We implemented the best reported PLM ker-
nel with Dirichlet smoothing from the collection
for comparison.

Finally we include our proposed Balanced
Proximity-based Model, denoted as BPM, which
formulates semantic proximity and positional
proximity into a unified language smoothing
framework, with flexible intra-document smooth-
ing and inter-document smoothing. In all, we have
7 methods to compare their performance.

4.3 Overall Performance Comparison

In this section, we compare BPM smoothing with
several previously proposed methods, using the
Dirichlet smoothing prior which performs best as
mentioned in these works. The prior parameter is
set at 1000 for all methods to rule out any potential
influence of Dirichlet smoothing (Liu and Croft,
2004; Tao et al., 2006). For fairness, we conduct
the same pre-processing to all methods. The pa-
rameter is chosen by 10-fold cross validation.

For baselines, we use the source code from the
original author, and report the results we get. The
advantage of CBDM, PLM (and BPM) over the
simplest language smoothing with Dirichlet and
Jelinek-Mercer smoothing has long been proved.
We hence focus on the meaningful comparison
between the sophisticated smoothing techniques.
Note that under the real scenario, as we could not
always predefine which kernel would perform best
on a particular dataset, for fairness, we take the
average performance of all semantic association
kernels as the results of BPM, and the parame-
ters are chosen using 10-fold cross validation de-
scribed in Section 4.4.2. Tables 3 and 4 show that
our model outperforms PLM in MAP and P@10
values on four data sets. The improvement pre-
sumably comes from the combination of both se-
mantic and positional proximity based smooth-
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MAP LM LM+JM LM+Diri CBDM PLM BPM
AP 0.169133 0.179245 0.180625 0.204361 0.204216 0.207428∗∗∗

LA 0.204195 0.222077 0.219500 0.240332 0.221190 0.231593
WSJ 0.206986 0.220919 0.221066 0.253834 0.269038 0.277115∗∗

TREC8 0.181040 0.214923 0.209676 0.219018 0.240894 0.248852
P@10 LM LM+JM LM+Diri CBDM PLM BPM

AP 0.402020 0.403030 0.403030 0.432323 0.418501 0.400000
LA 0.251020 0.256122 0.245918 0.288776 0.278571 0.289913∗

WSJ 0.365142 0.369204 0.379826 0.435036 0.423628 0.446802∗

TREC8 0.360508 0.368204 0.358496 0.442242 0.425900 0.438028
Time (in sec) LM LM+JM LM+Diri CBDM PLM BPM
PerQuery 0.151803 0.174667 0.180906 337.08198 0.683829 0.918593

Table 3: Overall performance comparison on MAP and P10 results among all methods. ∗, ∗∗, ∗∗∗ indicate
that we accept the improvement hypothesis of BPM over the best rival baseline by Wilcoxon test at a
significance level of 0.1, 0.05, 0.01 respectively. Efficiency is measured in seconds.

ing; intuitively, the lower bound of BPM is the
performance of PLM by tuning the combination
parameter λ fixed at 1, which is actually a spe-
cial case for BPM. It is interesting to find that
CBDM based on semantic smoothing performs
well in some datasets. We further examine into
the datasets of LA and TREC8: in these sets,
the semantic proximity weights more than posi-
tional proximity, i.e., a smaller λ in Figure 4. As
CBDM conducts a more principled way of exploit-
ing semantic smoothing by clustering structures, it
should not be too surprising for its performance on
datasets which emphasize semantic proximity.

Efficiency. The LM group is naturally faster
without sophisticated calculations. BPM is a little
slower than PLM but with consistent better perfor-
mance. CBDM shows the lowest efficiency due to
mass calculations of similarity for clustering.

4.4 Strategy Analysis
Generally speaking, strategies can be sorted into
two categories: component selection and parame-
ter tuning. Each time, we tune one strategy while
the other one remains fixed.

4.4.1 Component Selection
There is one substitutive component of designing
the semantic propagation function, where the term
association can be calculated by co-occurrence
likelihood ϕcl, mutual information ϕmi, thesaurus-
based correlation ϕtc and topic distribution ϕtd.
We examine the performance of different func-
tions to calculate the semantic association and the
results are listed in Table 4 and 5.

From the tables above, we can see that most
of the semantic association functions have slightly
different performance, indicating that these four

MAP ϕcl ϕmi ϕtc ϕtd

AP 0.208971 0.207159 0.206713 0.206868
LA 0.231850 0.231557 0.231482 0.231483

WSJ 0.276261 0.278372 0.276829 0.276999
TREC8 0.242348 0.251085 0.250977 0.250996

Table 4: MAP of different semantic associations.
P@10 ϕcl ϕmi ϕtc ϕtd

AP 0.409091 0.392929 0.398990 0.398991
LA 0.294898 0.285571 0.288592 0.290592

WSJ 0.447102 0.436101 0.446986 0.446019
TREC8 0.438008 0.438103 0.437998 0.438002

Table 5: P@10 of different semantic associations.

measurements are all able to capture the se-
mantic proximity based association among terms.
Among all semantic proximity functions, the co-
occurrence likelihood ϕcl performs best in most
cases, which means it is reasonable and most nat-
ural to smooth the zero count of terms if the co-
occurred terms appear.

4.4.2 Parameter Settings
There are two free parameters to tune, i.e., λ
and µ. λ is to balance the relative contributions
from semantic proximity and positional proximity,
while µ is to control the weight of inter-document
smoothing from the whole collection. Keeping
one parameter fixed, we vary the other one to ex-
amine the changes of its performance based on
all datasets. For each of the 4 datasets, we di-
vide the set and use the 10-fold cross validation
to train parameters for testings. We illustrate the
performance of parameter sensitivity by tuning λ
and µ based on all semantic association kernels, as
shown in Figure 4.

To control the tradeoff between semantic and
positional proximity combination, we gradually
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(1) MAP by tuning λ on AP. (2) P@10 by tuning λ on AP. (3) MAP by tuning µ on AP. (4) P@10 by tuning µ on AP.

(5) MAP by tuning λ on LA. (6) P@10 by tuning λ on LA. (7) MAP by tuning µ on LA. (8) P@10 by tuning µ on La.

(9) MAP by tuning λ on WSJ. (10) P@10 by tuning λ on WSJ. (11) MAP by tuning µ on WSJ. (12) P@10 by tuning µ on WSJ.

(13) MAP by tuning λ on TREC.(14) P@10 by tuning λ on TREC.(15) MAP by tuning µ on TREC.(16) P@10 by tuning µ on TREC.

Figure 4: Examine the sensitivity of λ and µ by all semantic association functions on all datasets.

change λ from 0 to 1 at the step of 0.1 to examine
the effect in Figure 4. The combination of both
proximity outperforms the performance in isola-
tion (λ = 1 or 0). An interesting observation is that
due to the instinct difference of used queries and
datasets, the optimal λ varies from one set to an-
other: for AP and WSJ, a larger λ is needed and
for LA and TREC8, a small λ is desired perhaps
due to the semantic association is more biased for
these datasets/corresponding queries: in general,
the combination is a better strategy.

We then examine the impact of out-of-
document vocabulary controlled by µ in Figure
4. Although the performance varies on different
datasets as well, for MAP, the performance is gen-
erally downward when µ grows larger, and for
P@10, the performance achieves best when µ is
relatively small (µ=0.1 or 0.01), which indicates
the impact of inter-document smoothing should
not be excessively over introduced.

5 Conclusions

In this paper, we combined both semantic and
positional proximity heuristics to improve the ef-
fect of language model smoothing, which has not
been addressed before. We proposed and stud-
ied four different semantic proximity-based prop-
agation functions as well as the positional prox-
imity density function to estimate the smoothed
language model. Experimental results show that
BPM outperforms most alternative baselines in
terms of MAP and P@10, which indicates the ef-
fectiveness of our proposed method.

Besides the effective fusion of semantic and
positional proximity (λ ̸= 0), we further in-
vestigate the semantic propagation function, and
find that co-occurrence likelihood association per-
forms best. In the future, we will incorporate cor-
pus information such as clustering features into the
semantic proximity function for better smoothing.
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