
International Joint Conference on Natural Language Processing, pages 243–251,
Nagoya, Japan, 14-18 October 2013.

Natural Language Query Refinement for Problem Resolution from
Crowd-Sourced Semi-Structured Data

Rashmi Gangadharaiah and Balakrishnan Narayanaswamy
IBM Research,

India Research Lab
{rashgang,murali.balakrishnan}@in.ibm.com

Abstract

We study the problem of natural language
query generation for decision support sys-
tems (DSS) in the problem resolution do-
main. In this domain, a user has a task he is
unable to accomplish (eg. bluetooth head-
phone not playing music), which we cap-
ture using language structures. We show
how important units that define a prob-
lem can robustly and automatically be ex-
tracted from large noisy online forum data,
with no labeled data or query logs. We also
show how these units can be selected to re-
duce the number of interactions and how
they can be used to generate natural lan-
guage interactions for query refinement.

1 Introduction

Decision Support Systems (DSSs) that help deci-
sion makers extract useful knowledge from large
amounts of data have found widespread applica-
tion in areas ranging from clinical and medical di-
agnosis (Musen et al., 2006) to banking and credit
verification (Palma-dos Reis et al., 1999). IBM’s
Watson Deep Question Answering system (Fer-
rucci et al., 2010), can be applied to DSSs to di-
agnose and recommend treatments for lung cancer
and to help manage health insurance decisions and
claims1. Motivated by the rapid explosion of con-
tact centres, we focus on the application of DSSs
to assist technical contact center agents.

Contact center DSSs should be designed to as-
sist an agent in the problem resolution domain.
This domain is characterized by a user calling in
to a contact center with the problem of being un-
able to perform an action with their product (e.g. I
am unable to connect to youtube). Currently con-
tact center DSSs are essentially search engines for

1http://www.ihealthbeat.org/articles/2013/2/11/ibm-
offering-two-new-decision-support-tools-based-on-
watson.aspx

technical manuals. However, this has two short-
comings : (i) in most cutting edge consumer tech-
nology, like software and smart devices, the range
of possible applications and use cases makes it im-
possible to list all of them in the manuals- lim-
iting their usefulness under the heavy tailed na-
ture of customer problems, (ii) contact centers are
known to suffer from high churn due to pressures
and difficulties of the jobs, particularly the need
for rapid resolution, making ease of use essential
since users of these DSSs are somewhere between
experts (in using the system) and novices (in the
actual technology customers need help with).

With the birth and growth of the Web 2.0 and
in particular, large and active online product fo-
rums, such as, Yahoo! Answers 2, Ubuntu Forums
3 and Apple Support Communities 4, there is the
hope that other technology savvy users will find
and resolve large number of problems within days
of the release of a product. However, these fo-
rums are noisy, i.e. they contain many throw-away
comments and erroneous solutions. The first im-
portant question we address in this paper is, how
can we mine relevant information from online fo-
rums and, in essence, crowdsource the creation of
contact center DSSs? In particular, we show how
many problems faced by consumers can be cap-
tured by actions on attributes (e.g. bluetooth head-
phone not playing music).

In order to address the second shortcoming, we
study the problem of automatic interactive query
refinement in DSSs. When DSSs are used by non-
computer scientists, natural language understand-
ing and interaction problems take center-stage (Al-
ter, 1977). Since both customers and agents are
not experts in a technical area, mis-understandings
are common. As agents are evaluated based on the
number of problems resolved, it is often the case

2http://answers.yahoo.com/
3http://ubuntuforums.org/
4https://discussions.apple.com/

243

that queries entered by an agent are underspeci-
fied. In response to such a query, a search engine
may return a large number of documents. For com-
plicated technical queries, the time taken by an
agent to read the long list of returned information
and possibly reformulate the query could be sig-
nificant. The second question we address in this
paper is how can a DSS make natural language
suggestions that assist the agent in acquiring ad-
ditional information from a caller to resolve her
problem in the shortest amount of time? Finally,
for rapid prototyping and deployment, we develop
a system and architecture that does not use any
form of labeled data or query logs, a big differ-
entiator from prior work. Query Logs are not al-
ways available for enterprise systems that are not
on the web and/or have a smaller user base (Bhatia
et al., 2011). When software and hardware change
rapidly over time, it is infeasible to quickly collect
large query logs. Also, logs may not always be ac-
cessible due to privacy and legal constraints.

To the best of our knowledge, this paper
presents the first interactive system (and detailed
evaluation thereof) for natural language problem
resolution in the absence of manually labeled logs
or pre-determined dialog state sequences. Con-
cretely, our primary contributions are:
• Problem Representation and Unit Extraction:
We define and automatically extract units that best
represent a problem. We show how to do this ro-
bustly from noisy forum threads, allowing us to
use abundant online user generated content.
• Unit selection for Interaction: We propose and
evaluate a complete interactive system for users to
quickly find a resolution based on semi-structured
online forum data. Follow up questions are gen-
erated automatically from the retrieved results to
minimize the number of interactions.
• Natural Language Question Generation: We
demonstrate that, in a dialog system it is possi-
ble and useful to automatically generate fluent in-
teractions based on the units we define using ap-
propriate templates. We use these to create follow
up questions to the user, which have much needed
context, and show that this improves precision.

2 Proposed System

In online forums, people facing issues with their
product (thread initiators) post their problems and
other users write subsequent posts discussing so-
lutions. These threads form a rich data source that

could contain problems similar to what a user who
calls in to the contact center faces, and can be
used to find an appropriate solution. Our system
(Figure 1) has two phases. In the offline phase,
the system extracts units that describe the problem
being discussed. In the online phase, the interac-
tion engine selects the most appropriate units that
best divide the space of search results obtained, to
minimize the number of interactions. The system
then generates follow up interactions by inserting
the units into appropriate unit type dependent tem-
plates. The answers to these follow up questions
are used to improve the search results.

Search	 Engine	

Online	 Phase	

Forum	 Discussion	
Threads	

Unit	 Extrac:on	
Units	 for	 First	 Posts	 of	

Threads	
1.  Phrases	

2.  A@ribute-‐Value	 Pairs	
3.  Ac:on-‐A@ribute	 tuples	

Query	 Interac:on	 Engine	
•  Unit	 Selec:on	

Ques:on	 Generator	

Candidate	
Units	

Follow	 up	 ques:on	

Templates	
for	 phrasal	

Units	

Templates	 for	
A@ribute-‐
value	 pairs	

Templates	 for	
Ac:on-‐A@ribute	

Tuples	

Retrieved	
results	

Offline	 Phase	

Figure 1: System Description

2.1 Representational Units

It is important to select representational units that
capture the signature, or the most important char-
acteristics of the information that users search for.
This signature should be sufficient to find relevant
results. In order to understand the right units for
the problem resolution domain, we conducted the
following user study. Five annotators analyzed the
first posts from 50 threads from the Apple Discus-
sion Forum, and were asked to mark the most rele-
vant short segments of the post that best described
the problem (an example in Table 1).

I cannot hear the notifications on my bluetooth now. it’s at normal

volume when i send a message, if i receive an email or text volume is
very low yet I have all volumes up all the way. Is there a new bluetooth
volume i have to turn up? or did another update screw the bluetooth .

Was working just great before i updated to ios - 4 . please help me.

Table 1: Relevant short segments for a forum post.

Based on the user study, the first kind of units
we considered were phrases, which are consecu-
tive words that occur very frequently in the thread.

244

Phrases as query suggestions have been shown to
improve user experience when compared to just
showing terms (Kelly et al., 2009) since longer
phrases tend to provide more context informa-
tion. One shortcoming of these contiguous phrasal
units is that they are sensitive to typography, i.e.
small changes in phrasing (e.g. ios - 4 and ios
4) lead to different phrases and the occurrence
counts are divided among these variations. This
causes difficulties both in the problem representa-
tion as well as in the search for problem resolution
which are exacerbated by the noisy, casual syn-
tax in forums. Motivated by Probst et al. (2007),
we extract attribute-value pairs. These units pro-
vide both robustness as well as more configura-
tional context to the problem. Another observa-
tion from the segments marked was that many of
them involved a user wanting to perform an action
(I cannot hear notifications on bluetooth) or the
problems caused by a user’s action (working great
before I updated). We capture them using action-
attribute tuples (details in Section 3.1.1).

Thread initiators describe the same problem in
different ways leading to multiple threads dis-
cussing the same problem. Ideally, we want the
representation of the problem to be the same for
all these threads to build robust statistics. Consider
the following examples, sync server has failed,
sync server failed, sync server had failed, sync
server has been failing. While the phrasing is dif-
ferent, we see that their dependency parse trees
(Figure 2) show a common relation between the
verb or action, fail, and the attribute sync server
(the base form of the verbs are obtained from their
corresponding lemmas with TreeTagger (Schmid,
1994)). Motivated by this, we use dependency
parse trees for extracting action-attribute tuples.

!"#$%!&'(&'%)*!%+*,-&.%%!"#$%!&'(&'%+*,-&.%%

!"#$%!&'(&'%)*.%+*,-&.%% !"#$%!&'(&'%)*!%/&&#%+*,-,#0%%

!"#$%&!!&
!"#$%&

'#(&!!&

!"#$%&

!!& '#(&

!"#$%&

!!&
'#(&'#(&

Figure 2: Dependency Parse Trees for various
forms of the same problem.

3 Detailed System Description

We now give a detailed description, showing how
the three types of units can be robustly extracted
and used from noisy online forums.

3.1 Offline Component

In the offline phase we first extract candidate units
that describe a problem (and its solution) from the
forum threads. We then filter this description, us-
ing the thread itself, to retain the important units.

3.1.1 Candidates for Problem Description

Sentences are tagged and parsed using the Stan-
ford dependency parser (de Marneffe et al., 2006).
The following units are then obtained from the first
post of the discussion thread.
Phrasal units: defined to be Noun Phrases satis-
fying the regular expression, (Adjective)* (Num-
ber/Noun/Proper Noun)+, (eg., interactive web
sites, osx widgets, 2007 outlook calendar). These
are extracted from the discussion thread along
with their frequencies of occurrence.
Attribute-Value pairs: The dependency relations
amod (adjectival modifier of a noun phrase) and
num (numeric modifier of a noun) in the parsed
output are used for this purpose. In the case of
amod, the attribute is the noun that the adjective
modifies and its value is the adjective. For exam-
ple, with amod(signal,strong), the attribute is sig-
nal and its value is strong. In the case of num, the
attribute is the noun and its value is the numeric
modifier. For example, with num(digits,10), the at-
tribute is digits and its value is 10. As mentioned
in Section 2.1, these pairs capture more context of
the problem being discussed. Additional attribute-
value pairs are extracted by expanding the at-
tributes with the adjacent nouns and adjectives that
occur with it. For the example in Figure 3, the at-
tribute signal is modified to cell phone signal and
added to the list of attribute-value pairs along with
their frequencies of occurrence.
Action-Attribute tuples: The dependency rela-
tions used for these units are given in Table 3
with examples. Many of these units help describe
the user’s problem while others provide contextual
information behind the problem being discussed.
These units are described with 4-tuples (Arg1-
verb-Arg2-Arg3), three of which are the argu-
ments of the verb or attributes of an action. The
relations given in the first column of Table 3 form
fillers for the attributes of the action. The exam-
ple in Figure 3 gives the tuple, I-entered-dns-null,
where, I is the subject, entered is the action per-
formed, dns is the object. If the verb has a prt re-
lation, the particle is appended to the verb. For ex-
ample, turned has a prt relation in prt(turned,off),

245

First Post I cannot hear the notifications on my bluetooth now. it’s at normal volume when i send a message but if i receive an email or
text the volume is very low yet I have all volumes up all the way. Is there a new bluetooth volume i have to turn up with ios - 4?
or is it that another update screwed with the bluetooth again. Was working just great before i updated ios - 4. please help me. thanks!

Phrases volume, bluetooth volume, bluetooth, notifications, update, ios, normal volume, work, text, way, email, message, new bluetooth volume,
Phrases + volume, bluetooth volume, bluetooth, notifications, update, ios, normal volume, work, text, way, email, message, new bluetooth volume,
Att-Val pairs ios 4
Phrases + volume, bluetooth volume, bluetooth, notifications, update, ios, normal volume, work, text, way, email, message, new bluetooth volume,
Att-Val pairs + ios 4, low volume, I hear notifications on bluetooth, update screwed bluetooth, I send message,
Act-Att tuples I receive email, it is at normal volume, working great before updated, I missed emails, *I volumes way.

Table 2: Problem representations for a forum post.

hence, the verb is now modified to turned off.
Since entered in this example takes only a subject
and an object as arguments, the third argument is
null. Consider another example, I removed the wep
password in the router settings, the tuple is now I-
removed-password-in the settings. The last row in
Table 3 gives an example of the usage of the xcomp
relation. As done with Attribute-Value pairs, the
attributes in these units are also expanded with
the adjacent nouns and adjectives and added to the
list of Action-Attribute tuples along with their fre-
quencies of occurrence in the entire thread.

3.1.2 Scoring and Filtering
Since the problem is defined by the thread initia-
tor in the first post of the thread, units in the first
post are scored and ranked based on tf-idf (Man-
ning et al., 2008). We treat each thread as a doc-
ument and the top 50 highest scoring candidates
form the problem description for the thread. Units
are extracted from the rest of the thread in order to
obtain frequency statistics for the units in the first
post. Pronouns, prepositions and determiners are
dropped from the units while obtaining the counts.
In addition, verbs in the action-attribute tuples
are converted to their base form using the lemma
information obtained from TreeTagger (Schmid,
1994), to obtain counts. This makes the scores ro-
bust to small variations in the units.

Examples of extracted units are shown in Ta-
ble 2. We see that errors in the parse (volumes
was tagged as a verb) cause erroneous units (*I
volumes up). For this reason, we use frequency
statistics from the rest of the discussion thread,
to determine if a unit is valid or not. The tf-
idf based scheme also removes commonly used
phrases such as, please help me, thank you, etc.

3.2 Online Phase

The system searches for a set of initial documents
based on the user’s initial query. Next, the follow-
up candidate units are selected (Section 3.2.1)
from the units extracted in the offline phase for the

!""#$%#&#'"%(#"'$)"*#+,-)#"!"'."$.%"(,/#",")%&.$0"+#11"2(.$#")30$,1"

!"#$%&
'($%&

')*&

+',-.&

/+01&

!"#$%&
+#2&

!)3&

')*&

+/('&

!!&
!!&

'($%&

Figure 3: Dependency parse: I entered the dns be-
cause I do not have a strong cell phone signal.

retrieved documents and natural language interac-
tions are further generated by filling the templates
(Section 3.2.2) with the selected units.

3.2.1 Selection of candidate units for
Question Generation

Interactions should be selected to (i) understand
the user’s requirements better by making the query
more specific and reduce the number of results
returned by the search engine, and (ii) reduce
the number of interactions required. We use in-
formation gain to find the best unit that reduces
the search space, motivated by its near optimality
(Golovin et al., 2010). If S is the set of all retrieved
documents, S1 ⊆ S containing uniti and S2 is a
subset of S that do not contain uniti, the gain from
branching (or interacting) on uniti is,

Gain(S, uniti) = E(S)−
|S1|
|S|

E(S1)−
|S2|
|S|

E(S2) (1)

E(S) =

∑
k=1,...|S|

−p(dock)log2p(dock) (2)

Where, each document is assigned a probability
based on its rank in the search results:

p(docj) =

1
rank(docj)∑

k=1,...|S|
1

rank(dock)

(3)

The unit that gives the highest information gain
forms the candidate for question generation. In-
formation gain has been widely used in Decision
Trees (Mitchell, 1997), where the nodes repre-
sent attributes and the edges indicate values, and
is known to result in short trees. In our case, the
nodes represent the follow up questions and the
edges indicate whether the user’s answer is yes or

246

Relation Example Attributes(Arg1/Arg2/Arg3) Action(Verb)
nsubj nsubj(entered,I) I (Arg1) entered
dobj dobj(entered,dns) dns (Arg2) entered
iobj iobj(give, address) address (Arg3) address
pobj prep(connect,to), pobj(to,wifi) wifi(Arg2) connect

prep (to,into, etc) prep in(removed,settings) in the settings (Arg3 if Arg2 not present, else Arg2) removed
xcomp xcomp(prompt, connect), prep to(connect,wifi), password(Arg1), to wifi (Arg2) prompt to connect

nsubj (prompt, password)

Table 3: Dependency relations used to extract Action-Attribute tuples

no. The goal in decision trees is to quickly exhaust
the space of examples with fewer steps, resulting
in shorter trees. The goal in this paper is to tra-
verse the space of results obtained with the initial
query to reach the most relevant document with
the fewest interactions. Since the dialog problem
can be easily mapped to decision trees, the choice
of information gain allows the user to arrive at the
most relevant document with the smallest number
of interactions in the online phase.

3.2.2 Question Generation
Questions are generated based on the type, number
and tense information present in the units. The list
of templates used for question generation is given
in Table 4. Once a candidate unit is selected, a
template is chosen based on its type. Phrasal units
have a single template. If an attribute has two val-
ues with very similar information gains, the tem-
plate for Attribute-Value pairs accommodates the
different values. For example, if the pairs, Out-
look:2003 and Outlook:2007 have very similar
gains, the question would then be Is your outlook:
Option1:2003 Option2:2007 ? and the user has the
option to click on the one that is relevant to his
query. For Action-Attribute tuples, the templates
are chosen based on the the person, number and
tense information from the verbs (Table 4). null
in the table (for example, null-send-emails-null)
indicates that a particular argument does not ex-
ist or was not found and hence the argument will
not be added to the appropriate template. Certain
templates require converting the verb to a different
form (e.g., VBD to VBN). This mapping is stored
as a dictionary obtained by running the TreeTag-
ger on the entire dataset and various forms are au-
tomatically obtained by linking them to the lem-
mas of the verbs (for example, give(VB/lemma)
gave(VBD) given(VBN) gives(VBZ)).

4 Results and Discussion

To evaluate our system, we built and simulated a
contact center DSS for iPhone problem resolution.

4.1 Description of Dataset

We crawled threads created during the period
2007-2011 from the Apple Discussion Forum re-
sulting in about 147, 000 discussion threads. In or-
der to create a test data set, threads were clustered
treating each discussion thread as a data point us-
ing a tf-idf representation. The thread nearest the
centroid from the 60 largest clusters were marked
as the ‘most common’ problems.

Underspecified Query 1: “cannot sync calendar”
Forms 6 specific queries
1. because iphone disconnected
2. because the sync server failed to sync
3. because the sync session could not be started
4. because the phone freezes
5. error occurred while mingling data
6. error occurred while merging data

Table 5: Specific and under-specified queries

To generate specific and under-specified queries
on this data set, in our experiments, we use the
first post as a proxy for the problem description.
An annotator created one short query (underspec-
ified) from the first post of each of the 60 selected
threads. These queries were given to the Lemur
search engine (Strohman et al., 2005) to retrieve
the 50 most similar threads from an index built
on the entire set of 147, 000 threads. He manually
analyzed the first posts of the retrieved threads to
create contexts, resulting in 217 specific queries.
To understand this process we give an example
from our data creation in Table 5. Starting from an
under-specified query cannot sync calendar, the
annotator found 6 specific queries. Two other an-
notators, were given these specific queries along
with the search engine’s results from the corre-
sponding under-specified query. They were asked
to choose the most relevant results for the specific
queries. The intersection of the choices of the an-
notators formed our ‘gold standard’.

4.2 User based analysis of the problem
representation and unit extraction

We conducted two user studies to determine the
(subjective) value of our problem representation,

247

Unit’s Type Template (with examples)
Phrases Is your query related to [unit] ?

eg: Is your query related to osx widgets ?
Attribute-Value pairs (if single value) Is your [attribute] [value] ?

eg: Is your wifi signal strong ?
Attribute-Value pairs (if multiple values) Is your [attribute]: Option1: [value1] ... Optionn:[valuen] ?

eg: Is your outlook calendar: Option1:2003 Option2:2007 ?
Action-Attribute tuples (Verb/Action is VB: base form) Does the [ARG1(sg)] [VERB] the [ARG2] [ARG3] ?

Do the [ARG1(pl)] [VERB] the[ARG2] [ARG3] ?
ARG1 is empty / ARG1 is a pronoun Do you want to [VERB] the[ARG2] [ARG3] ?

eg: Does the wifi network prompt the password ?
from the tuple: wifi network-prompt-password-null

Action-Attribute (Verb/Action is VBP: non-3rd person, singular, present) [ARG1] [VERB] [ARG2] [ARG3] ?
ARG1 is empty / ARG1 is a pronoun Do you want to [VERB] the [ARG2] [ARG3] ?

eg: Do you want to send the emails ?
from the tuple: null-send-emails-null

Action-Attribute (Verb/Action is VBN: past participle)
ARG1 is empty / ARG1 is a pronoun Have you [VERB] [ARG2] [ARG3] ?

ARG2 and ARG3 are empty Has the [ARG1(sg)] been [VERB] ?
ARG2 and ARG3 are empty Have the [ARG1(pl)] been [VERB] ?

Has the [ARG1(sg)] [VERB] the [ARG2] [ARG3] ?
Have the [ARG1(pl)] [VERB] the [ARG2] [ARG3] ?

eg:Has the update caused the phone to crash ?
from the tuple: update-caused-phone-to crash

Action-Attribute (Verb/Action is VBZ: 3rd person, singular, present) Does the [ARG1] [VERBV B] the [ARG2] [ARG3] ?
ARG1 is empty Does the phone [VERBV B] the [ARG2] [ARG3] ?

eg: Does the iphone use idol support
from the tuple: iphone-uses-idol support-null

Action-Attribute (Verb/Action is VBD: past tense) Has the [ARG1(sg)] [VERBV BN] [ARG2] [ARG3] ?
ARG1 is empty Have the [ARG2(pl)] [ARG3] been [VERBV BN] ?
ARG1 is empty Is the [ARG2(sg)] [ARG3] [VERBV BN] ?

ARG1 is a pronoun Have you [VERBV BN] [ARG2] [ARG3] ?
Have the [ARG1(pl)] [VERBV BN] [ARG2] [ARG3] ?

eg: Has the iphone found several networks ?
from the tuple: iphone-found-several networks-null

Action-Attribute (Verb/Action is VBG: gerund/present participle) Is the [ARG1(sg)] [VERB] the [ARG2] [ARG3] ?
Are the [ARG1(pl)] [VERB] the [ARG2] [ARG3] ?

ARG1 is empty Is the phone [VERB] the [ARG2] [ARG3] ?
eg: Is the site delivering the flash version ?

from the tuple: site-delivering-flash version-null

Table 4: Templates for the follow up Question Generation .

focusing on action-attribute tuples. In the first
user study, 5 users were given the first post of
20 threads with three problem representations for
the first post, (1) phrasal units only, (2) phrasal
units and attribute-value (Att-Val) pairs and (3)
phrasal units, attribute-value pairs and action-
attribute (Act-Att) tuples. They were asked to in-
dicate which representation best represented the
problem. All users preferred the third representa-
tion on all the first posts. An example first post and
units are in Table 2.

In the second study, the same 5 users were asked
to indicate how many units in Representation 3
were not relevant to the problem discussed in the
first post, for a subset of 10 threads. We defined
‘not relevant’ as noisy components which do not
aid in the problem representation e.g. oh boy and
thanks! (see Table 2). All users marked 2 examples

(sort and way) as not relevant, out of 110 units that
the algorithm generated for these threads.

These two user studies taken together show that
the combined set of units, is able to capture the
problem description well and that our algorithm is
able to filter out noise in the thread to create a ro-
bust and useful representation of the problem. The
results in Section 4.3 (Tables 6 and 7), show the
value of our problem representation, in a complete
end-to-end system, with objective metrics.

4.3 Unit selection for interaction

We evaluate a complete system with both user (or
agent) and search engine in the loop. We focus on
measuring the value of the interactions by an anal-
ysis of which results ‘rise to the top’. The exper-
iment was conducted as follows. Annotators were
given a specific query and its underspecified query

248

1 1.5 2 2.5 3 3.5 4 4.5 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Su
cc

es
s

at
 N

N

Baseline
Random
Pairs+Tuples+Phrases with Top=1
Pairs+Tuples+Phrases with Top=3
Pairs+Tuples+Phrases with Top=5

Figure 4: Success at N.

1 1.5 2 2.5 3 3.5 4 4.5 5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
AP

 a
t N

N

Baseline
Random
Pairs+Tuples+Phrases with Top=1
Pairs+Tuples+Phrases with Top=3
Pairs+Tuples+Phrases with Top=5

Figure 5: MAP at N.

(as created in Section 4.1) along with the results
obtained when the underspecified query was input
to the search engine. They were presented with the
Top = 1, 3 or 5 scoring follow up questions. E.g.,
for the underspecified query in Table 5 and specific
query 2, the generated question was (see Table 4),
Has the sync server failed to sync?. The user then
selected the most appropriate follow up question,
reducing the number of results. We then measured
the relevance of the reduced result, with respect
to the gold standard (see Section 4.1) for that spe-
cific query, using metrics commonly used in Infor-
mation Retrieval - MRR, Mean Average Precision
(MAP) and Success at rank N (Baeza-Yates et al.,
1999). We restrict N = 5 (small) since the rapid
resolution time required of contact center agents
does not allow them to look at many results.

In Figures 4, 5 and Table 6, we compare our
system against a baseline system, which is the set
of results obtained with the underspecified query,
and a system where 5 interaction units are selected
at random from the initial search results. Note that,
as the number of follow up questions presented in-
creases, the scores will improve since it is more
likely that the ‘correct’ choice is presented. How-
ever, there is a trade-off here since the agent has
to again peruse more questions, which increases

time spent, and so we limit this value to 5 as well.
In terms of all three measures, our system is able

Unit’s Type MRR
Baseline 0.3997
Random 0.4021

Phrases (with Top=5) 0.6548
Phrases, Pairs (with Top=5) 0.6745

Phrases, Pairs, Tuples (with Top=5) 0.7362

Table 6: MRR for different unit types.

to give a substantial improvement in performance.
E.g., one intelligently chosen interaction performs
better than 5 randomly chosen ones. These re-
sults show the value of the units we select and the
choice of information gain as a metric. To measure
the importance of each unit type, we analyzed the
selected follow up questions (Top = 5) for each
underspecified query. Table 7 lists the fraction of
queries whose origin was a specific unit type.

Unit’s Type Preference
Phrases 51%

Attribute-Value Pairs 12%
Action-Attribute Tuples 37%

Table 7: Fraction of follow up questions selected
that originated from a specific unit type

4.4 Evaluating Templates for Question
Generation

Finally, an annotator was given 100 generated fol-
low up questions from the previous experiment
and asked to label them as understandable or not.
The annotator marked 13% as not understandable.
Examples were, does the phone connect, has the
touchscreen stopped, does the message connect
(which were due to errors in parsing) and do you
want to leave the car (due to a filtering error).

5 Related Work

Our work is related to three somewhat distinct ar-
eas of research, dialog systems, question answer-
ing (QA) systems and interactive search. Unlike
most QA systems, we continue a sequence of in-
teractions where the system and the user are ac-
tive participants. The primary contribution of this
work is a combined DSS, search, natural language
dialog and query refinement system built automat-
ically from semi-structured forum data. No prior
work on interactive systems deals with problem
resolution from large scale, noisy online forums.

249

Many speech dialog systems exist today
for tasks including, obtaining train information
(RAILTEL) (Bennacef et al., 1996), airline infor-
mation (Rudnicky et al., 2000) and weather infor-
mation (Zue et al., 2000). These systems perform
simple database retrieval tasks, where, the key-
words and their possible values are known apriori.

In general document retrieval tasks, when a
user’s query is under-specified and a large num-
ber of documents are retrieved, interactive search
engines have been designed to assist the user in
narrowing down the search results (Bruza et al.,
2000). Much research has concentrated on query
reformulation or query suggestions tasks. Sugges-
tions are often limited to terms or phrases ei-
ther extracted from query logs (Guo et al., 2008;
Baeza-Yates et al., 2004) or from the documents
obtained in the initial search results (Kelly et al.,
2009). Bhogal et al. (2007) require rich ontolo-
gies for query expansion, which may be difficult
and expensive to obtain for new domains. Leung
et al. (2008) identify related queries from the web
snippets of search results. Cucerzan and White
(2007) use users’ post-query navigation patterns
along with the query logs to provide query sug-
gestions. Mei et al. (2008) rank query suggestions
using the click-through (query-url) graph. Boldi
et al. (2009) provide query suggestions based on
short random walk on the query flow graph. The
main drawback behind these approaches is the de-
pendence on query logs and labeled data to train
query selection classifiers. We show how certain
units are robust representations of documents in
the problem resolution domain which can auto-
matically be extracted from semi-structured data.

Feuer et al. (2007) use a proximity search-based
system that suggests sub and super phrases. Cut-
ting et al. (1993; Hearst and Pedersen (1996; Kelly
et al. (2009) cluster retrieved documents and make
suggestions based on the centroids of the clusters.
Kraft and Zien (2004) and Bhatia et al. (2011) use
n-grams extracted from the text corpus to suggest
query refinement. Although these techniques do
not rely on query logs for providing suggestions,
the suggestions are limited to contiguous phrases.
They also do not generate follow up questions, but
instead provide a list of suggestions and require
the user to select one among them or use them
manually to reformulate the initial queries.

Automatically framing natural language ques-
tions as follow up questions to the user is still a

challenging task since, (1) Diriye et al. (2009) and
Kelly et al. (2009) showed that interactive query
expansion terms are poorly used, and tend to lack
information meaningful to the user, thus empha-
sizing the need for larger context to best capture
the actual query/problem intent (2) finding a few
question/suggestions that would narrow the search
results will lead to fewer interactions as opposed to
displaying the single best result (3) particularly for
non-technical users, interactions and clarifications
need to be fluent enough for the user to understand
and continue his interaction with the system (Al-
ter, 1977). In this paper, we show how to extract
important representative contextual units (which
do not necessarily contain contiguous words) and
use these to generate contextual interactions.

Sajjad et al. (2012) consider a data set where
objects belong to a known category, with textual
descriptions of objects and categories collected
from human labelers, using which n-gram based
attributes of objects are defined. Subsets of these
attributes are filtered, again using labeled data.
Kotov and Zhai (2010) frame questions with the
help of handmade templates for the problem of
factoid search from a subset of Wikipedia. How-
ever, they do not select queries with the goal of
minimizing the number of interactions. To extend
these approaches to problem-resolution finding,
(as opposed to factoids or item descriptions) sim-
ple most common noun phrases (as used in Sajjad
et al. (2012) and Kotov and Zhai (2010)) are in-
sufficient, since they do not capture the problem
or intent of the user. As motivated in Section 1,
this requires a better representation of candidate
phrases. Our paper also suggests an approach that
does not need any human labelled or annotated
data. Suggestions are selected using units such that
the problem intent is well captured and also ensure
that fewer interactions take place between the user
and the system. Follow-up questions are framed
using templates designed for these units, allowing
us to move beyond simple terms and phrases.

6 Conclusion and Future Work

This paper proposed an interactive system for nat-
ural language problem resolution in the absence
of manually labelled logs or pre-determined dialog
state sequences. As future work, we would like to
use additional information such as, the trustwor-
thiness of the posters, quality of solutions in the
threads, etc., while scoring the documents.

250

References
Steven Alter. 1977. Why is man-computer interaction

important for decision support systems? Interfaces,
7(2):109–115.

Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al.
1999. Modern information retrieval. ACM press.

Ricardo Baeza-Yates, Carlos Hurtado, and Marcelo
Mendoza. 2004. Query recommendation using
query logs in search engines. In EDBT.

S. Bennacef, L. Devillers, S. Rosset, and L. Lamel.
1996. Dialog in the RAILTEL telephone-based sys-
tem. In ICSLP.

Sumit Bhatia, Debapriyo Majumdar, and Prasenjit Mi-
tra. 2011. Query suggestions in the absence of
query logs. In SIGIR.

J. Bhogal, A. Macfarlane, and P. Smith. 2007. A re-
view of ontology based query expansion. Inf. Pro-
cess. Manage.

Paolo Boldi, Francesco Bonchi, Carlos Castillo, Deb-
ora Donato, and Sebastiano Vigna. 2009. Query
suggestions using query-flow graphs. WSCD.

Peter Bruza, Robert McArthur, and Simon Dennis.
2000. Interactive internet search: keyword, di-
rectory and query reformulation mechanisms com-
pared. In SIGIR.

Silviu Cucerzan and Ryen W. White. 2007. Query
suggestion based on user landing pages. In SIGIR.

Douglass R. Cutting, David R. Karger, and Jan O.
Pedersen. 1993. Constant interaction-time scat-
ter/gather browsing of very large document collec-
tions. In SIGIR.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses.
LREC.

Abdigani Diriye, Ann Blandford, and Anastasios
Tombros. 2009. A polyrepresentational approach
to interactive query expansion. In ACM/IEEE-CS.

David Ferrucci, Eric Brown, Jennifer Chu-Carroll,
James Fan, David Gondek, Aditya A Kalyanpur,
Adam Lally, J William Murdock, Eric Nyberg, John
Prager, et al. 2010. Building Watson: An overview
of the DeepQA project. AI Magazine, 31(3).

Alan Feuer, Stefan Savev, and Javed A Aslam. 2007.
Evaluation of phrasal query suggestions. In CIKM.

Daniel Golovin, Andreas Krause, and Debajyoti Ray.
2010. Near-optimal bayesian active learning with
noisy observations. In NIPS.

Jiafeng Guo, Gu Xu, Hang Li, and Xueqi Cheng. 2008.
A unified and discriminative model for query refine-
ment. In SIGIR.

Marti A. Hearst and Jan O. Pedersen. 1996. Reex-
amining the cluster hypothesis: scatter/gather on re-
trieval results. In SIGIR.

Diane Kelly, Karl Gyllstrom, and Earl W. Bailey. 2009.
A comparison of query and term suggestion features
for interactive searching. In SIGIR.

Alexander Kotov and ChengXiang Zhai. 2010. To-
wards natural question guided search. In WWW.

Reiner Kraft and Jason Zien. 2004. Mining anchor text
for query refinement. In WWW.

Kenneth Wai-Ting Leung, Wilfred Ng, and Dik Lun
Lee. 2008. Personalized concept-based clustering
of search engine queries. IEEE Trans. on Knowl.
and Data Eng.

Christopher D Manning, Prabhakar Raghavan, and
Hinrich Schütze. 2008. Introduction to information
retrieval. Cambridge University Press.

Qiaozhu Mei, Dengyong Zhou, and Kenneth Church.
2008. Query suggestion using hitting time. In
CIKM.

Tom M Mitchell. 1997. Machine learning. Burr
Ridge, IL: McGraw Hill.

Mark A Musen, Yuval Shahar, and Edward H Short-
liffe. 2006. Clinical decision-support systems.
Biomedical informatics.

António Palma-dos Reis, Fatemeh Zahedi, et al. 1999.
Designing personalized intelligent financial decision
support systems. Decision Support Systems, 26(1).

Katharina Probst, Rayid Ghani, Marko Krema, Andy
Fano, and Yan Liu. 2007. Extracting and using
attribute-value pairs from product descriptions on
the web. From Web to Social Web: Discovering and
Deploying User and Content Profiles.

Alexander I. Rudnicky, Christina L. Bennett, Alan W.
Black, Ananlada Chotimongkol, Kevin A. Lenzo,
Alice Oh, and Rita Singh. 2000. Task and domain
specific modelling in the carnegie mellon communi-
cator system. In INTERSPEECH.

Hassan Sajjad, Patrick Pantel, and Micheal Gamon.
2012. Underspecified query refinement via natural
language question generation. In COLING.

Helmut Schmid. 1994. Probabilistic part-of-speech
tagging using decision trees. In NEMLP.

Trevor Strohman, Donald Metzler, Howard Turtle, and
W Bruce Croft. 2005. Indri: A language model-
based search engine for complex queries. In ICIA.

Victor Zue, Stephanie Seneff, James Glass, Joseph Po-
lifroni, Christine Pao, Timothy J. Hazen, and Lee
Hetherington. 2000. Jupiter: A telephone-based
conversational interface for weather information.
IEEE Trans. on Speech and Audio Processing.

251

