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Abstract

We investigate the robustness of domain
adaptation (DA) representations and meth-
ods across target domains using part-of-
speech (POS) tagging as a case study. We
find that there is no single representation
and method that works equally well for
all target domains. In particular, there are
large differences between target domains
that are more similar to the source domain
and those that are less similar.

1 Introduction

Domain adaptation (DA) is the problem of adapt-
ing a statistical classifier that was trained on a
source domain (SD) to a target domain (TD) for
which no or little training data is available. We
present a case study that investigates the robust-
ness of DA across six different TDs for POS tag-
ging. Most prior work on DA has either been on
a single TD, on two or more tasks – which results
in an experimental setup in which two variables
change at the same time, task and TD – or has
not systematically investigated how robust differ-
ent features and different DA approaches are.

The two main information sources in POS tag-
ging are context – which POS’s are possible in a
particular syntactic context – and lexical bias –
the prior probability distribution of POS’s for each
word. We address DA for lexical bias in this pa-
per, focusing on unknown words; they are most
difficult to handle in DA because no direct infor-
mation about their possible POS is available in the
SD training set. Since typical TDs contain a high
percentage of unknown words, a substantial gain
in the overall performance can be achieved by im-
proving tagging for these words.

We address a problem setting where – in addi-
tion to labeled SD data – a large amount of un-
labeled TD data is available, but no labeled TD

data. This setting is often called unsupervised do-
main adaptation (cf. (Daumé III, 2007)).

We make three contributions in this paper. First,
we systematically investigate the cross-TD robust-
ness of different representations and methods. We
show that there are some elements of DA setups
used in the literature that are robust across TDs
– e.g., the use of distributional information – but
that many others are not, including dimensionality
reduction and shape information.

Second, we present an analysis that shows that
there are two important factors that influence
cross-TD variation: (i) the magnitude of the differ-
ence in distributional properties between SD and
TD – more similar TDs require other methods than
less similar TDs and (ii) the evaluation measures
used for performance. Since in unsupervised DA
we optimize learning criteria on a SD that can be
quite different from the TD, different TD evalua-
tion measures can diverge more in DA than in stan-
dard supervised learning settings when comparing
learning methods.

Our third contribution is that we show that if
we succeed in selecting an appropriate DA method
for a TD, then performance improves significantly.
We establish baselines for unknown words for the
five TDs of the SANCL 2012 shared task and
present the best DA results for unknown words on
the Penn BioTreebank. Our improvements on this
data set (by 10% compared to published results)
are largely due to a new DA technique we call
training set filtering. We restrict the training set
to long words whose distribution is more similar
to unknown words than that of words in general.

The next section describes experimental data
and setup and Section 3 experimental results. Sec-
tion 4 presents analysis and discussion. Section 5
reviews related work. Section 6 concludes.

2 Experimental data and setup

Data. Our SD is the Penn Treebank (Marcus et
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al., 1993) of Wall Street Journal (WSJ) text. Fol-
lowing Blitzer et al. (2006), we use sections 2-21
for training. We also use 100,000 WSJ sentences
from 1988 as unlabeled data in training.

We evaluate on six different TDs. The first
TD is the Penn BioTreebank data set distributed
by Blitzer. It consists of development and test
sets of 500 sentences each and an unlabeled set
of 100,000 sentences of BIO text.

The remaining five TDs (newsgroups, weblogs,
reviews, answers, emails) are from the SANCL
shared task (Petrov and McDonald, 2012). We
will use WEB to refer to these five TDs collec-
tively. Each WEB TD has an unlabeled training
set of 100,000 sentences and development and test
sets of about 1000 labeled sentences each. WEB
and BIO tag sets differ slightly; we use them as
published without modifications to make our re-
sults directly comparable to the benchmarks.

We define the target domain repository (TD-R)
for a TD as the union of development set and un-
labeled data available for that TD. SD+TD-R is
the union of the source data (labeled and unlabeled
WSJ) and TD-R.

Classification setup. In contrast to most other
work on POS DA, we adopt a simple approach of
word classification. The objects to be classified
are words and the classes are the POS’s of the SD.
The gold label of a word in training is the majority
tag in the SD. A prediction for an unknown word is
then made by computing its feature representation
and applying the learned classifier.

We adopt word classification instead of the
more common sequence labeling setup because
word classification is much more efficient to train
and allows us to run a large number of experi-
ments efficiently. Our experiments demonstrate
that word classification accuracies are comparable
with or higher than sequence labeling in POS DA
for unknown words (cf. Table 2).

We use LIBSVM (Chang and Lin, 2011) to
train

(
k
2

)
one-vs-one classifiers on the training set,

where k is the number of POS tags in the latter.
The SVMs were trained with untuned default pa-
rameters; in particular, C = 1. For sequence clas-
sification, we use CRFSuite (Okazaki, 2007), a
Conditional Random Field (CRF) toolkit. Apart
from the word features described below, we use
the base feature set of Huang and Yates (2009)
for CRFs, including features for state, emission
and transition probabilities. CRFs are trained until

convergence with a limit of 300 iterations.
Features. There are in principle two sources

of information to predict the POS of an unknown
word in an unsupervised setting: the word itself
(sequence of letters, shape etc) and the context(s)
in which it occurs. For syntactic categorization,
the immediate left and right neighbors of a word
are the most informative aspect of context. Based
on this reasoning, we create a feature representa-
tion for each word that has three components: left
context information, right context information and
shape information. We will refer to left/right con-
text information as distributional information. Let
f be the function that maps a word w to its (full)
feature vector. We then define f as follows:

f(w) =

f left(w)
f right(w)
f shape(w)


Based on the intuition that each of the three
sources of information is equally important, each
of the three component vectors is normalized to
unit length.

For both distributional and shape features, we
have a choice of either using all possible features
or a subset consisting of the most frequent fea-
tures. We directly compare these two possibili-
ties, using recommended values from the litera-
ture for the subset condition: the 250 most fre-
quent features (indicator words) for distributional
vectors (Schütze, 1995) and the 100 most frequent
features (suffixes) for shape vectors (Müller et al.,
2012). Each component vector has an additional
binary feature that is set to 1 if the rest of the vector
is zero, and 0 otherwise to avoid numerical issues
with zero vectors.

Distributional features. The ith entry xi of
f left(w) is the number of times that the indicator
word ti occurs immediately to the left of w:

xi = freq (bigram(ti, w))

where ti is the word with frequency rank i in the
corpus. f right(w) is defined analogously.

Many different ways of defining and transform-
ing distributional features have been proposed in
the literature. We systematically investigate the
following variables: (i) weighting (ii) dimension-
ality reduction and (iii) selection of data that dis-
tributional vectors are based on.

We experiment with three different weighting
functions that transform non-zero counts as fol-
lows. (i) tf: wtf(x) = 1 + log(x), (ii) tf-idf:
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wtf-idf(x) = (N/ log dfti)(1 + log(x)) (where N
is the total number of words and dfti the number
of words that indicator word ti is a non-zero fea-
ture of) and (iii) binary: wbin(x) = 1.

Transformation operations like dimensionality
reduction (Deerwester et al., 1990) can be effec-
tive in improving generalization in machine learn-
ing, in particular in nonstandard settings like DA
where a labeled random sample of the TD is not
available. We test singular value decomposition
(SVD) here because it has been used in prior work
on POS (Huang and Yates, 2009). We apply SVD
to the matrix of all feature vectors and keep the
dimensions corresponding to the d = 100 largest
singular values.

We compute distributional vectors either on tar-
get data only (i.e., on TD-R) or on the union of
source and target data (i.e., SD+TD-R). We com-
pare these two alternatives and show in our exper-
iments that SD distributional information does not
consistently improve performance.

Shape features. Suffixes are likely to be help-
ful because regular processes of inflectional and
derivational morphology do not change in English
when going from one domain to the next. Many
POS taggers incorporate information from suffixes
to build robust features (Miller et al., 2007). For a
selected suffix s, we simply set the dimension cor-
responding to s in f shape(w) to 1 if w ends in s and
to 0 otherwise. We either select all suffixes or the
top 100, depending on the experiment.

In addition to suffixes, we investigate two other
representational variables related to shape: case
and digits. For case, we compare keeping case in-
formation as is with converting all uppercase char-
acters to lowercase characters. For digits, we com-
pare keeping digits as is with converting all digits
to the digit 0; e.g., $1,643 is converted to $0,000).
We call these two transformations case normaliza-
tion and digit normalization.

Training set filtering. The key challenge in DA
is that the distributions of source and target are dif-
ferent. One simple trick we can apply to make the
distributions more similar is to eliminate all short
words from the training set. We call this (training
set) filtering. The reason this is promising is that
longer words are more likely to be examples of
productive linguistic processes than short words –
even if this is only a statistical tendency with many
exceptions.

In future work, we would like to test other fil-

tering options that are based on similar principles,
including filtering based on word frequency and
open/closed tag classes. Filtering on word length
is simple and we show below that it is able to
improve accuracy by several percentage points on
one TD.

3 Experimental results

We train
(
k
2

)
binary SVM classifiers on the feature

representations we just defined. The training set
consists of all words that occur in the WSJ train-
ing set (in condition SD+TD-R) or all words that
occur in both the WSJ training set and TD-R (in
condition TD-R). An unknown word is classified
by building its feature vector, running the classi-
fiers on it and then assigning it to the POS class
returned by the LIBSVM one-vs-one setup.

We divide our experiments into two parts. In
the basic experiment, we investigate four param-
eters of the model that are likely to interact with
each other: dimensionality of shape vectors (ALL
vs. 100 most frequent suffixes), dimensionality of
distributional vectors (ALL vs. 250 most frequent
indicator words), use of dimensionality reduction
(SVD: yes or no) and weighting of distributional
vectors (bin, tf, tf-idf).

In the extended experiment, we then investigate
the effect of other parameters on the best per-
forming model from the basic experiment: dis-
tributional vectors based on SD+TD-R vs TD-
R, case normalization, digit normalization, com-
pletely omitting either shape or distributional in-
formation and training set filtering. For the basic
experiment, these parameters are set to the follow-
ing values: distributional vectors are computed on
TD-R, case normalization is used, digit normaliza-
tion is not used, and the training set is not filtered
(i.e., all words are included in the training set).

Basic experiment. Table 1 gives the results of
the basic experiment: the 24 possible combina-
tions of number of shape features, number of dis-
tributional features, use of dimensionality reduc-
tion and weighting scheme. In each column, the
best three accuracies are underlined and the best
accuracy is doubly underlined; the results signif-
icantly different from the best result are marked
with a dagger.1

The goal of the basic experiment is to exhaus-

1p < .05, 2-sample test for equality of proportions with
continuity correction. We use the same test and level for all
significance results in this paper.
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shape dist svd wght grp rev blog ans’r em’l BIO
1 100 250 n bin 56.88 63.92 67.13 † 52.14 63.30 65.64†

2 tf 56.50 65.67 70.33 52.47 64.37 63.14†

3 tf-idf 57.14 65.83 70.23 51.86 † 64.14 64.94†

4 y bin 52.52† 54.68† 62.74 † 47.81 † 60.08 † 70.29†

5 tf 54.42 58.18† 68.01 † 48.14 † 61.70 † 69.70†

6 tf-idf 54.73 57.44† 68.75 † 48.93 † 61.38 † 70.95†

7 ALL n bin 55.98 63.60 68.70 † 52.14 62.87 68.92†

8 tf 56.58 64.67 70.82 51.02 † 63.52 65.72†

9 tf-idf 56.15 63.50 68.85 † 50.09 † 61.87 † 68.61†

10 y bin 52.05† 52.82† 60.67 † 41.95 † 59.82 † 68.57†

11 tf 53.65† 57.23† 66.24 † 43.02 † 61.22 † 69.82†

12 tf-idf 54.21† 55.47† 64.17 † 42.50 † 58.52 † 69.11†

13 ALL 250 n bin 56.02 65.04 70.77 54.05 64.37 68.45†

14 tf 55.59 66.05 72.45 55.03 64.43 64.82†

15 tf-idf 55.93 65.99 72.10 54.98 63.98 65.87†

16 y bin 52.48† 56.16† 65.50 † 43.48 † 59.79 † 70.64†

17 tf 53.26† 59.46† 68.95 † 48.51 † 60.60 † 68.68†

18 tf-idf 54.16† 59.56† 68.70 † 44.18 † 60.66 † 69.35†

19 ALL n bin 56.06 63.55 68.85 † 54.38 59.85 † 66.22†

20 tf 56.62 64.61 71.86 54.28 61.05 † 65.64†

21 tf-idf 56.15 63.07 69.74 52.65 59.95 † 65.25†

22 y bin 52.35† 55.74† 62.89 † 41.95 † 58.68 † 71.07†

23 tf 53.99† 59.83† 68.16 † 43.62 † 60.37 † 69.93†

24 tf-idf 54.81 58.98† 68.65 † 41.95 † 58.68 † 74.39

Table 1: Accuracy of unknown word classification
in the basic experiment. The performance of the
best (three best) parameter combinations per col-
umn are doubly (singly) underlined. A dagger in-
dicates a result significantly worse than the col-
umn’s best result.

tively investigate combinations of the four param-
eters that we suspect to have the strongest inter-
action with each other and then find a parameter
combination that is a good basis for testing the re-
maining parameters in the extended experiment.
The guiding principle in this investigation is that
when in doubt, we select the simpler or default set-
ting for the extended experiment in order to make
as few assumptions as possible.

For the number of shape features, ALL gener-
ally does better than 100. Five TDs have their
best result for ALL: rev, blog, answer, email (line
14) and BIO (line 24). The exception is grp (best
result on line 3). The reason seems to be that
the newsgroups TD contains a larger number of
unknown words with suffixes that do not support
POS generalization well. E.g., the suffixes -ding,
-eding, -eeding, -breeding of a newsgroup name
like “alt.animals.horses.breeding” (mistagged as
VBG, gold tag: NN) are misleading. Despite these
problems, the best 100 result for newsgroups is not
significantly better than the best ALL result (lines
3 vs. 20). This argues for using the setting ALL
for the extended experiment.

For the number of distributional features, there
is a similar tendency for the WEB TDs (grp, rev,
blog, answer, email) to do slightly better for fewer

features (250) than ALL features. However, BIO
clearly benefits from using the full dimensionality
of the distributional feature space: all 250 results
are statistically worse than the best ALL result and
the gap to the best 250 result is large (line 24 vs
line 6, a difference of 74.39− 70.95 = 3.44). The
gap between best 250 result and best ALL result
is smaller for the other five TDs (although only
slightly smaller for email) and for each of the five
TDs there is an ALL result that is statistically in-
distinguishable from the best 250 result. For this
reason, we choose dist=ALL for the extended ex-
periment. Simply using ALL indicator words also
has the advantage of eliminating the need to opti-
mize an additional parameter, the number of indi-
cator words selected.

In a way similar to distributional features, the
behaviors of WEB and BIO TDs also diverge for
dimensionality reduction. The top three results for
the WEB TDs are always achieved without SVD
(lines 1, 3, 13, 14, 15, 19, 20), the top three results
for the BIO TD are all SVD results (lines 6, 22,
24). We opt for the simpler option (no SVD) for
the extended experiment in the absence of strong
consistent cross-TD evidence for the need of di-
mensionality reduction. We will also see in the ex-
tended experiment that we can recover and surpass
the best BIO result (74.39, line 24) by optimizing
other parameters.

The results on weighting argue against using bi-
nary weighting: the six best results in the table all
use tf weighting, either by itself or in conjunction
with idf (lines 3, 14, 24). Apparently, the distinc-
tion between lower and higher frequencies of indi-
cator word occurrences is beneficial for unknown
word classification. Whether tf or tf-idf is better,
is less clear. For two TDs, tf-idf yields the best re-
sult (grp on line 3, BIO on line 24), for four TDs tf
(rev, blog, answer, email: line 14). The difference
between best tf-idf and best tf result is not signif-
icant for grp; we will get tf results for BIO that
are better than the best tf-idf result of 74.39 in Ta-
ble 1. For this reason, we choose the setting tf for
the extended experiment. Again, we are selecting
the simpler of two options (tf vs tf-idf) when faced
with somewhat mixed evidence.

In summary, based on the results of the base
experiment, we choose the following settings for
the extended experiment: shape = ALL, dist =
ALL, svd = n, wght = tf. For shape, dist, and svd
this is the simpler of two possible settings. For
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weighting, we choose tf (instead of the simpler bi-
nary option) because of clear evidence that some
form of frequency weighting is beneficial across
TDs. These settings correspond to line 20 in Ta-
ble 1. This line is repeated as the baseline on line
1 in Table 2. Admittedly, choosing this as a base-
line setting is somewhat arbitrary as one could al-
ways weigh the optimization criteria – peak per-
formance, robustness, simplicity – differently.

grp rev blog ans’r em’l BIO
1 baseline 56.62 64.61 71.86 54.28 61.05† 65.64†

2 CRF 58.18 64.51 70.48 56.52 63.10 56.62†

3 SD+TD-R 55.50 64.13 72.50 55.31 62.91 65.17†

4 no case NRM 52.83† 64.45 70.68 52.00† 59.27† 67.51†

5 digit NRM 56.80 64.61 72.01 54.05 63.88 68.61†

6 shape only, ALL 48.77† 45.32† 56.58† 39.90† 49.19† 52.52†

7 shape only, 100 47.69† 39.16† 51.90† 36.17† 47.24† 50.14†

8 dist only, ALL 52.05† 63.34 68.21† 47.07† 53.06† 73.41†

9 dist only, 250 51.49† 64.13 66.34† 45.76† 54.13† 72.86†

10 |w| > 1 56.58 64.67 71.81 54.84 60.83† 65.99†

11 |w| > 2 57.06 64.61 71.56 54.38 63.17 68.61†

12 |w| > 3 55.33 60.89† 69.69 48.79† 62.39 73.84†

13 |w| > 4 52.87† 60.10† 67.67† 47.53† 53.06† 77.66
14 |w| > 5 53.09† 59.35† 66.58† 44.37† 51.69† 77.66
15 |w| > 6 52.27† 58.55† 66.93† 43.25† 49.74† 77.74
16 |w| > 7 51.96† 56.64† 63.18† 40.46† 47.17† 78.41
17 |w| > 8 49.59† 56.16† 58.26† 39.06† 44.31† 79.77
18 |w| > 9 46.87† 52.82† 55.54† 33.94† 42.69† 74.58†

19 |w| > 10 43.42† 51.22† 52.54† 33.33† 39.24† 76.10†

Table 2: Extended experiment. The effect of var-
ious parameter changes on accuracy of unknown
word classification. “NRM” = “normalization.

Extended experiment. In the extended exper-
iment, we investigate the effect of additional pa-
rameters. Results are shown in Table 2. Underlin-
ing conventions and statistical test setup are iden-
tical to Table 1. The CRF baseline used a param-
eter setting similar to word classification with two
exceptions: we set dist=250 because we were not
able to run dist=ALL due to memory limitations;
and we convert all features to binary due to space
restrictions.

Using sequence classification instead of word
classification for unknown word prediction does
not consistently improve results (line 2). For grp
and answer, the CRF achieves the best overall ac-
curacy, but the difference to the baseline is not sig-
nificant. For the other four TDs, the best result
occurs in a different parameter setting. For BIO,
a large drop in performance occurs (from 65.64 to
56.62), perhaps suggesting that word classification
is more robust than sequence classification for un-
known words.

Calculating distributional vectors on both
source and target (as opposed to target only) has
similarly inconsistent effects (line 3). Perfor-

mance compared to the baseline decreases for four
TDs and increases for two. Based on this evi-
dence, SD distributional information is not robust
cross-TD and should probably not be used.

Omitting case normalization (line 4) consis-
tently hurts for WEB TDs, but helps for BIO.
In other words, for BIO it is better not to case-
normalize words. This result is plausible because
case conventions vary considerably in different
TDs. Whether keeping case distinctions is helpful
or not depends on how similar source and target
are in this respect and is therefore not stable in its
effect across TDs.

Digit normalization (line 5) has a minor posi-
tive or negative effect on the first four TDs, but in-
creases accuracy by more than 2% in the last two,
email and BIO. The makeup of the WSJ tag set
makes it unlikely that differences between digits
could result in POS differences that are predictable
in unsupervised DA. This argues for using digit
normalization when WSJ is the SD.

The clearest result of the table is that distri-
butional information is necessary for good per-
formance. Performance compared to the base-
line drops in all cases and all accuracies on lines
6&7 are significantly worse than the best result.
Moreover, distributional features seem to encode
more meaningful information for POS tagging
than shape features; results on lines 6&7 are con-
sistently lower than results on lines 8&9.

The evaluation is similarly consistent for shape
information in the WEB TDs (lines 8 and 9). All
accuracies are below the baseline, with some of
the drops being quite large, e.g., about 7% for an-
swer and email. Surprisingly, omitting shape in-
formation results in a large increase of accuracy
for the BIO TD. We will further investigate this
puzzling result below.

Finally, training set filtering – only training the
classifier on words above a threshold length k – is
beneficial for all TDs except for blog; and even for
blog, moderate filtering has only a negligible nega-
tive effect on accuracy (lines 10–11). In principle,
the idea of restricting training to longer words be-
cause they are most likely to be representative of
unknown words seems to be a good one. However,
the effect of filtering is sensitive to the threshold
length k. We leave it to future work to find prop-
erties of the TD that could be used as diagnostics
for finding a good value for k.

The motivation of splitting the experiments into
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basic experiment and extended experiments was to
find a stable point in parameter space for the pa-
rameters that are most likely to interact and then
look at the effect of the remaining parameters us-
ing this stable point as starting point. In Table 2,
we see that for the WEB TDs, all variations of ex-
perimental conditions either hurt performance or
produce only small positive changes in accuracy in
comparison to the baseline. This is evidence that
our strategy of splitting experiments into basic and
extended was sound for these TDs.

BIO
1 baseline 73.41†

3 SD+TD-R 67.94†

4 no case NRM 72.39†

5 digit NRM 74.15†

10 |w| > 1 73.96†

11 |w| > 2 75.24†

12 |w| > 3 81.30†

13 |w| > 4 81.88†

14 |w| > 5 82.98
15 |w| > 6 82.47
16 |w| > 7 84.46
17 |w| > 8 83.09
18 |w| > 9 79.03†

19 |w| > 10 80.52†

Table 3: Extended experiment for BIO without
shape information. Dist=ALL.

However, the situation for BIO is different. Two
parameter changes result in large performance
gains for BIO: omitting shape information (in-
crease by 8%, lines 1 vs 8) and filtering out short
training words (increase by 14%, lines 1 vs 17).
This indicates that the base configuration of the
extended experiment is not a good starting point
for exploring parameter variation for BIO.

For this reason, we repeat parts of the extended
experiment without any shape information. As we
would expect, we obtain results for WEB TDs that
are consistently worse than those in Table 2 (not
shown), with one exception: a slight increase for
|w| > 8 in email. However, the results for BIO are
much improved as shown in Table 3.

To conclude, we found that shape information
is helpful for the WEB TDs, but it decreases per-
formance by about 10% for BIO. We will analyze
the reason for this discrepancy in the next section.

As a last set of experiments, we run the opti-
mal parameter combination (|w| > 7 in Table 3,
84.46) on the BIO test set and obtained an ac-
curacy of 88.13. This is more than 10% higher
than the best number for unknown word predic-
tion on BIO published up to this point (76.3 by
Huang and Yates (2010)). For the experimental
conditions with the best WEB results in Table 2

(double underlining), we get the following test ac-
curacies: grp=56.66, rev=67.79, blog=64.80, an-
swer=66.51, email=65.51. These are either better
than dev or slightly worse except for blog; the blog
result can be explained by the fact that the blog
base model (line 1) also is a lot worse on test than
on dev (66.08 vs 71.86). We interpret these test set
results as indicating that we did not overfit to the
development set in our experiments.

Summary. We have investigated the cross-TD
robustness of a number of configurational choices
in DA for POS tagging. Based on our results,
the following choices are relatively robust across
TDs: using ALL indicator words (as opposed to a
subset) for distributional features, no dimension-
ality reduction, tf weighting, digit normalization,
target-only distributional features, and formaliza-
tion of the problem of unknown word prediction as
word classification (as opposed to sequence clas-
sification).

We found other choices to be dependent on the
TD, in particular the use of shape features, case
normalization and training set filtering.

The most important lesson from these results is
that many aspects of DA are highly dependent on
the TD. Given our results, it is unlikely that a sin-
gle DA setup will work in general. Instead, criteria
need to be developed that allow us to predict which
features and methods work for different TDs.

4 Analysis and discussion

The biggest TD differences we found in the ex-
periments are those between WEB and BIO: they
behave differently with respect to dimensionality
reduction (bad for WEB, good for BIO), shape in-
formation (good for WEB, bad for BIO) and se-
quence classification (neutral for WEB, bad for
BIO).

One hypothesis that could explain these re-
sults is that the difference between BIO and WSJ
is larger than the difference between WEB and
WSJ. For example, dimensionality reduction cre-
ates more generalized representations, which may
be appropriate for TDs with large source-target
differences like BIO; and WSJ suffixes may not
be helpful for BIO because biomedical terminol-
ogy has suffixes specific to scientific vocabulary
and is rare in newspaper text. In contrast, WEB
suffixes may not diverge as much from WSJ since
both are “non-technical” genres.

One way to assess the difference between two
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TD tags suffixes transitions
grp .009 .275 .068
rev .057 .352 .212
blog .009 .295 .074
answer .048 .337 .158
email .036 .273 .139
BIO .096 .496 .385

Table 4: JS divergences between WSJ and TDs.

domains is to compare various characteristic prob-
ability distributions. The distance of two domains
under a representation R has been shown to be im-
portant for DA (Ben-David et al., 2007). Similar to
Huang and Yates (2010), we use Jensen-Shannon
(JS) divergence as a measure of divergence. Ta-
ble 4 shows the JS divergences between WSJ and
the six TDs for different distributions.

The results confirm our hypothesis. BIO is in-
deed more different from WSJ than the other TDs.
Tag distribution divergence is 0.096 for BIO and
ranges from 0.009 to 0.057 for WEB. Suffix dis-
tribution divergence of BIO is 0.496, almost 50%
more than rev, the WEB TD with highest suffix di-
vergence. The underlying probability distributions
here are P (suffix|t), where t ∈ {NN, NNP, JJ} –
most unknown words are in these three classes and
accuracy is therefore mostly a measure of accu-
racy on NN, NNP and JJ. Finally, transition prob-
ability divergence of BIO for NN, NNP, JJ is also
much larger than for WEB. The distribution inves-
tigated here is P (ti−1|ti); we compute the diver-
gence between, say, BIO and WSJ for the three
tags and then average the three divergences.

We do not have space to show detailed results
on all tags, but the divergences are more simi-
lar for closed class POS. E.g., there is virtually
no difference in transition probability divergence
for modals between BIO and WEB. This obser-
vation prompted us to investigate whether some
TD differences might depend on the evaluation
measure used. Accuracy – a type of microaver-
aging – is mostly an evaluation of the classes that
are frequent for unknown words: NN, NNP, JJ. If
most of the higher divergence of BIO is caused by
these categories, then a macroaveraged evaluation,
which gives equal weight to each POS tag, should
show less divergence.

This is indeed the case as the macroaveraged re-
sults in Table 4 show. These results are more con-
sistent across TDs than those evaluated with ac-
curacy. Removing shape and distributional infor-
mation now hurts performance for all TDs (lines

grp rev blog ans’r em’l BIO
1 baseline 32.77 38.89 43.48 30.52 34.26 40.06
2 CRF 38.74 42.71 46.63 38.08 36.21 39.03
3 SD+TD-R 32.87 38.55 44.75 33.19 35.30 41.42
4 no case NRM 27.08 39.82 39.54 25.80 27.33 39.98
5 digit NRM 32.80 39.09 43.68 30.47 34.69 37.72
6 shape only, ALL 18.02 21.25 24.61 16.25 16.37 26.55
8 dist only, ALL 27.70 38.39 34.38 22.11 29.71 37.01

10 |w| > 1 32.73 39.48 43.54 30.60 34.20 35.32
11 |w| > 2 33.33 37.38 43.52 30.02 34.66 35.05
13 |w| > 4 26.37 28.92 37.68 22.33 24.14 37.55

Table 5: Selected conditions of the extended ex-
periment (Table 2), evaluated using macroaver-
aged F1.

6&8). WEB and BIO behave more similarly with
respect to training set filtering: the large outliers
for BIO we obtained in the accuracy evaluation are
gone. SD distributional information has a more
beneficial effect on F1 than on accuracy, proba-
bly because the classification of POS that are more
stable across TDs like verbs and adverbs bene-
fits from SD information. The CRF produces the
best result for all WEB TDs. For less frequent
POS classes (those that dominate the macroaver-
aged measure, especially verbal POS), sequence
information and “long-distance” context is prob-
ably more stable and can be exploited better than
for NN, NNP and JJ. However, there is still a drop-
off from the baseline for BIO; we attribute this to
the larger differences in the transition probabilities
for BIO vs WEB (Table 4); the sequence classifier
is at a disadvantage for BIO, even on a macroaver-
aged measure, because the transition probabilities
change a lot.

It is important to note that even though F1 re-
sults are more consistent for DA, accuracy is the
appropriate measure to use for POS tagging: the
usefulness of a tagger to downstream components
in the processing pipeline is better assessed by ac-
curacy than by F1.

5 Related work

Most work on POS tagging takes a standard super-
vised approach and assumes that source and target
are the same (e.g., (Toutanova et al., 2003)). At
the other end of the spectrum is the unsupervised
setting (e.g., (Schütze, 1995; Goldwater and Grif-
fiths, 2007)). Other researchers have addressed
the task of adapting a known tagging dictionary
to a TD (e.g., (Merialdo, 1994; Smith and Eisner,
2005)), which we view as complementary to meth-
ods for words about whose tags nothing is known.
Subramanya et al. (2010) perform DA without us-
ing any unlabeled TD text. All of these applica-
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tions scenarios are reasonable; however, it can be
argued that the scenario we address is – apart from
standard supervised learning – perhaps more typi-
cal of what occurs in practice: there is labeled SD
text available for training; there is plenty of unla-
beled TD text available; and there is a substantial
number of TD words that do not occur in the SD.
Frequently, researchers make the assumption that
a small labeled target text has been created (e.g.,
(Daumé III, 2007)); in the process, a small number
of unknown words may also be labeled, but this is
not an alternative to handling unknown words in
general.

Work by Das and Petrov (2011) is also a form
of DA for POS tagging, using universal POS tag
sets and parallel corpora. It is likely that best
performance for TDs without training data can
be achieved by combining our approach with a
multilingual approach if appropriate parallel data
is available. Ganchev et al. (2012) use another
source of additional information, search logs.
Again, it should be possible to integrate search-log
based features into our framework.

Blitzer et al. (2006) learn correspondences be-
tween features in source and target. Our results
suggest that completely ignoring source features
(and only using source labels) may be a more ro-
bust approach for unknown words.

Cholakov et al. (2011) point out that improv-
ing tagging accuracy does not necessarily improve
the performance of downstream elements of the
processing pipeline. However, improved unknown
word classification will have a positive impact on
most downstream components.

Choi and Palmer (2012) perform DA by training
two separate models on the available data, a gen-
eralized one and a domain-specific one. During
tagging, an input sentence is tagged by the model
that is most similar to the sentence. Since their ap-
proach is not conditioned on the underlying tag-
ging model, it would be interesting to integrate
their approach with ours.

Huang and Yates (2009) evaluate CRFs with
distributional features. Besides raw feature vec-
tors, they examine lower dimensional feature rep-
resentations using SVD or a special HMM-based
method. In our experiments, we did not find an
advantage to using SVD.

Huang and Yates (2010) use sequence labeling
to predict POS of unknown words. Huang and
Yates (2012) extend this work by inducing latent

states that are shown to improve prediction. As
we argued above, a word classification approach
has several advantages compared to a sequence la-
beling approach. Since latent sequence states can
be viewed as a form of dimensionality reduction, it
would be interesting to compare them to the non-
sequence-based dimensionality reduction (SVD)
we have investigated in our experiments.

Zhang and Kordoni (2006) use a classifica-
tion approach for predicting POS for in-domain
unknown words. They achieve an accuracy of
61.3%. Due to differences in the data sets used,
these results are not directly comparable with ours.

Miller et al. (2007) and Cucerzan and Yarowsky
(2000) have both investigated the use of suffixes
for DA. Miller et al. characterized words by a list
of hand-built suffix classes that they appear in.
They then used a 5-NN classifier along with a cus-
tom similarity measure to find initial lexical proba-
bilities for all words. We also ran extensive exper-
iments with kNN, but found that one-vs-one SVM
performs better.

Cucerzan and Yarowsky (2000) use distribution
as a backoff strategy if no helpful suffix informa-
tion is available. They address unknown word pre-
diction for new languages. We have found that
for within-language prediction, distributional in-
formation is generally more robust than shape in-
formation, including suffixes.

Van Asch and Daelemans (2010) find that DA
performance is the higher, the more similar the
unigram distribution of the TD is to that of the
SD. However, we cannot compute unigram distri-
butions in the case of unknown words.

6 Conclusions and Future Work

In this paper, we have investigated the robustness
of DA representations and methods for POS tag-
ging and shown that there are large differences in
robustness across TDs that need to be taken into
account when performing DA for a TD. We found
that the divergence between source and target is an
important predictor of what elements of DA will
work; e.g., higher divergence makes it more likely
that generalization mechanisms like dimensional-
ity reduction will be beneficial.

In future work, we would like to develop statis-
tical measures of source-target divergence that ac-
curately predict whether a feature type or DA tech-
nique supports high-performance DA for a partic-
ular TD.

205



References
Shai Ben-David, John Blitzer, Koby Crammer, and Ma-

rina Sokolova. 2007. Analysis of representations
for domain adaptation. In NIPS 19, pages 137–144.

John Blitzer, Ryan Mcdonald, and Fernando Pereira.
2006. Domain adaptation with structural correspon-
dence learning. In Proc. of the EMNLP, pages 120–
128.

Chih-Chung Chang and Chih-Jen Lin. 2011. LIB-
SVM: A library for support vector machines. ACM
TIST, 2(3):27. Software available at http://
www.csie.ntu.edu.tw/~cjlin/libsvm.

Jinho D. Choi and Martha Palmer. 2012. Fast and
robust part-of-speech tagging using dynamic model
selection. In Proc. of the ACL: Short Papers - Vol. 2,
pages 363–367.

Kostadin Cholakov, Gertjan van Noord, Valia Kordoni,
and Yi Zhang. 2011. An empirical comparison of
unknown word prediction methods. In Proc. of the
IJCNLP, pages 767–775.

Silviu Cucerzan and David Yarowsky. 2000. Language
independent, minimally supervised induction of lex-
ical probabilities. In Proc. of the ACL, pages 270–
277.

Dipanjan Das and Slav Petrov. 2011. Unsupervised
part-of-speech tagging with bilingual graph-based
projections. In Proc. of the ACL, pages 600–609.

Hal Daumé III. 2007. Frustratingly easy domain adap-
tation. In Proc. of the ACL, pages 256–263.

Scott Deerwester, Susan T. Dumais, George W. Furnas,
Thomas K. Landauer, and Richard Harshman. 1990.
Indexing by latent semantic analysis. J. Am. Soc. Inf.
Sci., 41(6):391–407.

Kuzman Ganchev, Keith Hall, Ryan McDonald, and
Slav Petrov. 2012. Using search-logs to improve
query tagging. In Proc. of the ACL: Short Papers -
Vol. 2, pages 238–242.

Sharon Goldwater and Tom Griffiths. 2007. A fully
bayesian approach to unsupervised part-of-speech
tagging. In Proc. of the ACL, pages 744–751.

Fei Huang and Alexander Yates. 2009. Distributional
representations for handling sparsity in supervised
sequence-labeling. In Proc. of the Joint Conf. of the
ACL and the IJCNLP, pages 495–503.

Fei Huang and Alexander Yates. 2010. Exploring
representation-learning approaches to domain adap-
tation. In Proc. of the DANLP Workshop, pages 23–
30.

Fei Huang and Alexander Yates. 2012. Biased repre-
sentation learning for domain adaptation. In Proc.
of the EMNLP-CoNLL, pages 1313–1323.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a large anno-
tated corpus of english: The Penn treebank. Comp.
Linguistics, 19(2):313–330.

Bernard Merialdo. 1994. Tagging english text with a
probabilistic model. Comp. Linguistics, 20(2):155–
171.

John Miller, Manabu Torii, and Vijay K. Shanker.
2007. Building domain-specific taggers without an-
notated (domain) data. In Proc. of the EMNLP-
CoNLL, pages 1103–1111.

Thomas Müller, Hinrich Schütze, and Helmut Schmid.
2012. A comparative investigation of morphologi-
cal language modeling for the languages of the eu-
ropean union. In Proc. of the NAACL-HLT, pages
386–395.

Naoaki Okazaki. 2007. CRFsuite: A fast implementa-
tion of conditional random fields (CRFs). Available
at: http://www.chokkan.org/software/
crfsuite/.

Slav Petrov and Ryan McDonald. 2012. Overview of
the 2012 Shared Task on Parsing the Web. Notes of
the 1st SANCL Workshop.

Hinrich Schütze. 1995. Distributional part-of-speech
tagging. In Proc. of the EACL, pages 141–148.

Noah A. Smith and Jason Eisner. 2005. Contrastive
estimation: training log-linear models on unlabeled
data. In Proc. of the ACL, pages 354–362.

Amarnag Subramanya, Slav Petrov, and Fernando
Pereira. 2010. Efficient graph-based semi-
supervised learning of structured tagging models. In
Proc. of the EMNLP, pages 167–176.

Kristina Toutanova, Dan Klein, Christopher D. Man-
ning, and Yoram Singer. 2003. Feature-rich part-of-
speech tagging with a cyclic dependency network.
In Proc. of the NAACL-HLT - Vol. 1, pages 173–180.

Vincent Van Asch and Walter Daelemans. 2010. Using
domain similarity for performance estimation. In
Proc. of the DANLP Workshop, pages 31–36.

Yi Zhang and Valia Kordoni. 2006. Automated deep
lexical acquisition for robust open texts processing.
In Proc. of the LREC, pages 275–280.

206


