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Abstract 

 

A major problem in the field of Chinese word 

segmentation is the identification of out-of-

vocabulary words. We propose a simple yet 

effective approach for extracting maximized 

substrings, which provide good estimations of 

unknown word boundaries. We also develop a 

new semi-supervised segmentation technique 

that incorporates retrieved substrings using 

discriminative learning. The effectiveness of 

this novel approach is demonstrated through 

experiments using both in-domain and out-of-

domain data. 

1. Introduction 

Chinese sentences are written without explicit 

word boundaries, which makes Chinese word 

segmentation (CWS) an initial and important 

step in Chinese language processing. Recent ad-

vances in machine learning techniques have 

boosted the performance of CWS systems. On 

the other hand, a major difficulty in CWS is the 

problem of identifying out-of-vocabulary (OOV) 

words, as the Chinese language is continually 

and rapidly evolving, particularly with the rapid 

growth of the internet. 

A recent line of research to overcome this dif-

ficulty is through exploiting characteristics of 

frequent substrings in unlabeled data. Statistical 

criteria for measuring the likelihood of a sub-

string being a word have been proposed in previ-

ous studies of unsupervised segmentation, such 

as accessor variety (Feng et al., 2004) and 

branching entropy (Jin and Tanaka-Ishii, 2006). 

This kind of criteria has been applied to enhance 

the performance of supervised segmentation sys-

tems (Zhao and Kit, 2007; Zhao and Kit, 2008;  

 

 Substring Freq 

一致 3 

界限数的期望值 2 

一致认定界限 2 

的期望值 3 

认定界限数的 2 

值 4 
 

 

Table 1. A particular type of substrings with mul-

tiple occurrences in the Chinese sentence: “使一致

认定界限数的期望值近似于一致正确界限数的期望

值，求得一致认定界限的期望值/认定界限数的

值。” 

 

Sun and Xu, 2011) by identifying unknown word 

boundaries. 

In this paper, instead of investigating statistical 

characteristics of batched substrings, we propose 

a novel method that extracts substrings as relia-

ble word boundary estimations. The technique 

uses large-scale unlabeled data, and processes it 

on the fly.  

To illustrate the idea, we first consider the fol-

lowing example taken from a scientific text: 

 

“使一致认定界限数的期望值近似于一致正确界限

数的期望值，求得一致认定界限的期望值/认定界

限数的值。” 

 

Without any knowledge of the Chinese lan-

guage one may still notice that some substrings 

like “一致” and “的期望值”, occur multiple 

times in the sentence and are likely to be valid 

words or chains of words. Consider a particular 

type of frequent substring that cannot be simulta-

neously extended by its surrounding characters 

while still being equal (Table 1). We can observe 

that the boundaries of such substrings can be 

used as perfect word delimiters. We can segment 

the sentence by simply treating the boundaries of 

each occurrence of a substring in Table 1 as word  
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(Chen Deming answers to journalists’
questions)

 
 

Figure 1. A Word-character hybrid lattice of a Chinese sentence. Correct path is represented by bold lines. 

 
Word Length 1 2 3 4 5 6 7 or more 

Tags S BE BB2E BB2B3E BB2B3ME BB2B3MME BB2B3M...ME 

Table 2. Word representation with a 6-tag tagset: S, B, B2, B3, M, E 

 

delimiters: 

 

“使|一致|认定|界限|数|的|期望|值|近似于|一致|正确|

界限数|的期望|值|，求得|一致|认定界限|的期望|值

|/|认定界限数的|值|。” 

 

Compared with the gold-standard segmentation, 

this partial segmentation has a precision of 100% 

and a recall of 73.3% with regard to boundary 

estimation. This is high when we consider that 

the method does not use a trained segmenter or 

annotated data. While we have obtained this re-

sult on a selected instance, it still suggests that 

unlabeled data has the potential to enhance the 

performance of supervised segmentation systems 

by tracking consistency among substrings.  

Substrings, such as those listed in Table1, are 

retrievable from unlabeled data and can be incor-

porated with a supervised CWS system to com-

pensate for out-of-vocabulary (OOV) words. In 

this case the unlabeled data can be either test data 

only (leading to a purely supervised system), or a 

large-scale external corpus (leading to a semi-

supervised system). We will formally define this 

particular type of substring, referred to as a 

“maximized substring”, in a later section. 

The remainder of this paper is organized as 

follows. Section 2 describes our baseline seg-

mentation system, defines maximized substrings, 

and proposes an efficient algorithm for retrieving 

these substrings from unlabeled data. Section 3 

introduces the maximized substring features. 

Section 4 presents the experimental results. Sec-

tion 5 discusses related work. The final section 

summarizes our conclusions.  

2. Approach  

2.1  Baseline Segmentation System 

We have used a word-character hybrid model as 

our baseline Chinese word segmentation system 

(Nakagawa and Uchimoto, 2007; Kruengkrai et 

al., 2009). As shown in Figure 1, this hybrid 

model constructs a lattice that consists of word-

level and character-level nodes from a given in-

put sentence. Word-level nodes correspond to 

words found in the system’s lexicon, which has 

been compiled from training data. Character-

level nodes have special tags called position-of-

character (POC) that indicate the word-internal 

position (Asahara, 2003; Nakagawa, 2004). We 

have adopted the 6-tag tagset, which (Zhao et al., 

2006) reported to be optimal. This tagset is illus-

trated in Table 2.  

Previous studies have shown that jointly pro-

cessing word segmentation and part-of-speech 

tagging is preferable to separate processing, 

which can propagate errors (Nakagawa and 

Uchimoto, 2007; Kruengkrai et al., 2009). If the 

training data was annotated by part-of-speech 

tags, we have combined them with both word-

level and character-level nodes.  
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 Hash1 Hash2 Occur(ABCC) Hash1 Hash2 Occur (ABCCFA) Occur (ABCC) 

 (a) (b)  

 Figure 2. Data structure for maximized substring mining. Hash1 is the first-level hash with fixed-

length prefix keys. Hash2 is a hash associating to a corresponding key in Hash1 that stores the list of 

maximized substrings sharing the same fixed-length prefix.          is the occurrence list 

associating to a particular maximized substrings with references to all its occurrences in the original 

postitions in the document. (a) shows a certain state of the data structure, and (b) the state after a 

maximized substring “ABCCFA” is inserted with the context being “ABCCFAT…” in the document. 

 

 

2.2  Maximized Substring: the Definition 

Frequent substrings in unlabeled data can be used 

as clues for identifying word boundaries, as we 

have illustrated in Section 1. Nevertheless, some 

substrings, although frequent, are not useful to 

the system. In the example in Section 1, the sub-

string “致认定界” occurs the same amount of 

times as the substring “一致认定界限”. However, 

only the latter is a valid identifier for word de-

limiters: they are non-overlapping, meaning that 

it is impossible to simultaneously extend all oc-

currences by surrounding characters. We use the 

term maximized substring to describe these sub-

strings.  

Formally, we define maximized substring as 

follows:  

 

Definition 1 (Maximised substring). Given a 

document D that is a collection of sentences, de-

note a length   substring which starts with char-

acter    by    [             ].    is called a 

maximized substring if: 

 

1. It has a set of distinct occurrences,  , with at 

least two elements
1
: 

  {             } ,    ,        

     s.t.              ; and 

 

2.             and                  

           . 

 

 

                                                           
1 It should be noted that, in order to retrieve a substring, the 

size of M is not necessarily identical to its total count in the 

document. 

 

The substrings listed in Table 1 are therefore 

maximized substrings, given that D is the exam-

ple sentence. Note that these are not all maxim-

ized substrings extractable from the example sen-

tence, but are the result of the retrieval algorithm 

that we will describe in the next section.  

2.3  Maximized Substring Retrieval: Algo-

rithm and Data Structure 

The problem of mining frequent substrings in a 

document has been extensively researched. Ex-

isting algorithms generally either use a suffix tree 

structure (Nelson, 1996) or suffix arrays (Fischer 

et al., 2005), and make use of the apriori property 

(Agrawal and Srikant, 1994). The apriori proper-

ty states that a string of length k+1 is frequent 

only if its substring of length k is frequent. The 

apriori property can significantly reduce the size 

of enumerable substring candidates. However, as 

we are only interested in maximized substrings, 

suffix tree-based algorithms are inefficient in 

both time and space. We therefore propose a 

novel algorithm and a compact data structure for 

fast maximized substring mining. 

The data structure is illustrated in Figure 2. It 

supports fast prefix searching for storing and re-

trieving maximized substrings, with each entry 

associated to a list of occurrences that refer to the 

original positions in the document. Fast prefix 

matching is a particular advantage of a trie, 

which is a type of prefix tree. Our structure is 

different as we use a two-level hash structure for 

space efficiency and ease of manipulation. This 

is important, especially during experiments on 

large-scale unlabeled data. 

The first-level hash stores prefixes of a fixed-

length,  , of retrieved substrings. This part of 

the data structure functions as a filter to screen 

ABC

ABCC

ABCK

ABCMN

“ABCCKID…”

“ABCCFAL…”

“ABCCTEA…”

“ABCCDEA…”

XYZ

ABC

JQK

…

ABC

ABCC

ABCK

ABCCFA

ABCMN

“ABCCKID…”

“ABCCFAL…”

“ABCCTEA…”

“ABCCDEA…”

“ABCCFAL…”

“ABCCFAT…”

XYZ

ABC

JQK

…
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out substrings that are shorter than   characters, 

as they should not be considered as candidates. 

This is motivated by our observation that single 

characters, and sometimes even double-character 

substrings, are not reliable enough to predict 

word delimiters. Note that   is data dependent, 

for example, the optimal value of   is 3 charac-

ters on the dataset Chinese Treebank (CTB). 

Each key of the first-level hash is associated 

with a second-level hash that stores the retrieved 

maximized substrings that share a common pre-

fix. 

The third-level structure is a linked list of oc-

currences of a particular maximized substring. 

This list stores references to the original position 

of each occurrence of the substring, with the sur-

rounding context being visible so that new (long-

er) maximized substrings can be found by exten-

sion.  

We sketch the process of maximized substring 

retrieval in Pseudocode 1. From the beginning of 

the document D, we scan each position and regis-

ter maximized substrings into the data structure 

H. If an incoming substring already exists in H, 

we look up its occurrence list to check if its suc-

ceeding characters can extend the substring. As 

the current occurrence list is a set of maximized 

substrings, there will be only two possible out-

comes. Either exactly one element in the occur-

rence list is found to have a longer common pre-

fix with the incoming substring, in which case 

we create a new occurrence list consisting of the 

two lengthened substrings. Alternatively, the pre-

fix remains the same and we add the incoming 

substring to the occurrence list. 
We can easily demonstrate that all substrings 

retrieved by this algorithm are maximized sub-

strings. However, the algorithm does not general-

ly guarantee to retrieve all maximized substrings 

from unlabeled data. This is a necessary com-

promise if we wish to keep the efficiency of one-

time scanning. In addition, we have observed in 

preliminary experiments that retrieving all max-

imized substrings is not only unnecessary, but 

can introduce harmful noise. In the next section, 

we will discuss our solution to this problem. 

2.4  Short-Term Store 

Maximized substrings can provide good estima-

tions of word boundaries, but random noise can 

be introduced during the retrieval process in 

Pseudocode 1. 

To address this problem, we take advantage of 

a linguistic phenomenon. It has been observed 

that a word occurring in the recent past has a   

Pseudocode 1: Maximized substring retrieval  

1 procedure RetrieMaxSub( , D)  

2               

3       [         ]  
  the reference of a length   substring at 

the beginning of document D 

4 

5 

6 until   reaches the end of document D 

7    longest element in H extendable 

from   8 

9 if | |       empty string 

10           { }  

11   make the occurrence list of   

12 H.Add(〈           〉) 
13   associate   with its occurrence list 

and add to data structure  14 

15        

16       [         ] 

17 else 

18                 [      | |  ] 

19                              

20 return H 

21  

22 procedure Maximize(          ) 

23 for each   in  .          

24  〈              
 〉                

25   find the longest common substring 

     between   and    by simultane-

ously extending them with  succeeding 

characters 

26 

27 

28 

29     if |    |  | | 

30                        {         
 } 

31 H.Add(〈                 〉) 

32               |    | 

33           [         ] 

34         return (   ) 

35 end 

36 s.         .Add(  ) 

37     | |  

38       [         ] 

39     return (   ) 

 

much higher probability to occur again soon, 

when compared with its overall frequency (Kuhn 

and Mori, 1990). It follows that, for speech 

recognition, we can then use a window of recent 

history to adjust the static overall language mode. 

This observation is applicable to the task of 

maximized substring retrieval in the following 

way. Suppose a substring is registered into the 

data structure. If the substring is in fact a word, it 

is much more likely to reoccur in the next 50 to 

100 sentences than in the remainder of the corpus 

(especially when it is a technical term or a named 

entity). Otherwise the substring should have a 

more unified probability of reoccurrence across 

the entire corpus. 
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This motivated us to introduce a functionality 

into the process of maximized substring retrieval, 

called “short-term store” (STS). The STS is an 

analogy to the cache component in speech recog-

nition as well as the human phonological work-

ing memory in language acquisition. It restricts 

the length of the visible context when retrieving 

the next candidate of a registered substring, mak-

ing it proportional to the current number of oc-

currences of the substring. For a registered sub-

string, the retrieval algorithm scans a certain 

number of sentences after the latest occurrence of 

the substring, where the number of sentences D(s) 

is determined as follows: 

 

     {
                                   

                              
     

 

where          is the current number of occur-

rences of   in the data structure. The parameter   

contributes a fixed-length distance to the visible 

context. The parameter   works as a threshold of 

reliability. If we have observed   at least   times 

in a short period, we can regard   as a word, or a 

sequence of words, with a high level of confi-

dence. Thus,        implies that   is no long-

er subject to periodical decaying and will stay in 

the data structure statically. 

During the scanning of the      sentences, if a 

new occurrence of   is found, it is added into the 

data structure and      is recalculated immedi-

ately, starting a new scanning period. If no new 

occurrences are found, we remove the earliest 

occurrence of   from the data structure and then 

re-calculate     . Note that we have described 

the short-term store functionality as if each sub-

string in the data structure is scanned separately. 

In practice, however, only a small change to 

Pseudocode 1 is required so that STS is used, 

making one-time scanning of the unlabeled data 

sufficient. 
Introducing STS into the retrieval process re-

sults in a substantial improvement to the quality 

of retrieved substrings. It is also important that 

STS greatly improves the processing efficiency 

for large scale unlabeled data by keeping the size 

of the data structure relatively small. This is be-

cause a substring entry will decay from the data 

structure if it has not been refreshed in a short 

period. 

3. Features 

3.1  Baseline Features 

For baseline features, we apply the feature tem-

plates described in (Kruengkrai et al., 2009). For 

further details, please see the original paper. Note 

that if the part-of-speech tags are not available, 

we omit those templates involving POS tags. 

3.2  Maximized Substring Features 

We have incorporated the list of retrieved max-

imized substrings into the baseline system by 

using a technique which discriminatively learns 

their features. For every word-level and charac-

ter-level node in the lattice, the method checks 

the maximized substring list for entries that satis-

fy the following two conditions:  

1. The node matches the maximized substring 

at the beginning, the end, or both boundaries. 

2. The length of the node is shorter than or 

equal to that of the entry.  

For example, consider the lattice in Figure 1 with 

a maximized substring “陈德铭”. All of the char-

acter-level nodes of “陈” and “铭” are encoded 

with maximized substring features. A segmenter 

will only obtain information on those possible 

word boundaries that are identified by maxim-

ized substrings. The maximized substrings are 

not directly treated as single words, because a 

maximized substring can sometimes be a com-

pound word or phrase. 

For each match with a maximized substring 

entry, the technique encodes the following fea-

tures. 
Basic: A binary feature that indicates whether 

the match is at the beginning or end of the max-

imized substring. It is encoded both individually 

and as a combination with each other feature 

types. 

Lexicon: There is a particular kind of noise in 

the retrieved list of maximized substrings, name-

ly, those like the substring “中美经”, which has 

resulted from the two phrases “中美经济” (China 

and U.S. economy) and “中美经贸” (China and 

U.S. economic and trade). This happens when 

the boundary of a maximized substring is a 

shared boundary character of multiple other 

words. In this example, the last character “经” of 

the maximized substring is the character at the 

beginning of “经济” (economy) and “经贸” (eco-

nomic and trade). This kind of noise can be iden-

tified by checking the context of maximized sub-

strings in system’s lexicon. 

Our technique checks the context of the max-

imized substring in the input sentence and com-

pares it with the system’s lexicon. If any item in 

the lexicon is found that forms a positional rela-

tion with the maximized substring entry (as listed   
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Sentence: 
                       

Representa-
tion 

Maximized substring 
             

 

Lexicon entry 
𝑙               𝑗  

 

ID Positional Relation 

L1         
 

L2         
 

L3         
 

L4         
 

L5         
 

L6         
 

L7       
 

L8   −  
 

Table 3. Lexicon features. Each one represents a 

positional relation between a maximized substring 

and a contextual substring which exists in sys-

tem’s lexicon. 

 

ID At Beginning ID At Ending 

B1 <L1,L6> E1 <L2,L5> 

B2 <L6,L8> E2 <L5,L7> 

B3 <L1,L8> E3 <L2,L7> 
Table 4. Lexicon Composition features. Each one 

represents a combination of two Lexicon features 

that fire simultaneously.  

 

in Table 3) then the corresponding features are 

encoded. 

Lexicon Composition: When a maximized 

substring is a match to more than one item in the 

lexicon, a combination of multiple lexicon fea-

tures is more informative than individual features. 

We encode the combinations of lexicon features 

listed as in Table 4. 

Frequency: We sort the list of maximized 

substrings by their frequencies. If a maximized 

substring is among the 10% most frequent it is 

classed as “highly frequent”, if it is among the 

top 30% it is “normal”, and all other cases are 

“infrequent”.  

4. Evaluation 

4.1  Setting 

To evaluate our approach, we have conducted 

word segmentation experiments on two datasets. 

The first is Chinese Treebank 7 (CTB7), which is 

a widely used version of the Penn Chinese Tree-

bank dataset for the evaluations of word segmen-

tation techniques. We have adopted the same 

setting of data division as (Wang et al., 2011): 

the training set, dev set and test set. For CTB7, 

these sets have 31,131, 10,136 and 10,180 sen-

tences respectively. The second dataset is the 

second international Chinese word segmentation 

bakeoff (SIGHAN Bakeoff-2005) (Emerson, 

2005), which has four independent subsets: the 

Academia Sinica Corpus (AS), the Microsoft 

Research Corpus (MSR), the Hong Kong City 

University Corpus (CityU) and the Peking Uni-

versity Corpus (PKU). Since POS tags are not 

available in this dataset, we have omitted all 

templates that include them. The models and pa-

rameters applied on all test sets are those that 

result in the best performance on the CTB7 dev 

set. 

We have used two different types of unlabeled 

data. One is the test set itself, which means the 

system is purely supervised. Another is a large-

scale dataset, which is the Chinese Gigaword 

Second Edition (LDC2007T03). This dataset is a 

collection of news articles from 1991 to 2004 

published by Central News Agency (Taiwan), 

Xinhua News Agency and Lianhe Zaobao News-

paper. It includes a total amount of over 1.2 bil-

lion characters in both simplified Chinese and 

traditional Chinese.  

We have trained all models using the averaged 

perceptron algorithm (Collins, 2002), which we 

selected because of its efficiency and stability. 

To learn the characteristics of unknown words, 

we built the system’s lexicon using only the 

words in the training data with a frequency high-

er than a threshold,  . This threshold was tuned 

using the development data. In order to use the 

maximized substring features, we have used 

training data as unlabeled data for supervised 

models, and used both the training data and Chi-

nese Gigaword for semi-supervised models. 

We have applied the same parameters for all 

models, which are tuned on the CTB7 dev set: 

   ,    ,      , and    .  
We have used precision, recall and the F-score 

to measure the performance of segmentation sys-

tems. Precision, p, is defined as the percentage of  
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System P R F 

Baseline 95.17 95.35 95.26 

MaxSub-Test 95.33 95.47 95.40 

MaxSub-U 95.65 95.81 95.73 
Table 5. Evaluation on CTB7 for the baseline ap-

proach and our approach with small and large-

scale in-domain unlabeled data respectively. 

 

words that are segmented correctly, and recall, r, 

is the percentage of words in the gold standard 

data that are recognized in the output. The bal-

anced F-score is defined as F = 2pr/(p + r).  

 4.2  Experimental Results on In-domain Data  

We have compared the performance between the 

baseline system and our approach. The results 

are shown in Table 5. Each row in this table 

shows the performance of the corresponding sys-

tem. “Baseline” refers to our baseline hybrid 

word segmentation and POS-tagging system. 

“MaxSub-Test” refers to the method that just 

uses the test set as unlabeled data. “MaxSub-U” 

refers to the method that uses the large-scale un-

labeled data. We have focused on the segmenta-

tion performance of our systems. 

The results show that, using the test data as an 

additional source of information, “MaxSub-Test” 

outperforms the baseline method by 0.14 points 

in F-score. This indicates that our method of us-

ing maximized substrings can enhance the seg-

mentation performance even with a purely su-

pervised approach. The improvement increases 

to 0.47 points in F-score for “MaxSub-U”, which 

demonstrates the effectiveness of using large-

scale unlabeled data. 

We have compared our approach with previ-

ous work in Table 6. Two methods from 

(Kruengkrai et al., 2009a; 2009b) are referred to 

as “Kruengkrai 09a” and “Kruengkrai 09b”, and 

are taken directly from the report of (Wang et al., 

2011). “Wang 11” refers to the semi-supervised 

system in (Wang et al., 2011). We have observed 

that our system “MaxSub-U” achieves the best 

segmentation among these systems. Also, alt-

hough the performance of our baseline is lower 

than the systems “Kruengkrai 09a” and 

“Kruengkrai 09b” because of differences in im-

plementation, the system “MaxSub-Test” (which 

has used no external resource) has achieved a 

comparable result. 

The results for the SIGHAN Bakeoff-2005 da-

taset are shown in Table 7. The first three rows 

(“Tseng 05”, “Asahara 05” and “Chen 05”) show 

the results of systems that have reached the high-

est score on at least one corpus (Tseng et al.,  

System F 

Baseline 95.26 

MaxSub-Test 95.40 

MaxSub-U
+
 95.73 

Kruengkrai 09a 95.40 

Kruengkrai 09b 95.46 

Wang 11
+
 95.65 

Table 6. F-measure on CTB7 test set com-

pared with previous work. “
+
”: semi-

supervised systems. 

 

System AS CityU MSR PKU 

Tseng 05 94.7 94.3 96.4 95.0 

Asahara 05 95.2 94.1 95.8 94.1 

Chen 05 94.5 94.0 96.0 95.0 

Best closed 95.2 94.3 96.4 95.0 

Zhang 07 95.1 95.1 97.2 95.1 

Zhao 07 95.5 95.6 97.5 95.4 

Baseline 95.07 94.53 96.25 95.13 

MaxSub-S 95.17 94.61 96.42 95.31 

MaxSub-L
+
 95.34 94.79 96.64 95.55 

Table 7. F-measure on SIGHAN Bakeoff-2005 test 

set compared with previous work. “
+
”: semi-

supervised systems. 

 

2005; Asahara et al., 2005; Chen et al., 2005). 

“Best closed” summarizes the best official results 

on all four corpora. “Zhao 07” and “Zhang 06” 

represent the supervised segmentation systems in 

(Zhao and Kit, 2007; Zhang et al., 2006). “Base-

line”, “Maxsub-Test” and “MaxSub-U” refer to 

the same systems as in Table 5. For the unlabeled 

data, we have used the test sets of corresponding 

corpora for “MaxSub-Test”, and the Chinese Gi-

gaword for “MaxSub-U”. Other parameters were 

left unchanged. The results do not indicate that 

our approach performs better than other systems. 

However, this is largely because of our baseline 

not being optimized for these corpora. Neverthe-

less, when compared with the baseline, our ap-

proach has yielded consistent improvements 

across the four corpora, and on the PKU corpus 

we have performed better than previous work. 

4.3  Impacts of Semi-supervised Features and 

Short-term Store  

In Table 8, we have shown the effects of the dif-

ferent maximized substring feature types pro-

posed in this paper. We activated different com-

binations of feature types in turn and trained sep-

arate models. We also investigated the impact of 

the short-term store by training models without 

this feature. The rows of this table represent 

models and corresponding F-measure, trained 
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System F 

Baseline 95.26 

+Basic&Freq 95.50 

+All 95.60 

+All+STS 95.73 

Table 8. Influence of activated feature 

types and short-term store on CTB7 

test data. 

  

System P R F 

Baseline 91.88 92.02 91.95 

MaxSub-Test 92.43 92.53 92.48 

Table 9. Results on out-of-domain data. 

 

 

and tested on CTB7 with different configurations. 

The row “Baseline” is baseline system as in Ta-

ble 5. “+Basic&Freq” represents the system 

“MaxSub-U” with only basic and frequency fea-

tures activated, and STS turned off. The row 

“+All” represents a system activating all maxim-

ized substring features but still without STS. The 

last row “+All+STS” is identical to the system 

“Maxsub-U”. It is clear that lexicon-based fea-

tures are effective in discriminating unreliable 

maximized substring from reliable ones, and the 

short-term store improves the segmentation per-

formance by filtering out noises during the re-

trieval of maximized substrings. The combina-

tion of these two techniques yields an improve-

ment of 0.23 point in F-measure, and thus are 

essential when using maximized substrings. 

4.4  Experimental Results on Out-of-domain 

Data  

To demonstrate the effectiveness of our method 

on out-of-domain text, we have conducted an 

experiment on a test set that was drawn from a 

corpus of scientific articles. This test set contains 

510 sentences that have been manually segment-

ed by a native Chinese speaker. We used the test 

set as the unlabeled data. 

As the results show (Table 9), the system 

“MaxSub-Test” exceeded the baseline method by 

0.53 in F-score, which is a significant improve-

ment. Considering that the amount of unlabeled 

data is relatively small, it is likely that acquiring 

large-scale unlabeled data in the same domain 

will further benefit the accuracy. 

5. Related Work 

The authors of (Feng et al., 2004) proposed ac-

cessor variety (AV), a criterion measuring the 

likelihood of a substring being a word by count-

ing distinct surrounding characters. In (Jin and 

Tanaka-Ishii, 2006) the researchers proposed 

branching entropy, a similar criterion based on 

the assumption that the uncertainty of surround-

ing characters of a substring peaks at the word 

boundaries. The authors of (Zhao and Kit, 2007) 

incorporated accessor variety and another type of 

criteria, called co-occurrence sub-sequence, with 

a supervised segmentation system and conducted 

comprehensive experiments to investigate their 

impacts. Although the idea behind co-occurrence 

sub-sequence is similar with maximized sub-

strings, there are several restrictions: it requires 

post-processing to remove overlapping instances; 

sub-sequences are retrievable only from different 

sentences; and the retrieval is performed only on 

training and testing data. In (Sun and Xu, 2011), 

the authors proposed a semi-supervised segmen-

tation system enhanced with multiple statistical 

criteria. Large-scale unlabeled data were used in 

their experiments.  

Li and Sun presented a model to learn features 

of word delimiters from punctuation marks in (Li 

and Sun, 2009). Wang et al. proposed a semi-

supervised word segmentation method that took 

advantages from auto-analyzed data (Wang et al., 

2011). 

Nakagawa showed the advantage of the hybrid 

model combining both character-level infor-

mation and word-level information in Chinese 

and Japanese word segmentation (Nakagawa, 

2004). In (Nakagawa and Uchimoto, 2007) and 

(Kruengkrai et al., 2009a; 2009b) the researchers 

presented word-character hybrid models for joint 

word segmentation and POS tagging, and 

achieved the state-of-the-art accuracy on Chinese 

and Japanese datasets. 

6. Conclusion 

We propose a simple yet effective approach for 

extracting maximized substrings from unlabeled 

data. These are a particular type of substrings 

that provide good estimations of unknown word 

boundaries. The retrieved maximized substrings 

are incorporated with a supervised segmentation 

system through discriminative learning. We have 

demonstrated the effectiveness of our approach 

through experiments in both in-domain and out-

of-domain data and have achieved significant 

improvements over the baseline systems across 

all datasets
2
. 

                                                           
2        in McNemar’s test. 
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