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Abstract

We present a simple, logic-based archi-
tecture for solving math problems writ-
ten in natural language. A problem is
firstly translated to a logical form. It is
then rewritten into the input language of
a solver algorithm and finally the solver
finds an answer. Such a clean decomposi-
tion of the task however does not come for
free. First, despite its formality, math text
still exploits the flexibility of natural lan-
guage to convey its complex logical con-
tent succinctly. We propose a mechanism
to fill the gap between the simple form and
the complex meaning while adhering to
the principle of compositionality. Second,
since the input to the solver is derived by
strictly following the text, it may require
far more computation than those derived
by a human, and may go beyond the capa-
bility of the current solvers.

Empirical study on Japanese university en-
trance examination problems showed pos-
itive results indicating the viability of the
approach, which opens up a way towards
a true end-to-end problem solving system
through the synthesis of the advances in
linguistics, NLP, and computer math.

1 Introduction

Development of an NLP system usually starts
by decomposing the task into several sub-tasks.
Such a modular design is mandatory not only for
the reusability of the component technologies and
the extensibility of the system, but also for the
sound and steady advancement of the research
field. Each module, however, has to attack its
sub-task in isolation from the entirety of the task,
usually with a quite limited form and amount of
knowledge. The separated sub-task is hence not

necessarily easy even for human. This problem
has been investigated in various directions, includ-
ing the solutions to the error-cascading in pipeline
models (Finkel et al., 2006; Roth and Yih, 2007,
e.g.), the injection of knowledge into the process-
ing modules (Koo et al., 2008; Pitler, 2012, e.g.),
and the invention of a novel way of modularization
(Bangalore and Joshi, 2010, e.g.).

In this paper, we present a simple pipeline archi-
tecture for natural language math problem solving,
and investigate the issues regarding the separation
of the semantic composition mechanism and the
mathematical inference. Although the separation
between these two may appear to be of different
nature than the above-mentioned issues regarding
the system modularization, as we will see later, the
technical challenges there are also in the tension
between the generality of an implemented theory
as a reusable component, and its coverage over
domain-specific phenomena.

In the system, a problem is analyzed with
a Combinatory Categorial Grammar (Steedman,
2001) coupled with a semantic representation
based on the Discourse Representation Theory
(Kamp and Reyle, 1993) to derive a logical form.
The logical form is then rewritten to the input lan-
guage of a solver algorithm, such as specialized
math algorithms and theorem provers. The solver
finally finds an answer through inference.

Natural language problem solving in math and
related domain is a classic AI task, which has
served as a good test-bed for the integration of
various AI technologies (Bobrow, 1964; Charniak,
1968; Gelb, 1971, e.g.). Besides its attraction as a
pure intellectual challenge, it has direct applica-
tions to the natural language interface for the for-
mal systems such as databases, theorem provers,
and formal proof checkers. The necessity of the
interaction between language understanding and
backend solvers has been pointed out in some of
the classic works and also in closely related works
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terms t ::= v | f(t1, . . . , tk) | Λv.t | Λv.D

conditions C ::= P (t1, . . . , tk) | ¬D | D1 → D2

DRSs D ::= ({v1, . . . , vk}, {C1, . . . , Cm})

Figure 1: Syntax of DRS

such as Winograd’s SHRDLU (1971). A clear sep-
aration of the two layers is, however, an essential
property for a wide-coverage problem solving sys-
tem since we can extend it in a modular fashion,
by the enhancement of the solver or the addition
of different types of solvers.

The research question in the current paper is
thus summarized as follows:

1. Can we derive the logical form of the prob-
lems compositionally, with no intervention of
mathematical inference, and how?

2. Can we solve such a direct translation of the
text to a logical form with the current state-
of-the-art automatic reasoning technology?

After a brief overview of the system pipeline (§3),
we present a technique for capturing the dynamic
properties of the syntax-semantics mapping in the
math problem text, which, at first sight, seem to
call for mathematical inference during the deriva-
tion of a logical form (§4). We then describe re-
maining issues we found so far in the semantic
analysis of math problem text (§5). Finally, the
viability of the approach is empirically evaluated
on real math problems taken from university en-
trance examinations. In the evaluation, we apply a
solver to the logical forms derived through manu-
ally annotated CCG derivations and DRSs on the
problem text (§6). In the current paper, we thus
exclusively focus on the formal aspect of the se-
mantic analysis, setting aside the problem of its
automation and disambiguation. The final section
concludes the paper and gives future prospects in-
cluding the automatic processing of the math text.

2 Preliminaries

2.1 Discourse Representation Structure

We use a variant of Discourse Representation
Structure (DRS) (Kamp and Reyle, 1993) for the
semantic representation. DRS has been developed
for the formal analysis of various discourse phe-
nomena, such as anaphora and quantifier scopes
beyond a single sentence.

Fig. 1 shows the syntax of DRS used in this
paper.1 In the definitions, f and P respectively
denote a function and a predicate symbol and v
denotes a variable. The definition is slightly ex-
tended from that by van Eijck and Kamp (2011)
for incorporating higher-order terms. A term of
the form Λv.M denotes lambda abstraction in the
object language, which is used to represent (math-
ematical) functions and sets2; we reserve λ for de-
noting the abstraction over DRSs (and terms) for
the composition of DRSs. We define the interpre-
tation of a DRSD indirectly through its translation
D◦ to a (higher-order) predicate logic as in Fig. 2.

As defined in Fig. 2, a DRS D = (V,C) is
basically interpreted as a conjunction of the con-
ditions in C that is quantified existentially by all
the variables in V. However, as in the second
clause in Fig. 2, the variables in the antecedent of
an implication are universally quantified and their
scopes also cover the succedent; this definition is
utilized in the analysis of sentences including in-
definite NPs, such as donkey sentences.

The mechanism of the DRS composition in this
paper is based on the formulation by van Eijck and
Kamp (2011). They use an operation called merge
(denoted by •) to combine two DRSs. Assuming
no conflicts of variable names, it can be defined
as: (V1,C1) • (V2,C2) := (V1 ∪V2,C1 ∪C2).
Roughly speaking, this operation amounts to form
the conjunction of the conditions in C1 and C2

allowing the conditions in C2 to refer to the vari-
ables in V1. Consider the following discourse:

s1: A monkeyx is sleeping.
s2: Itx holds a banana.

Assuming the anaphoric relation indicated by the
super/sub-scripts, we have their DRSs as follows:

D1 = ({x}, {monkey(x), sleep(x)})
D2 = ({y}, {banana(y), hold(x, y)})

By merging them, we have

D1•D2 =
(
{x, y},

{
monkey(x), sleep(x),
banana(y), hold(x, y)

})
,

which is translated to ∃x.∃y.(monkey(x) ∧ · · · ∧
hold(x, y)) as expected.

1Disjunction can be defined by using implication and
negation: D1 ∨D2 := ({}, {¬D1}) → D2.

2We represent the application of a Λ-term to another term,
such as (Λx.D)t and (Λx.t1)t2, either by a special predicate
App(f, x) ≡ fx or a function app(f, x) := fx according
to the type of f . Compound terms of the form t1t2 are hence
not in the definitions.
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Assuming D1 = ({v1, . . . , vk}, {C1, . . . , Cm}),

D◦
1 := ∃v1 . . . ∃vk. (C◦1 ∧ · · · ∧ C◦k)

(D1 → D2)
◦ := ∀v1 . . . ∀vk. ((C◦1 ∧ · · · ∧ C◦m) → D◦

2 )

(¬D)◦ := ¬D◦

(P (t1, t2, . . . ))◦ := P (t◦1 , t◦2 , . . . )

(f(t1, t2, . . . ))◦ := f(t◦1 , t◦2 , . . . )

(Λv.D)◦ := Λv.(D◦)

(Λv.t)◦ := Λv.(t◦)

v◦ := v

Figure 2: Translation of DRS to HOPL

When
S/S/S

: λP.λQ.P → Q

the centers of C1 and C2

S/(S\NP)

: λP.({x, x1, x2}, {x = [x1, x2], x1 = center of(C1), x2 = center of(C2)})•Px

coincide
S\NP

: λx.({}, {coincide(x)})
>

S : ({x, x1, x2}, {x = [x1, x2], x1 = center of(C1), x2 = center of(C2), coincide(x)})
>

S/S : λQ.({x, x1, x2}, {x = [x1, x2], x1 = center of(C1), x2 = center of(C2), coincide(x)}) → Q

Figure 3: A part of CCG derivation tree

X/Y : f Y : a
>

X : fa

X/Y : f Y/Z : g
>B

X/Z : λx.f(gx)

Figure 4: Example of combinatory rules

2.2 Combinatory Categorial Grammar
Combinatory Categorial Grammar (CCG) (Steed-
man, 2001) is a lexicalized grammar formalism.
In CCG, the association between a word w and its
syntactic/semantic property is specified by a lexi-
cal entry of the form w := C : S, where C is the
category of w and S is the semantic interpretation
of w. A category is either a basic category (e.g.,
S, N, NP) or a complex category of the formX/Y
or X\Y . For instance, we can assign the follow-
ing categories and semantic interpretations to the
region notation “[0,+∞)” and a bare noun phrase
“positive number”:

[0,+∞) := NP : Λx.({}, {x ≥ 0})
positive number := N : λx.({}, {x > 0})

since the region notation behaves as a proper noun
and it can be represented by its characteristic func-
tion, while “positive number” functions like a
common noun (recall that Λ is for the abstraction
in the object language and λ stands for the abstrac-
tion for the DRS composition). A handful of com-
binatory rules define how the categories and the
semantic interpretations of constituents are com-
bined to derive a larger phrase. Fig. 4 shows two
of the rules. A part of a derivation tree for “When
the centers of C1 and C2 coincide” is shown in
Fig. 3. As shown in the figure, the semantic repre-
sentation in DRS is composed by the beta reduc-
tion and the DRS merge operation. As we will
see in §4, there are certain types of discourse for
which the basic DRS composition machinery de-
scribed so far does not suffice. We will return to
this after a brief description of the whole system.

3 A Simple Pipeline for Natural
Language Math Problem Solving

The main result in the current paper is a mech-
anism of semantic composition and an empirical
support for our overall design choice. Although
the NLP modules for the automatic processing and
disambiguation are still under development, we
show a brief overview of the whole system to give
a clear image on the different representations of a
problem at different stages of the pipeline.

From text to logical form The system receives
a problem text with LATEX-style markup on the
symbolic mathematical expressions: e.g.,

Let $a>0$, $b≤0$, and $0<p<1$.
$P(p, pˆ2)$ is on the graph of the
function $y=ax-bxˆ2$. Write $b$ in
terms of $a$ and $p$.

We process the mathematical expressions with a
symbolic expression analyzer and produce their
possible interpretations as lexical entries. For in-
stance, $y=ax-bxˆ2$ in the above example will
receive at least two interpretations:

$y=ax-bxˆ2$ := S : ({}, {y = ax− bx2})
$y=ax-bxˆ2$ := NP : Λx.ax− bx2.

The first lexical entry is for the usages such as
“Hence y = ax − bx2,” where the expression de-
notes a proposition and behaves as a sentence. The
second entry is for the usage as a noun phrase as
in the example, which stands for a function.

We add such dynamically generated lexical en-
tries to the lexicon and then analyze the sentences
with a CCG parser. From the resulting CCG
derivation trees, we will obtain a DRS for each
sentence. For the above example, we will have the
following DRSs (the third one is in the extended
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language we’ll introduce in the next section):

D1 = ({}, {a > 0, b ≤ 0, 0 < p, p < 1})
D2 = ({}, {P = (p, p2), on(P,Λx.ax− bx2)})
D3 = Find(b′)

[
cc; ∃−1a;∃−1p; b = b′

]
A discourse structure analyzer receives the

DRSs and determines the logical relations among
them while selecting an antecedent for each
anaphoric expression. The net result of this stage
is a large DRS that represents the whole problem.
For the above example, we have their sequencing
as the result: D1;D2;D3. The sequencing opera-
tor (;) basically means conjunction (merge) of the
DRSs, but it is also used to connect the meanings
of a declarative sentence and an imperative sen-
tence. The large DRS is then translated by a pro-
cess defined in the next section, giving a HOPL
formula enclosed by a directive to the solver:

Find(b′)

[
a > 0 ∧ b ≤ 0 ∧ 0 < p ∧ p < 1 ∧

∃P.

(
P = (p, p2) ∧
on(P, Λx.ax− bx2) ∧ b = b′

) ]
,

where Find(v)[ϕ] is a directive to find the value of
variable v that satisfies the condition ϕ.

From logical form to solver input Many of the
current automatic reasoners operate on first-order
formulas. To utilize them, we hence have to trans-
form the HOPL formula in a directive to an equiv-
alent first-order formula. Such transformation is of
course not possible in general. However, we found
that a greedy rewriting procedure suffices for that
purpose on all of the high-school level math prob-
lems used in the experiment.

In the rewriting procedure, we iteratively ap-
ply several equivalence-preserving transforma-
tions including the beta-reduction of Λ-terms and
rewriting of the predicates and functions using
their definitions. For the above example, by us-
ing some trivial simplifications and the definition
of on(·, ·):

∀x.∀y.∀f. (on((x, y), f) ↔ (y = fx)) ,

we have the following directive holding a first-
order formula:

Find(b′)
[

a > 0 ∧ b ≤ 0 ∧ 0 < p ∧ p < 1 ∧
p2 = ap− bp2 ∧ b = b′

]
.

Solver Algorithms In addition to the generic
first-order theorem provers, we can use specific
algorithms as the solver when the formula is ex-
pressible in certain theories. Among them, many

mathematical and engineering problems can be
naturally translated to formulas consisting of poly-
nomial equations, inequalities, quantifiers (∀, ∃)
and boolean operators (∧,∨,¬,→, etc). Such for-
mulas construct sentences in the first-order theory
of real closed fields (RCF).

In his celebrated work, Tarski (1951) showed
that RCF allows quantifier-elimination (QE): for
any RCF formula ϕ(x1, . . . , xn), there exists an
equivalent quantifier-free formula ψ(x1, . . . , xn)
in the same vocabulary. For example, the for-
mula ∃x.(x2 + ax + b ≤ c) can be reduced to
a quantifier-free formula a2− 4b+ 4c ≥ 0 by QE.

Automated theorem proving is usually very
costly. For example, QE for RCF is doubly ex-
ponential on the number of quantifier alternations
in the input formula. The problems containing
only six variables may be hard for today’s com-
puter with the best algorithm known. However,
several positive results have been attained as the
result of extensive search for practical algorithms
during the last decades (see (Caviness and John-
son, 1998)). Efficient software systems of QE
have been developed on several computer algebra
systems, such as SyNRAC (Iwane et al., 2013).

4 Formal Analysis of Math Problem Text

In this section, we first summarize the most promi-
nent issues we found so far in the linguistic analy-
sis of high-school/college level math problems and
then present a solution.

4.1 Problems
Context-dependent meanings of superlatives
and their alike The meaning of a superla-
tives and semantically similar expressions such as
“maximum” generally depends highly on the con-
text. For example, the interpretation of “John was
the tallest” depends on the group (of people) that
is prominent in the discourse:

There were ten boys. John was the tallest.

This context-dependency can be made more ex-
plicit by paraphrasing it to a comparative (Heim,
2000): “John was taller than anyone else,” where
“anyone else” refers, depending on the context, to
the group against which John was compared.

In math text, however, we can usually determine
the range of the “anyone else” without ambiguity:

Assume a + b = 3. Find the maximum
value of ab.
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Here, the set of values that should be compared
against the maximum value is, with no ambiguity,
all the possible values of ab that is determined by
the preceding context. Once we have a represen-
tation of such a set, it is easy to write the seman-
tic interpretation of the phrase “maximum value
of α.” But, how can we obtain a representation of
such a set without inference?

Discrimination between free/bound variable
We can explicitly specify that a variable should be
interpreted as being free, as in:

Let R be a square with perimeter l.
Write the area of R in terms of l.

This discourse may be translated to

Find(a)

[
∃R.

(
is square(R)∧
perimeter of(R) = l∧
area of(R) = a

)]

but not to

Find(a)

[
∃R.∃l.

(
is square(R)∧
perimeter of(R) = l∧
area of(R) = a

)]

since, assuming the proper definitions of the func-
tions and predicates, the first one is equivalent to
Find(a)[a = l2/16] but the second one is equiv-
alent to Find(a)[a > 0]. How can we specify a
variable be not bound?

Imperatives Math problems usually in-
clude imperatives such as “Find/Write...,” and
“Prove/Show...”. How can we derive correct in-
terpretations of those imperatives, which depend
on the semantic content of preceding declarative
sentences, but are not a part of the declarative
meaning of a discourse?

4.2 Solution by iDRS

Although the above-mentioned phenomena are
quite common in math problem text, we found it
is difficult to derive the meanings of such expres-
sions within the basic compositional DRS frame-
work introduced in §2. All of the examples above
involve the manipulation and modification of the
context in a discourse.

We present an extension of the DRS composi-
tion mechanism that covers expressions like the
above examples. The basic idea is to introduce an-
other layer of semantic representation called iDRS
hereafter, which provides a device to manipulate

terms t ::= v | f(t1, . . . , tk) | Λv.t | Λv.I

iDRS I ::= P (t1, . . . , tk) | ¬I | I1 → I2 |
∃v | I1; I2 | ∃−1v | Find(v)[I] | Show[I] | cc

Figure 5: Syntax of iDRS

the representation of the preceding context during
the semantic composition.3

First we define the syntax of iDRS as in Fig. 5.
In the definition, the variables P, f, t, and v fol-
lows the same convention as in the DRS definition.
In words, an iDRS represents either a DRS condi-
tion (the first row of the definition of I), a quan-
tification ∃v, which corresponds to a DRS having
only one variable, ({v}, {}), a sequencing I1; I2
of two iDRSs, or the new ingredients in the rest of
the definition that will be explained shortly.

The “anti-quantifier” ∃−1v means an operation
that cancels the quantification on v that precedes
∃−1v. Find(v)[I] is a directive that requires to
find the set of the values of variable v which sat-
isfy the condition represented by I . Similarly,
Show[I] is a directive that requires to prove the
statement represented by I . Note that these two di-
rectives are not specific to any solvers; The choice
of the solver depends on the theory (e.g., RCF)
under which the formula in a directive is under-
stood. The last element, cc, can be considered as
a special ‘variable’, through which we can always
retrieve an iDRS representation of the context that
precedes the position marked by the cc.

Using these new ingredients, we can now write,
for instance, the semantic representation of the
phrase “maximum value” as follows:

N/NPof : λx.λm.max(Λy.(cc; y = x),m),

assuming that the two-place predicate max(s,m)
is defined to be true iff m is the maximum ele-
ment in the set s (represented by a Λ-term). A
sentence “the maximum value of x is m” will thus
have max(Λy.(cc; y = x),m) as its semantic rep-
resentation, which means that m is the maximum
value of x that satisfies the condition specified by
the preceding context.

3This approach shares much with a kind of dynamic
semantics such as those by Bekki (2000) and Brasoveanu
(2012), in which a representation of the context can also be
accessed in the semantic language. An important difference
is that in their approaches the context is represented as a set
of assignment functions, while we represent them directly as
an iDRS. This difference is crucial for our purpose since we
eventually need to obtain a (first-order) formula on which an
automatic reasoner operates.
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{{I1; I2}}c := {{I1}}c; {{I2}}c;[[I1]]c

{{Find(v)[I]}}c := Find(v) [[[I]]c]

{{Show[I]}}c := Show [[[I]]c]

{{I1 → I2}}c := {{I2}}c;[[I1]]c

{{I}}c := ϵ

[[cc; I]]c := c; [[I]]c

[[cc]]c := c

[[I1; I2]]c := [[I1]]c; [[I2]]c;[[I1]]c

[[I1 → I2]]c := [[I1]]c → [[I2]]c;[[I1]]c

[[¬I]]c := ¬[[I]]c

[[Find(v)[I]]]c := ∃v; [[I]]c

[[Show[I]]]c := [[I]]c

[[P (t1, . . . )]]c := P ([[t1]]c, . . . )

[[∃v]]c := ∃v
[[∃−1v]]c := ∃−1v

[[v]]c := v

[[f(t1, . . . )]]c := f([[t1]]c, . . . )

[[Λv.t]]c := Λv.[[t]]c

[[Λv.I]]c := Λv.[[I]]c

Figure 6: Transformation from iDRS to directive sequence

Let’s take the following problem as an example:

Let p > 0. R is a rectangle whose
perimeter is p. Find the maximum value
of the area of R as a function of p.

We have its iDRS representation shown below, by
parsing the sentences and composing the resulting
iDRSs into one (in this case, just by sequencing
the three sentences’ iDRSs): 0 < p;

is rectangle(R); perimeter of(R) = p;
∃m;max(Λx. [cc; x = area of(R)] , m);
Find(a)[cc; ∃−1p; a = m]


We then bind all free variables in the iDRS at their
narrowest scopes: ∃p; 0 < p;

∃R; is rectangle(R); perimeter of(R) = p;
∃m;max(Λx. [cc; x = area of(R)] , m);
Find(a)[cc; ∃−1p; a = m]


This amounts to assume each variable appearing in
a problem text is, unless it is explicitly quantified,
interpreted to be existentially quantified as default,
and to be universally quantified if it appears in the
antecedent of an implication.

The iDRS is then processed by the functions
{{·}}c and [[·]]c defined in Fig. 6. In the defini-
tion, ϵ stands for an empty sequence. The func-
tion {{·}}c extracts the imperative meaning from an
iDRS, using [[·]]c as a ‘sub-routine’ that extracts the
declarative meaning from an iDRS. The suffix (c)
of the two functions stands for the preceding con-
text represented as an iDRS. When [[·]]c processes
a sequence I1; I2 or an implication I1 → I2, the
declarative content of I1 (i.e., [[I1]]c) is appended
to the preceding context c, and c; [[I1]]c is passed as
the preceding context when processing I2. When
[[·]]c finds a cc variable, it substitutes the cc with
the current context stored in the suffix.

By applying {{·}}ϵ to the iDRS of a problem, we
can extract the logical form of the problem as a

sequence of directives. For the example problem,
we have a single directive as follows:

Find(a)


∃p; 0 < p;
∃R; is rectangle(R); perimeter of(R) = p;

∃m; max(Λx.

 ∃p; 0 < p;
∃R; is rectangle(R);
perimeter of(R) = p;
∃m; x = area of(R)

 , m);

∃−1p; a = m


Now, by the definition of {{·}}c and [[·]]c, the iDRS I
inside a directive Find(v)[I] or Show[I] includes
only those elements that have a counterpart in the
basic DRS except for the “anti-quantifiers.” We
can hence convert it to a HOPL formula, by first
canceling the quantifications ∃v that precede ∃−1v
(i.e., deleting all occurrences of ∃v that appear be-
fore an occurrence of ∃−1v in the iDRS, and delet-
ing ∃−1v itself), then converting it to a DRS by
replacing the sequencing operator ‘;’ to the merge
operator, and finally translating it to a HOPL for-
mula according to Fig. 2.

5 Remaining Issues in the Semantic
Analysis of Math Problem Text

The mechanism presented in §4 significantly en-
hanced the coverage of the analysis over real prob-
lems. We however found several phenomena that
can not be handled now.

Free/bound variable distinction without a cue
phrase We have presented a mechanism to ‘un-
bind’ the variables specified by a cue phrase, such
as “(find x) in terms of (y).” Some types of vari-
ables however have to be left free even without any
explicit indication, e.g.:

Let p > 0. Find the area of a circle with
radius p, centered at the origin.

Assuming circle(x, y, r) denotes a circle with ra-
dius r and centered at (x, y), we want to derive

Find(a) [p > 0; a = area of(circle(0, 0, p))] ,
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but our default variable binding rule gives

Find(a) [∃p; p > 0; a = area of(circle(0, 0, p))] .

This directive means to find the range of the areas
of the circles with arbitrary radii, which is appar-
ently not a possible reading of the problem. We
found such cases in 3 out of the 32 test problems
used in the experiment shown later.

Scope inversion by a cue phrase The hierar-
chy of the quantifier scopes in math text mostly
follows the linear order of the appearance of the
variables (either overtly quantified or not). This
general rule can however be superseded by the
effect of a cue phrase, as shown in the example
problem and its possible translation in Fig. 7. In
the figure, the formula inside the Show-directive
mostly follows the discourse structure, in that the
predicates from the first and the second sentence
respectively form the antecedent and the succe-
dent of the implication. The quantification on F
is however dislocated from its default scope, i.e.,
the succedent, and moved to the outset of the for-
mula by the effect of the underlined cue phrases.
To handle such cases correctly, we would need a
more involved mechanism for the manipulation of
the context representation through the cc variable.

Idiomatic expressions As in other text genres,
idiomatic multiword expressions are also prob-
lematic as can be seen in the following example:

By choosing x sufficiently large, y =
1/x can be made as close to 0 as desired.

As the example shows, a set phrase involving com-
plex syntactic relations, e.g., “can do X as Y as
desired by choosing Z sufficiently W” and “X ap-
proaches Y as Z approaches W,” can convey id-
iomatic meanings in math.

6 Empirical Results

We tested the feasibility of our approach on a set
of problems selected from Japanese university en-
trance exams. Specifically, we wanted 1) to test
the coverage of the semantic composition mecha-
nism presented in §4 on real problems, and 2) to
verify that there is no significant loss in the capa-
bility of the system due to the additional compu-
tational cost incurred by the separation of the se-
mantic analysis from the mathematical reasoning.

The second point was confirmed by provid-
ing the ideal (100% correct) output from the

(forthcoming) NLP components to a state-of-the-
art automatic reasoner and comparing the result
against the performance of the reasoner on the
input formulated by a human expert. Specifi-
cally, we manually gave the semantic representa-
tions of the problems as iDRSs or CCG deriva-
tion trees, and then automatically rewrote them
into the language of RCF. The resulting formu-
las were fed to a solver to see whether the an-
swers be returned in a realistic amount of time (30
seconds). The solver was implemented on SyN-
RAC (Iwane et al., 2013), which is an RCF-QE
solver implemented as an add-on to Maple, and
the (in)equation solving commands of Maple.

The problems were taken from the entrance ex-
ams of five first-tier universities in Japan (Tokyo
U., Kyoto U., Osaka U., Kyushu U., and Hokkaido
U.) for fiscal year 2001, 2003, 2005, 2007, 2009
and 2011. There were 249 problems in total. From
them, we first eliminated those that included al-
most no natural language text, such like calcula-
tion problems. We then chose, from the remaining
non-straightforward word problems, all the prob-
lems which could be solved with SyNRAC and
Maple when the input was formulated by an expert
of computer algebra. The formulation by an expert
was done, of course, with no manual calculation,
but otherwise it was freely done including the di-
vision of the solving process into several steps of
QE and (in)equation solving.

As the result of that, we got 32 test problems,
each of which contained 3.9 sentences on aver-
age. They include problems on algebra (of real
and complex numbers), 3D and 2D geometry, cal-
culus, and their combinations. For analyzing the
result in more detail, we divided the problems into
78 sub-problems for which the correctness of the
answers can be judged independently.

6.1 From discourse analysis to the solution

For the first experiment, we manually encoded the
problems in the form of iDRSs. Each sentence in
a problem was first encoded as a single iDRS, and
the sentence-level iDRSs were combined (again
manually) into a problem-level iDRS using the
connectives defined in the iDRS syntax. In the
manual encoding, the granularity of the represen-
tation, i.e., the smallest units of the semantic repre-
sentation, was kept at the level of the actual words
in the text whenever possible, intending that the
resulting iDRSs closely match the representation
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Problem: Point P is on the circle x2 + y2 = 4 and lP is the normal line to the circle at P . Show that lP passes through
a fixed point F irrespective of P .

Show

[
∃F.

(
∀P.∀lP .

((
P is on x2 + y2 = 4 and
lP is the normal line to the circle at P

)
→ lP passes through F

))]

Figure 7: Scope inversion by cue phrases

Let O(0, 0), A(2, 6), B(3, 4) be 3 points on the coordi-
nate plane. Draw the perpendicular to line AB through
O, which meets AB at C. Let s, t be real numbers,
and let P be such that OP = s

−→
OA + t

−−→
OB. Answer

the following questions.

(1) Calculate the coordinates of point C, and write
|
−−→
CP |2 in terms of s and t.

(2) Let s be constant, and let t vary in the range t ≥ 0.
Calculate the minimum of |

−−→
CP |2.

Figure 8: Kyushu University 2009 (Science
Course) Problem 1

composed from word-level semantic representa-
tions. In the iDRS encoding of the 32 problems,
the context-fetching mechanism through ‘cc’ vari-
able was needed in 15 problems and the canceling
of quantification was needed in 6 problems. These
mechanisms thus significantly enhanced the cov-
erage of the semantic composition machinery.

After rewriting the iDRSs to RCF formulas4, we
fed them to the solver and got perfect answers for
19 out of the 32 problems. Out of the 78 sub-
problems, 56 sub-problems (72%) were success-
fully solved. 12% of the sub-problems (9 sub-
problems) failed due to the timeout in the QE
solver. Besides the timeout, a major cause of the
failures (7 sub-problems) was the fractional power
(mainly square root) in the formula. Although
we can mechanically erase the fractional powers
to get an RCF formula, it was not implemented
in the solver.5 The remaining 6 sub-problems
needed the free/bound variable distinction with-
out any cue phrase (§5). Although half of them
could be solved by manually specifying the free
variables, we did not count them as solved here.

6.2 From syntactic analysis to the answer
We chose 14 problems from the 19 problems
which were fully solved with the iDRS encod-

4The knowledge-base used to rewrite the HOPL formu-
las to first-order RCF formulas included 230 axioms for 86
predicates and 98 functions.

5In the formulation by the human expert, the use of square
roots were avoided by encoding the conditions differently
(e.g., x ≥ 0 ∧ x2 = 2 instead of

√
x = 2).

ings. We manually analyzed the text following the
CCG-based analyses of basic Japanese construc-
tions given by Bekki (2010). We annotated the
44 sentences in the 14 problems with full CCG
derivation trees and anaphoric links. We selected
the 14 problems so that they cover different types
of grammatical phenomena as much as possible.
The final CCG lexicon contained 240 lexical en-
tries (109 for function words and the rest for con-
tent words). The iDRS representations were then
derived by (automatically) composing the seman-
tic representations of the words according to the
derivation trees and combining the sentence-level
iDRSs to a problem-level iDRS as in the first ex-
periment. Out of the 14 problems, we got fully
correct answers for 13 problems. In the 14 prob-
lems, there were 33 sub-problems and we got cor-
rect answers for 32 of them; On only one sub-
problem, the solver could not return an answer
within the time limit. Fig. 8 shows an English
translation of one of the 13 problems successfully
solved with the CCG derivation trees as the input.

Overall, the results on the real exam problems
were very promising: 72% of the sub-problems
were successfully solved with the formula derived
from a sentence-by-sentence, direct encoding of
the problem. The experiment with manually an-
notated CCG derivation trees further showed that
there was almost no additional cost introduced
by the mechanical derivation of the logical forms
from the word-level semantic representations.

7 Conclusion and Prospects

We have presented a logic-based architecture for
automatic problem solving. The experiments on
the university entrance exams showed positive re-
sults indicating the viability of the modular design.

Future work includes the development of the
processing modules, i.e., the symbolic expression
analyzer, the parser, and the discourse structure
analyzer. Another future work is to incorporate
different types of solvers to the system for cover-
ing a wider range of problems, with the ability to
choose a solver based on the content of a problem.
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