
International Joint Conference on Natural Language Processing, pages 46–54,
Nagoya, Japan, 14-18 October 2013.

Global Model for Hierarchical Multi-Label Text Classification

Yugo Murawaki
Graduate School of Informatics

Kyoto University
murawaki@i.kyoto-u.ac.jp

Abstract

The main challenge in hierarchical multi-
label text classification is how to leverage
hierarchically organized labels. In this pa-
per, we propose to exploit dependencies
among multiple labels to be output, which
has been left unused in previous studies.
To do this, we first formalize this task as a
structured prediction problem and propose
(1) a global model that jointly outputs mul-
tiple labels and (2) a decoding algorithm
for it that finds an exact solution with dy-
namic programming. We then introduce
features that capture inter-label dependen-
cies. Experiments show that these features
improve performance while reducing the
model size.

1 Introduction

Hierarchical organization of a large collection of
data has deep roots in human history (Berlin,
1992). The emergence of electronically-available
text has enabled us to take computational ap-
proaches to real-world hierarchical text classifica-
tion tasks. Such text collections include patents,1

medical taxonomies2 and Web directories such as
Yahoo! and the Open Directory Project.3 In this
paper, we focus onmulti-label classification, in
which a document may be given more than one
label.

Hierarchical multi-label text classification is
a challenging task because it typically involves
thousands of labels and an exponential number
of output candidates. For efficiency, divide-and-
conquer strategies have often been adopted. Typi-
cally, the label hierarchy is mapped to a set of local

1http://www.wipo.int/classifications/
en/

2http://www.nlm.nih.gov/mesh/
3http://www.dmoz.org/

classifiers, which are invoked in a top-down fash-
ion (Montejo-Ŕaez and Urẽna-López, 2006; Wang
et al., 2011; Sasaki and Weissenbacher, 2012).
However, local search is difficult to harness be-
cause a chain of local decisions often leads to what
is usually called error propagation (Bennett and
Nguyen, 2009). To alleviate this problem, previ-
ous work has resorted to what we collectively call
post-training adjustment.

One characteristic of the task that has not been
explored in previous studies is that multiple labels
to be output have dependencies among them. It
is difficult even for human annotators to decide
how many labels they choose. We conjecture that
they consult the label hierarchy when adjusting the
number of output labels. For example, if two la-
bel candidates are positioned proximally in the hi-
erarchy, human annotators may drop one of them
because they provide overlapping information.

In this paper, we propose to exploit inter-label
dependencies. To do this, we first formulate hier-
archical multi-label text classification as a struc-
tured prediction problem. We propose a global
model that jointly predicts a set of labels. Un-
der this framework, we replace local search with
dynamic programming to find an exact solution.
This allows us to extend the model with features
for inter-label dependencies. Instead of locally
training a set of classifiers, we also propose global
training to find globally optimal parameters. Ex-
periments show that these features improve perfor-
mance while reducing the model size.

2 Task Definition

In hierarchical multi-label text classification, our
goal is to assign to a document a set of labels
m ⊂ L that best represents the document. The
pre-defined set of labelsL is organized as a tree
as illustrated in Figure 1.4 In our task, only the

4Some studies work on directed acyclic graphs (DAGs), in
which each node can have more than one parent (Labrou and

46

ROOT

A B

BA BB

ROOT !A ROOT !B

B !BB B !BA A !AB A !AA

AA AB

Figure 1: Example of label hierarchy. Leaf nodes,
filled in gray, represent labels to be assigned to
documents.

leaf nodes (AA, AB, BA andBB in this example)
represent valid labels.

Let leaves(c) be a set of the descendants ofc,
inclusive of c, that are leaf nodes. For exam-
ple, leaves(A) = {AA,AB}. p → c denotes
an edge from parentp to child c. Let path(c)
be a set of edges that connectROOT to c. For
example,path(AB) = {ROOT → A, A →
AB}. Let tree(m) =

∪
l∈m path(l). It corre-

sponds to a subtree that coversm. For exam-
ple, tree({AA, AB}) = {ROOT → A, A →
AA, A → AB}.

We assume that each documentx is transformed
into a feature vector byϕ(x). For example, we can
use a bag-of-words representation ofx.

We consider a supervised setting. The training
dataT = {(xi,mi)}T

i=1 is used to train our mod-
els. Their performance is measured on test data.

3 Base Models

3.1 Flat Model

We begin with the flat model, one of the simplest
models in multi-label text classification. It ignores
the label hierarchy and relies on a set of binary
classifiers, each of which decides whether labell
is to be assigned to documentx.

Various models have been used to implement
binary classifiers, including Naı̈ve Bayes, Logistic
Regression and Support Vector Machines. We use
the Perceptron family of algorithms, and it will be
extended later to handle more complex structures.

The binary classifier for labell is associated
with a weight vectorwl. If wl · ϕ(x) > 0, then
l is assigned tox. Note that at least one label is
assigned tox. If no labels have positive scores, we
choose one label with the highest score.

To optimizewl, we convert the original training

Finin, 1999; LSHTC3, 2012). We leave it for future work.

Algorithm 1 Passive-Aggressive algorithm for training a bi-
nary classifier (PA-I).

Input: training dataTl = {(xi, yi)}Ti=1

Output: weight vectorwl

1: wl ← 0
2: for n = 1..N do
3: shuffleTl

4: for all (x, y) ∈ Tl do
5: l← max{0, 1− y(wl · ϕ(x))}
6: if l > 0 then
7: τ ← min{C, l

∥ϕ(x)∥2 }
8: wl ← wl + τyϕ(x)
9: end if

10: end for
11: end for

dataT into Tl.

Tl =

{
(xi, yi)

∣∣∣∣ yi = +1 if l ∈ mi

yi = −1 otherwise

}T

i=1

Each document is treated as a positive example
if it has labell; otherwise it is a negative exam-
ple. Since local classifiers are independent of each
other, we can trivially parallelize training.

We employ the Passive-Aggressive algorithm
for training (Crammer et al., 2006). Specifically
we use PA-I. The pseudo-code is given in Algo-
rithm 1. We set the aggressiveness parameterC as
1.0.

3.2 Tree Model

Unlike the flat model, the tree model exploits the
label hierarchy. Each local classifier is now asso-
ciated with an edgep → c of the label hierarchy
and has a weight vectorwp→c. If wp→c ·ϕ(x) > 0,
it means thatx would belong to descendant(s) of
c. Edge classifiers are independent of each other
and can be trained in parallel.

We consider two ways of constructing training
dataTp→c.
ALL — All training data are used as before.

Tp→c =

(xi, yi)|
yi = +1if ∃l ∈ mi, l ∈ leaves(c)
yi = −1otherwise

T

i=1

Each document is treated as a positive example if
it belongs to a leaf node ofc, and the rest is nega-
tive examples (Punera and Ghosh, 2008).
SIB — Negative examples are restricted docu-
ments that belong to the leaves ofc’s siblings.

Tp→c =

(x, y)|
y = +1 if ∃l ∈ m, l ∈ leaves(c)
y = −1 if ∃l ∈ m, l ∈ leaves(p)

and l /∈ leaves(c)

47

Algorithm 2 Top-down local search.

Input: documentx
Output: label setm
1: q ← [ROOT], m← {}
2: while q is not emptydo
3: p← pop out the first item ofq, t← {}
4: for all c such thatc is a child ofp do
5: t← t ∪ {(c,wp→c · ϕ(x))}
6: end for
7: u← {(c, s) ∈ t|s > 0}
8: if u is emptythen
9: u ← {(c, s)} such thatc has the highest scores

amongp’s children
10: end if
11: for all (c, s) ∈ u do
12: if c is a leaf nodethen
13: m←m ∪ {c}
14: else
15: appendc to q
16: end if
17: end for
18: end while

This leads to a compact model because low-level
edges, which are overwhelming in number, have
much smaller training data than high-level edges.
This is a preferred choice in previous studies (Liu
et al., 2005; Wang et al., 2011; Sasaki and Weis-
senbacher, 2012).

3.3 Top-down Local Search

In previous studies, the tree model is usually ac-
companied with top-down local search for decod-
ing (Montejo-Ŕaez and Urẽna-López, 2006; Wang
et al., 2011; Sasaki and Weissenbacher, 2012).5

Algorithm 2 is a basic form of top-down local
search. At each node, we select children to which
edge classifiers return positive scores (Lines 4–7).
However, if no children have positive scores, we
select one child with the highest score (Lines 8–
10). We repeat this until we reach leaves. The
decoding of the flat model can be seen as a special
case of this search.

Top-down local search is greedy, hierarchical
pruning. If a higher-level classifier drops a child
node, we no longer consider its descendants as
output candidates. This drastically reduces the
number of local classifications in comparison with
the flat model. At the same time, however, this is a
source of errors. In fact, a chain of local decisions
accumulates errors, which is known as error prop-
agation (Bennett and Nguyen, 2009). If the de-
cision by a higher-level classifier was wrong, the
model has no way of recovering from the error.

5For other methods, Punera and Ghosh (2008) post-
process local classifier outputs by isotonic tree regression.

To alleviate this problem, various modifica-
tions have been proposed, which we collectively
call post-training adjustment. Sasaki and Weis-
senbacher (2012) combined broader candidate
generation with post-hoc pruning. They first gen-
erated a larger number of candidates by setting
a negative threshold (e.g.,−0.2) instead of 0
in Line 7. Then they filtered out unlikely la-
bels by setting another threshold on the sum of
(sigmoid-transformed) local scores of each can-
didate’s path. S-cut (Montejo-Ŕaez and Urẽna-
López, 2006; Wang et al., 2011) adjusts the thresh-
old for each classifier. R-cut selects top-r candi-
dates either globally (Liu et al., 2005; Montejo-
Ráez and Urẽna-López, 2006) or at each parent
node (Wang et al., 2011). Wang et al. (2011)
developed a meta-classifier which classified a
root-to-leaf path using sigmoid-transformed local
scores and some additional features. All these
methods assume that the models themselves are
inherently imperfect and must be supplemented by
additional parameters which are tuned manually or
by using development data.

4 Proposed Method

4.1 Global Model

We see hierarchical multi-label text classification
as a structured prediction problem. We propose a
global model that jointly predictsm, or tree(m).

score(x,m) = w · Φ(x, tree(m))

w can be constructed simply by combining local
edge classifiers.

w = wROOT→A ⊕wROOT→B, · · · ,⊕wB→BB

Its corresponding feature functionΦ(x, tree(m))
returns copies ofϕ(x), each of which corre-
sponds to an edge of the label hierarchy. Thus
score(x,m) can be reformulated as follows.

score(x,m) =
∑

p→c∈tree(m)

wp→c · ϕ(x)

Now we want to findm that maximizes the global
score,argmaxm score(x,m).

With the global model, we can confirm that lo-
cal search is a major source of errors. In prelimi-
nary experiments, we trained local edge classifiers
on ALL data and combined the resultant classi-
fiers to create a global model. For 33% of docu-
ments in the same dataset, local search found sets
of labels whose global scores were lower than the
corresponding correct sets of labels.

48

Algorithm 3 MAXTREE(x, p)

Input: documentx, tree nodep
Output: label setm, scores
1: u← {}
2: for all c in the children ofp do
3: if c is a leafthen
4: u← u ∪ {({c},wp→c · ϕ(x))}
5: else
6: (m′, s′)← MAXTREE(x, c)
7: u← u ∪ {(m′, s′ + wp→c · ϕ(x))}
8: end if
9: end for

10: r← {(m, s) ∈ u|s > 0}
11: if r is emptythen
12: r← {(m, s)} such that the item has the highest score

s amongu
13: end if
14: m←

∪
(m,s)∈r m

15: s←
∑

(m,s)∈r s

16: return (m, s)

4.2 Dynamic Programming

We show that an exact solution for the global
model can be found by dynamic program-
ming.6 The pseudo-code is given in Algorithm 3.
MAXTREE(x, p) recursively finds a subtree that
maximizes the score rooted byp, and thus we in-
voke MAXTREE(x,ROOT). For p, each childc
is associated with (1) a set of labels that maxi-
mizes the score of the subtree rooted byc and (2)
its score (Lines 3–8). The score ofc is the sum of
c’s tree score and the score of the edgep → c. A
leaf’s tree score is zero.

To maximizep’s tree score, we select all chil-
dren that add positive scores to the parent (Line
10). If no children add positive scores, we select
one child that gives the highest score (Lines 11–
13). Again, the flat model can be seen as a special
case of this algorithm. The selected children cor-
respond top’s label set and score (Lines 14–15).

A possible extension to this algorithm is to out-
putN -best label sets. Since our algorithm is much
easier than bottom-up parsing (McDonald et al.,
2005), it would not be so difficult (Collins and
Koo, 2005).

Dynamic programming resolves the search
problem. We no longer require post-training ad-
justment. It allows us to concentrate on improving
the model itself.

6Bennett and Nguyen (2009) proposed a similar method,
but neither global model nor global training was considered.
In their method, the scores of lower-level classifiers were in-
corporated as meta-features of a higher-level classifier. All
these classifiers were trained locally and required burden-
some cross-validation techniques.

Algorithm 4 Modification to incorporate branching features.
Replace Lines 10–15 of Algorithm 3.

10: r ← u sorted bys in descending order
11: r′ ← {}, s′ ← 0, m′ ← {}
12: for k = 1..size ofr do
13: (m, s)← r[k]
14: s′ ← s′ + s, m′ ←m′ ∪m
15: r′ ← r′ ∪ {(m′, s′ + wBF · ϕBF(p, k))}
16: end for
17: (m, s)← item inr′ that has the highests

4.3 Inter-label Dependencies

Now we are ready to exploit inter-label depen-
dencies. We introduce branching features, a sim-
ple but powerful extension to the global model.
They influence how many children a node selects.
The corresponding function isϕBF(p, k), wherep
is a non-leaf node andk is the number of children
to be selected forp. To avoid sparsity, we choose
one ofR + 1 features (1, · · · , R or >R) for some
pre-definedR. To be precise, we fire two features
per non-leaf node: one is node-specific and the
other is shared among non-leaf nodes. As a re-
sult, we append at most(I +1)(R+1) features to
the global weight vector, whereI is the number of
non-leaf nodes.

All we have to do to incorporate branching fea-
tures is to replace Lines 10–15 of Algorithm 3 with
Algorithm 4. For givenk, we first need to selectk
children that maximize the sum of the scores. This
can by done by sorting children by score and se-
lect the firstk children. We then add a score of
branching featureswBF · ϕBF(p, k) (Line 15). Fi-
nally we chose a candidate with the highest score
(Line 17).

4.4 Global Training

Up to this point, the global model is constructed by
combining locally trained classifiers. Of course,
we can directly train the global model. In fact
we cannot incorporate branching features without
global training.

Algorithm 5 shows a Passive-Aggressive algo-
rithm for the structured output (Crammer et al.,
2006). We can find an exact solution under the cur-
rent weight vector by dynamic programming (Line
5).7 The costρ reflects the degree to which the
model’s prediction was wrong. It is based on the

7If we want for some reason to stick to local search, we
need to address the problem of “non-violation.” With inex-
act search, the model prediction̂m may have a lower score
than correctm, making the update invalid. Several methods
have been proposed to solve this problem (Collins and Roark,
2004; Huang et al., 2012).

49

Algorithm 5 Passive-Aggressive algorithm for global train-
ing (PA-I, prediction-based updates).

Input: training dataT = {(xi,mi)}Ti=1

Output: weight vectorw
1: w← 0
2: for n = 1..N do
3: shuffleT
4: for all (x,m) ∈ T do
5: predictm̂← argmaxm score(x,m)
6: ρ← 1− 2|m ∩ m̂|/(|m|+ |m̂|)
7: if ρ > 0 then
8: l← score(x, m̂)− score(x,m) +

√
ρ

9: τ ← min{C, l
∥Φ(x,tree(m))−Φ(x,tree(m̂))∥2 }

10: w← w+τ(Φ(x, tree(m))−Φ(x, tree(m̂)))
11: end if
12: end for
13: end for

example-based F measure, which will be reviewed
in Section 5.3.

Note that what are called “global” in some pre-
vious studies are in factpath-based methods (Qiu
et al., 2009; Qiu et al., 2011; Wang et al., 2011;
Sasaki and Weissenbacher, 2012). In contrast, we
presenttree-wideoptimization.

4.5 Parallelization of Global Training

One problem with global training is speed. We can
no longer train local classifiers in parallel because
global training makes the model monolithic. Even
worse, label set prediction is orders of magnitude
slower than a binary classification. For these rea-
sons, global training is extremely slow.

We resort to iterative parameter mixing (Mc-
Donald et al., 2010). The basic idea is to split
training data into small “shards” instead of sub-
dividing the model. Algorithm 6 gives a pseudo-
code, whereS is the number of shards. We per-
form training on each shard in parallel. At the end
of each iteration, we average the models and use
the resultant model as the initial value for the next
iteration.

Iterative parameter mixing was originally pro-
posed for Perceptron training. However, as Mc-
Donald et al. (2010) noted, it is possible to pro-
vide theoretical guarantees for distributed online
Passive-Aggressive learning.

5 Experiments

5.1 Dataset

We used JSTPlus, a bibliographic database on sci-
ence, technology and medicine built by Japan Sci-
ence and Technology Agency (JST).8 Each docu-

8http://www.jst.go.jp/EN/menu3/01.html

Algorithm 6 Iterative parameter mixing for global training.

Input: training dataT = {(xi,mi)}Ti=1

Output: weight vectorw
1: splitT into S1, · · · SS

2: w← 0
3: for n = 1..N do
4: for s = 1..S do
5: ws ← asynchronously call Algorithm 5 with some

modifications:T is replaced withSs, w is initial-
ized withw instead of0, andN is set as 1.

6: end for
7: join
8: w← 1

S

∑S
s=1 ws

9: end for

ment consisted of a title, an abstract, a list of au-
thors, a journal name, a set of categories and many
other fields. For experiments, we selected a set of
documents that (1) were dated 2010 and (2) con-
tained both Japanese title and abstract. As a result,
we obtained 455,311 documents, which were split
into 409,892 documents for training and 45,419
documents for evaluation.

The number of labels was 3,209, which amounts
to 4,030 edges. All the leave nodes are located at
the fifth level (the root not counted). Some edges
skip intermediate levels (e.g., children of a second-
level node are located at the fourth level). On aver-
age 1.85 categories were assigned to a document,
with a variance of 0.85. The maximum number of
categories per document was 9.

For the feature representation of a document
ϕ(x), we employed two types of features.

1. Journal name (binary). One feature was fired
per document.

2. Content words in the title and abstract
(frequency-valued). Frequencies of the
words in the title were multiplied by two.

To extract content words, we first applied the mor-
phological analyzer JUMAN9 to each sentence to
segment it into a word sequence. From each word
sequence, we selected content words using the
dependency parser KNP,10 which tagged content
words at a pre-processing step. Each document
contained 380 characters on average, which cor-
responded to 120 content words according to JU-
MAN and KNP.

9http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?JUMAN

10http://nlp.ist.i.kyoto-u.ac.jp/EN/
index.php?KNP

50

5.2 Models

In addition to the flat model (FLAT), the tree
model with various configurations was compared.
We performed local training of edge classifiers
on ALL data andSIB data as explained in Sec-
tion 3.2. We applied top-down local search (LS)
and dynamic programming (DP) for decoding.
We also performed global training (GT) with and
without branching features (BF).

We performed 10 iterations for training local
classifiers. For iterative parameter mixing de-
scribed in Section 4.5, we evenly split the train-
ing data into 10 shards and ran 10 iterations. For
branching features introduced in Section 4.3, we
setR = 3.

5.3 Evaluation Measures

Various evaluation measures have been proposed
to handle multiple labels. The first group of eval-
uation measures we adopted is document-oriented
measures often referred to asexample-basedmea-
sures (Godbole and Sarawagi, 2004; Tsoumakas
et al., 2010). The example-based precision (EBP),
recall (EBR) and F measure (EBF) are defined as
follows.

EBP =
1

T

T∑
i=1

|mi ∩ m̂i|
|m̂i|

EBR =
1

T

T∑
i=1

|mi ∩ m̂i|
|mi|

EBF =
1

T

T∑
i=1

2|mi ∩ m̂i|
|m̂i|+ |mi|

whereT is the number of documents in the test
data,mi is a set of correct labels of thei-th doc-
ument andm̂i is a set of labels predicted by the
model.

Another group of measures are called label-
based (LB) and are based on the precision, re-
call and F measure of each label (Tsoumakas et
al., 2010). Multiple label scores are combined
by performing macro-averaging (Ma) or micro-
averaging (Mi), resulting in six measures.

Lastly we used hierarchical evaluation mea-
sures to give some scores to “partially correct”
labels (Kiritchenko, 2005). If we assume a tree
instead of a more general directed acyclic graph,
we can formulate the (micro-average) hierarchical

precision (hP) and hierarchical recall (hR) as fol-
lows.

hP =

∑T
i=1 |tree(mi) ∩ tree(m̂i)|∑T

i=1 |tree(m̂i)|

hR =

∑T
i=1 |tree(mi) ∩ tree(m̂i)|∑T

i=1 |tree(mi)|
The hierarchical F measure (hF) is the harmonic
mean of hP and hR.

5.4 Results

Table 1 shows the performance comparison of var-
ious models. DP-GT-BF performed best in 5 mea-
sures. Compared with FLAT, DP-GT-BF drasti-
cally improved LBMiP and hP. Branching features
consistently improved F measures. The tree model
with local search was generally outperformed by
the flat model. Compared with FLAT, DP-ALL
and DP-GT, DP-GT-BF yielded statistically sig-
nificant improvements withp < 0.01.

DP-ALL outperformed LS-ALL for all but one
measures. DP-SIB performed extremely poorly
while DP-ALL was competitive with DP-GT-BF.
This is in sharp contrast to the pair of LS-ALL
and LS-SIB, which performed similarly. Dynamic
programming forced DP-SIB’s local classifiers to
classify what were completely new to them be-
cause they had been trained only on small portions
of data. The result was highly unpredictable.

As expected, dynamic programming was much
slower than local search. In fact DP-GT-BF was
more than 60 times slower than local search.
Somewhat surprisingly, it took only 18% more
time than FLAT. This may be explained by the
fact that DP-GT-BF was 16% smaller in size than
FLAT.

Although DP-ALL was competitive with DP-
GT and DP-GT-BF, it is notable that global train-
ing yielded much smaller models. Branching fea-
tures brought further model size reduction along
with almost consistent performance improvement.
This result seems to support our hypothesis con-
cerning the decision-making process of the human
annotators. They do not select each label indepen-
dently but consider the relative importance among
competing labels.

5.5 Discussion

Table 2 shows the performance of several models
on the training data. It is interesting that FLAT and
DP-ALL scored much higher on the training data

51

model iterations time (min) size EBP EBR EBF
FLAT 10 266 73M .4520 .4111 .3956
LS-ALL 10 5 115M .3927 .4064 .3713
LS-SIB 10 5 39M .4010 .4396 .3881
DP-ALL 10 329 115M .4790 .4336 .4247
DP-SIB 10 298 39M .0026 .6804 .0481
DP-GT 10 310 68M .5177 .4096 .4317
DP-GT-BF 10 315 62M .5172 .4121 .4347

model LBMaP LBMaR LBMaF LBMiP LBMiR LBMiF hP hR hF
FLAT .4260 .2549 .2578 .4155 .3727 .3930 .5343 .4746 .5027
LS-ALL .3288 .2764 .2415 .3622 .3716 .3668 .4988 .5060 .5024
LS-SIB .3291 .2989 .2515 .3415 .4066 .3712 .4750 .5359 .5036
DP-ALL .4576 .2760 .2799 .4542 .3933 .4216 .6020 .5163 .5559
DP-SIB .0267 .5214 .0406 .0184 .6649 .0358 .0031 .8104 .0600
DP-GT .4301 .2708 .2659 .5085 .3655 .4253 .6458 .4843 .5535
DP-GT-BF .4519 .2645 .2709 .5132 .3701 .4300 .6493 .4898 .5584

Table 1: Performance comparison of various models. Time is the one required to classify test data.
Loading time was not counted. Size is defined as the number of elements in the weight vector whose
absolute values are greater than10−7.

model EBF LBMiF hF
FLAT .9227 .9204 .9337
DP-ALL .8977 .8951 .9114
DP-SIB .0731 .0540 .0743
DP-GT-BF .7126 .6942 .7508

Table 2: Performance on the training data.

than DP-GT-BF although they were outperformed
on the test data. It seems safe to conclude that
local training caused overfitting.

We further investigated the models by decom-
posing them into edges. Figure 2 compares three
models. The first three figures (a–c) report the
number of non-trivial elements in each weight
vector. Edges are grouped by the level of child
nodes. Although DP-GT-BR was much smaller in
total size than DP-ALL, the per-edge size distri-
butions looked alike. The higher the level was, the
larger number of non-trivial features each model
required. Compared with DP-SIB, DP-GT-BR
had compact local classifiers for the highest-level
edges but the rest was generally larger. Intuitively,
knowing its siblings is not enough for each local
classifier, but it does not need to know all possible
rivals.

The last three figures (d–f) report the averaged
absolute scores of each edge that were calculated
from the model output for the test data. By doing

"-" matrix

R 1st 2nd 3rd 4th

level of parent nodes

1

2

3

>3

#
 o

f
ch

il
d

re
n

-0.2

-0.15

-0.1

-0.05

Figure 3: Heat map of the weight vector for
branching features. R is the root level.

this, we would like to measure how edges of var-
ious levels affect the model output. Higher-level
edges tended to have larger impact. However, we
can see that in DP-GT-BR, their impact was rel-
atively small. In other words, lower-level edges
played more important roles in DP-GT-BR than in
other models.

Figure 3 shows a heat map representation of the
weight vector for DP-GT-BR’s branching features.
The value of each item is the weight value av-
eraged over parent nodes. All averaged weight
values were negative. The penalty monotoni-
cally increased with the number of children. It is
not easy to compare different levels of nodes be-
cause weight values depended on other parts of the
weight vector. However, the fact that lower-level
nodes marked sharper contrasts between small and
large number of children appears to support our

52

0

100K

200K

300K

1st 2nd 3rd 4th 5th

si
ze

 p
er

 e
d
g

e

level of child nodes

(a) DP-ALL.

0

100K

200K

300K

1st 2nd 3rd 4th 5th

si
ze

 p
er

 e
d
g
e

level of child nodes

(b) DP-SIB.

0

100K

200K

300K

1st 2nd 3rd 4th 5th

si
ze

 p
er

 e
d
g
e

level of child nodes

(c) DP-GT-BR.

 0

 1

 2

 3

 4

1st 2nd 3rd 4th 5th

ab
s.

 s
co

re
 p

er
 e

d
g
e

level of child nodes

(d) DP-ALL.

 0

 1

 2

 3

 4

1st 2nd 3rd 4th 5th

ab
s.

 s
co

re
 p

er
 e

d
g
e

level of child nodes

(e) DP-SIB.

 0

 0.05

 0.1

 0.15

 0.2

1st 2nd 3rd 4th 5th

ab
s.

 s
co

re
 p

er
 e

d
g
e

level of child nodes

(f) DP-GT-BR.

Figure 2: Comparison of model sizes and scores per edge. The definition of size is the same as that in
Table 1.

hypothesis about the competitive nature of label
candidates positioned proximally in the label hier-
archy.

6 Conclusion

In this paper, we treated hierarchical multi-label
text classification as a structured prediction prob-
lem. Under this framework, we proposed (1)
dynamic programming that finds an exact solu-
tion, (2) global training and (3) branching features
that capture inter-label dependencies. Branching
features improve performance while reducing the
model size. This result suggests that the selection
of multiple labels by human annotators greatly de-
pends on the relative importance among compet-
ing labels.

Exploring features that capture other types of
inter-label dependencies is a good research direc-
tion. For example, “Others” labels probably be-
have atypically in relation to their siblings. While
we focus on the setting where only the leaf nodes
represent valid labels, internal nodes are some-
times used as valid labels. Such internal nodes of-
ten block the selection of their descendants. Also,
we would like to work on directed acyclic graphs
and to improve scalability in the future.

Acknowledgments
We thank the Department of Databases for Infor-
mation and Knowledge Infrastructure, Japan Sci-
ence and Technology Agency for providing JST-
Plus and helping us understand the database. This
work was partly supported by JST CREST.

References

Paul N. Bennett and Nam Nguyen. 2009. Refined ex-
perts: improving classification in large taxonomies.
In Proceedings of the 32nd international ACM SI-
GIR conference on Research and development in in-
formation retrieval, SIGIR ’09, pages 11–18.

Brent Berlin. 1992. Ethnobiological classification:
principles of categorization of plants and animals in
traditional societies. Princeton University Press.

Michael Collins and Terry Koo. 2005. Discriminative
reranking for natural language parsing.Computa-
tional Linguistics, 31(1):25–70.

Michael Collins and Brian Roark. 2004. Incremen-
tal parsing with the Perceptron algorithm. InPro-
ceedings of the 42nd Meeting of the Association for
Computational Linguistics (ACL’04), Main Volume,
pages 111–118.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai
Shalev-Shwartz, and Yoram Singer. 2006. Online

53

passive-aggressive algorithms.Journal of Machine
Learning Research, 7:551–585.

Shantanu Godbole and Sunita Sarawagi. 2004. Dis-
criminative methods for multi-labeled classifica-
tion. In Honghua Dai, Ramakrishnan Srikant,
and Chengqi Zhang, editors,Advances in Knowl-
edge Discovery and Data Mining, volume 3056 of
Lecture Notes in Computer Science, pages 22–30.
Springer Berlin Heidelberg.

Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured Perceptron with inexact search. InPro-
ceedings of the 2012 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
142–151.

Svetlana Kiritchenko. 2005.Hierarchical Text Cat-
egorization and Its Application to Bioinformatics.
Ph.D. thesis, University of Ottawa.

Yannis Labrou and Tim Finin. 1999. Yahoo! as an
ontology: using Yahoo! categories to describe doc-
uments. InProceedings of the eighth international
conference on Information and knowledge manage-
ment, CIKM ’99, pages 180–187.

Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng,
Zheng Chen, and Wei-Ying Ma. 2005. Support
vector machines classification with a very large-
scale taxonomy.SIGKDD Explorations Newsletter,
7(1):36–43, June.

LSHTC3. 2012.ECML/PKDD-2012 Discovery Chal-
lenge Workshop on Large-Scale Hierarchical Text
Classification.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. InProceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), pages 91–98.

Ryan McDonald, Keith Hall, and Gideon Mann. 2010.
Distributed training strategies for the structured Per-
ceptron. InHuman Language Technologies: The
2010 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 456–464.

Arturo Montejo-Ŕaez and Luis Alfonso Urẽna-López.
2006. Selection strategies for multi-label text cate-
gorization. InAdvances in Natural Language Pro-
cessing, pages 585–592. Springer.

Kunal Punera and Joydeep Ghosh. 2008. Enhanced
hierarchical classification via isotonic smoothing. In
Proceedings of the 17th international conference on
World Wide Web, WWW ’08, pages 151–160.

Xipeng Qiu, Wenjun Gao, and Xuanjing Huang. 2009.
Hierarchical multi-label text categorization with
global margin maximization. InProc. of the ACL-
IJCNLP Short, pages 165–168.

Xipeng Qiu, Xuanjing Huang, Zhao Liu, and Jinlong
Zhou. 2011. Hierarchical text classification with
latent concepts. InProc. of ACL, pages 598–602.

Yutaka Sasaki and Davy Weissenbacher. 2012.
TTI’S system for the LSHTC3 challenge. In
ECML/PKDD-2012 Discovery Challenge Workshop
on Large-Scale Hierarchical Text Classification.

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis
Vlahavas. 2010. Mining multi-label data. In Oded
Maimon and Lior Rokach, editors,Data Mining and
Knowledge Discovery Handbook, pages 667–685.
Springer.

Xiao-Lin Wang, Hai Zhao, and Bao-Liang Lu. 2011.
Enhance top-down method with meta-classification
for very large-scale hierarchical classification. In
Proceedings of 5th International Joint Conference
on Natural Language Processing, pages 1089–1097.

54

