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Abstract

We describe a new semantic relatedness mea-
sure combining the Wikipedia-based Explicit
Semantic Analysis measure, the WordNet path
measure and the mixed collocation index. Our
measure achieves the currently highest results
on the WS-353 test: a Spearman ρ coeffi-
cient of 0.79 (vs. 0.75 in (Gabrilovich and
Markovitch, 2007)) when applying the mea-
sure directly, and a value of 0.87 (vs. 0.78 in
(Agirre et al., 2009)) when using the predic-
tion of a polynomial SVM classifier trained on
our measure.

In the appendix we discuss the adaptation of
ESA to 2011 Wikipedia data, as well as vari-
ous unsuccessful attempts to enhance ESA by
filtering at word, sentence, and section level.

1 Introduction

1.1 Semantic Relatedness and Corpora

Semantic relatedness describes the degree to which
concepts are associated via any kind of semantic rela-
tionship (Scriver, 2006). Its evaluation is a fundamen-
tal NLP problem, with applications in word-sense dis-
ambiguation, text classification, information retrieval,
automatic summarization and many other fields. In re-
cent decades, a great variety of relatedness measures
have been defined, based on corpora such as Wikipedia,
Wiktionary, WordNet, etc.

Wikipedia is one of the most successful collaborative
projects of all time. By a constantly growing number
of additions, corrections and verifications, its contents
grows in both quantity and quality, and is considered by
many linguists as the corpus they had always dreamed
of (Medelyan et al., 2008).

By measuring the normalized tfidf values of words
in a page, we can consider the page to be a weighted
vector in the space of words. Inverting the matrix of
these vectors we obtain weighted vectors of words in
the space of pages. As every page deals with a single
topic, we consider these vectors as being concept vec-
tors. The ESA (Explicit Semantic Analysis) measure
between two words is obtained by taking the cosine
of their concept vectors (Gabrilovich and Markovitch,
2007).

Unlike Wikipedia, WordNet (Miller, 1995), a semi-
formal lexical ontology (Huang et al., 2010), has a
fine and carefully-crafted ontological structure: word
senses are represented by sets of synonyms (“synsets”),
and there is a graph structure on synsets based on hy-
pernymic relations. Several WordNet-based semantic
relatedness measures have been defined, based on dis-
tances in the hypernymic graph, and often combined
with word distribution in sense-tagged corpora.

1.2 Evaluation of Results, WS-353 Test

(Finkelstein et al., 2001) introduce WS-353, a semantic
relatedness test set consisting of 353 word pairs1 and a
gold standard defined as the mean value of evaluations
by up to 17 human judges. Although this test suite con-
tains some quite controversial word pairs,2 it has been
widely used in literature and has become the de facto
standard for semantic relatedness measure evaluation.

Technically, the final result of the test is the Spear-
man ρ rank correlation coefficient (Spearman, 1904)
between the relatedness ranking of pairs by human
judges and that by the tested algorithm. So, in fact,
it is not the value obtained for each pair that counts, but
only the ranks.

1.3 Our Approach

By closely examining word pairs that failed to be
ranked correctly by ESA, we came to the conclusion
that the WS-353 word pairs belong (non-exclusively) to
four classes, corresponding to different kinds of seman-
tic relatedness and requiring different kinds of knowl-
edge:

1. encyclopedic: see Section 2;

2. ontological: see Section 3;

3. collocational: see Section 4;

4. pragmatic: see Section 6.

In this paper, we define a new semantic relatedness
measure by combining knowledge related to these four
classes.

1Actually 352 pairs, since “money / cash” appears twice.
2For example: “Arafat / terror” (0.765), “Arafat / peace”

(0.673), “Jerusalem / Israel” (0.846), “Jerusalem / Pales-
tinian” (0.765), etc.
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2 Encyclopedic Knowledge

This class contains pairs that are best sorted by ESA.
We note that (Agirre et al., 2009) qualify ESA as a dis-
tributional approach. Indeed, technically two words are
semantically related in ESA if they appear together fre-
quently in Wikipedia pages. But since pages are de-
scriptions of topics (= concepts), words are ESA-close
when they appear frequently in common concept de-
scriptions, and therefore in common semantic domains.
Hence, ESA is semantically richer than a merely distri-
butional approach.

ESA is the first and most important component
of our combined relatedness measure. By adapting
our implementation of the ESA algorithm to 2011
Wikipedia data (see App. A), we obtain a Spearman
ρ = 0.7394. In the following sections we describe the
components added to ESA in order to optimize its per-
formance even further.

3 Ontological knowledge

To get a better insight into the shortcomings of ESA on
WS-353, we calculate Spearman ρ for the WS-353 set
minus a single pair, for every pair. In Fig. 1 one can
see the top 40 “most problematic” pairs: those whose
removal increases ρ the most. By taking a closer look
at them we can get hints for further improvements of
the measure.
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Figure 1: Spearman ρ when removing a single pair from
WS-353.

First of all, we see pairs having a relation that is on-
tological in nature: “tiger / feline” (hyponym), “mile /
kilometer” (coordinate terms, or “classmates” (Kuroda
et al., 2010b)), “dollar / buck” (synonyms), etc. These
relations are strong enough to justify the presence of
the pairs in the test set, but do not necessarily imply
high frequency of terms in common Wikipedia pages.

A good place for information of an ontological na-
ture is WordNet. There have been several WordNet-
based measures defined in the literature. When apply-
ing them3 to the WS-353 test set we get the following ρ:

3In fact, these measures apply to synsets rather than to
words. To avoid going through a sense-disambiguation pro-
cess, we take the optimistic approach of using for each pair

WNP (Path-based) 0.2873
WUP (Wu and Palmer, 1994) 0.1356
RES (Resnik, 1995) 0.2112
JCN (Jiang and Conrath, 1997) 0.3172
LCH (Leacock and Chodorow, 1998) 0.1437
HSO (Hirst and St-Onge, 1998) 0.1598
LIN (Lin, 1998) 0.1987
LESK (Banerjee and Pedersen, 2002) 0.1304

Despite the fact that JCN (which combines
WordNet-graph calculations and word frequencies
from a corpus4) rates best when used alone, the mea-
sure which we are going to use is WNP, which gives
the best results when combined with ESA (see below).
This measure is based exclusively on the shortest-path
distance in WordNet and hence is purely ontological.
For example, the WNP-measure of “wood / forest” is 1
(synonyms), “bird / cock” is 0.5 (hypernym), “century /
year” is 0.33, “bishop / rabbi” is 0.25, etc.

We found that this measure provides bad results in
its lower range (since the path length between distant
nodes strongly depends on the density of WordNet for
each knowledge domain). To understand the behavior
of ESA and WNP measures in their low ranges, we
progressively remove pairs from WS-353 in order of
increasing relatedness.
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Figure 2: The effect on Spearman ρ of the progressive
removal of pairs in order of increasing relatedness, for
ESA and WNP measures.

As we can see in Fig. 2, removing pairs in the small-
value range of the measure strongly decreases ESA
(which, after half of the pairs are removed, becomes
chaotic), while the same operation steadily increases
WNP. In other words, small-value pairs are crucial pos-
itive contributors for ESA, but rather negative contrib-
utors for WNP. For this reason, we use only the up-
per range of WNP, and ignore its results for low-valued
pairs. To achieve a smooth “fade-out” of WNP’s lower
range we multiply it by a sigmoid logistic function. We

of words, the pair of senses which are the most closely re-
lated. Hence, if µ̂ is a synset-measure, s, s′ are synsets
and w,w′ words, we define the induced word-measure µ as
µ(w,w′) := maxs3w,s′3w′ µ̂(s, s′).

4For the distributional part of Jiang & Conrath, Resnik
and Lin, we use the Wikipedia 2011 corpus.
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hence define a new measure

µEW(w1, w2) = µESA(w1, w2)
· (1 + λσm,s(µWNP(w1, w2))),

(1)

where λ weights WNP with respect to ESA, m is the
sigmoid inflection point (= a soft boundary of WNP’s
lower range), s is the steepness of the sigmoid (small s
makes the central part of the sigmoid closer to a vertical
line), and “EW” stands for “ESA and WordNet.”

Calculations give the following optimal result:

λ = 4.665,m = 0.26, s = 0.05 ρ = 0.7779

which surpasses the (Gabrilovich and Markovitch,
2007) ESA result of 0.75 by 5.2%. The parameter val-
ues have been obtained by gradient descent. In the next
section we will further enhance this result by taking
collocations into account.

4 Collocational Knowledge

Returning to Fig. 1, we see that many “problematic”
pairs are in fact collocations: “baseball / season,”
“money / laundering”, “hundred / percent,” etc. We
claim that the collocational nature of these word pairs
has motivated their inclusion in WS-353. To show
this, we calculated the collocation index (defined as

2#(w1w2)
#(w1)+#(w2)

) of all WS-353 pairs5.
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Figure 3: Top twenty direct (in gray) and inverse (in red)
collocation indices for WS-353.

The primary goal of WS-353 is to evaluate relat-
edness measures, and these are symmetric by defini-
tion (we always have µ(w1, w2) = µ(w2, w1)). If
the word pairs were chosen on strictly semantic crite-
ria, and if collocations were purely accidental, then we
would have a roughly equal number of pairs (w1, w2)
where w1w2 is a collocation and pairs where w2w1 is a
collocation.

Fig. 3 shows that this is not the case: for the word
pairs concerned, WS-353 developers have almost sys-
tematically chosen to write the words in the order in
which they form a collocation.

5We obtained WS-353 pair and word frequencies from
the 53.45 billion-word GoogleBooks corpus (Michel et al.,
2011). We considered only books published after 1970.

But neither ESA nor WNP recognize collocations:
the former because of the bag-of-words principle un-
derlying tfidf, and the latter only in the case where the
collocational pair is a concept on its own. Indeed, most
of the collocations in Fig. 3 are WordNet concepts (the
exceptions being: “gender / equality,” “food / prepa-
ration,” “secret / weapon,” “energy / crisis,” etc.) but
knowledge of that fact is not sufficient for ranking,
since there is no mention in WordNet of the strength
of the collocational relation.

We use the collocation index to further enhance our
EW relatedness measure.
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Figure 4: Collocation index vs. Spearman stability of
EW. The red line is LOWESS polynomial regression
(Cleveland, 1981).

Note that this index is not a measure (for example,
the collocation index of “tiger / tiger” is not 1) and can-
not be used directly as such.

How do collocational pairs contribute to the WS-353
Spearman ρ value? In Fig. 4 one can compare collo-
cation index and Spearman stability (that is, the effect
on ρ of the removal of a single word pair). Pairs located
on the green vertical line are those whose removal does
not affect Spearman ρ. Those on the right increase ρ
when removed. We observe that most collocations are
on the right; in other words, they are negative contribu-
tors. The most problematic ones are collocations which
are not individual WordNet concepts (typical examples:
“school / center,” “hotel / reservation,” “canyon / land-
scape,” etc.).

On the other hand, on the left side we find collo-
cations that contribute positively to ρ: in many cases
these have a strong ontological relation (“tiger / tiger,”
“street / avenue,” “football / soccer,” etc.) which
is probably the main reason for their positive contri-
bution. The LOWESS polynomial regression line is
quasi-horizontal, so we cannot infer whether or not col-
location index is correlated with ρ.

An auxiliary question is whether collocation index
values (at least in the high range) are correlated with the
actual values of the WS-353 gold standard. Fig. 5 com-
pares these two quantities. As we can see, LOWESS
polynomial regression is almost steadily monotonically
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increasing, which shows that, although not a measure
per se, (high-range) collocation index could be useful
for relatedness measurement.
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We combine the previously defined EW measure
with collocation index, by defining measure EWC
(= “ESA + WordNet + collocations”) as follows:

µEWC(w1, w2) = µESA(w1, w2)
· (1 + λσm,s(µWNP(w1, w2)))
· (1 + λ′σm′,s′(Cξ(w1, w2))),

where λ,m, s are as in (1), λ′, m′ and s′ are similar,
and the mixed collocation index Cξ is defined as fol-
lows:

Cξ(w1, w2) =
2#(w1w2)

#(w1) + #(w2)
+ ξ

2#(w2w1)
#(w1) + #(w2)

where #(.) is the frequency in the corpus.
Calculations give the following optimal result:

λ = 5.16, µ = 0.25, λ′ = 48.7,
µ′ = 0.19, s = s′ = 0.05, ξ = 0.55

ρ = 0.7874

which is 1.2% higher than EW and, to the best of our
knowledge, currently the highest result for WS-353 by
a direct measure (not using a support vector machine).
The parameter values have been obtained by gradient
descent.

We can interpret this result as follows: the EWC
measure works best when the lower fourth of WordNet
measure and the lower fifth of collocation index values
are ignored, and when inverse collocations count half
as much as direct ones.

5 Supervised Approach Using an SVM

(Agirre et al., 2009, p. 25) train an SVM on pairs of
WS-353 pairs; this allows them to get an insight on
performance increase obtained by combining various
measures. By combining knowledge from a Web cor-
pus and from WordNet, they obtain a highest value of
Spearman ρ = 0.78. We calculated predictions of (4th
degree polynomial) SVMs based on our EW and EWC

measures, and obtained the following results, using 10-
fold cross-validation:

Measure Result
EW (ESA + WNP) ρ = 0.7996
EWC (ESA + WNP + collocations) ρ = 0.8654

We observe that even without collocations we al-
ready get a better value than (Agirre et al., 2009), and
also that the collocation component increases this value
significantly, hence validating our choice of using col-
locational knowledge to enhance semantic relatedness
measurement.

6 Pragmatic Knowledge

This class contains pairs not captured by the previous
methods. The typical example is “hotel / reservation”:
its ESA value is very low, there is no ontological re-
lation, and the collocation index is quite low as well.
To capture the relatedness of such a pair, we need spe-
cific knowledge domain ontologies, providing relations
such as “A is part of a functional process of system B”
(in this case: “a ‘reservation’ is part of the process of
renting a room in a ‘hotel’ ”). We leave this as an open
task for future development.

7 Conclusion

By combining two pre-existing semantic relatedness
measures and by adding a component based on fre-
quency of collocations, we have obtained a new mea-
sure that surpasses the one given in (Agirre et al., 2009)
by 11% (when comparing results obtained by SVMs).
We conjecture that this measure can further be en-
hanced by using pragmatic knowledge taken, for ex-
ample, from specialized domain ontologies.

Appendices

A Adapting ESA to 2011 Wikipedia

The original (and unreleased) C++ ESA implementa-
tion (Gabrilovich and Markovitch, 2007) is based on
2005 Wikipedia data (2.2 GB) and achieves a Spear-
man ρ = 0.75. A later implementation in Python and
Java (Çallı, 2010), based on the same corpus, achieves
ρ = 0.74. We implemented ESA in Perl and similarly
obtained ρ = 0.7404 when based on 2005 data. The
same algorithms applied to 2011 data (31 GB), pro-
duced a disappointing ρ = 0.7047. Indeed, between
2005 and 2011, Wikipedia has evolved as follows:

2005 2011
#concepts 866,881 4,178,454
#terms/concept 96.1971 97.4243

where by “concepts” we mean Wikipedia pages in the
main namespace, and by “terms,” distinct stemmed
words.

Following advice by Gabrilovich (personal commu-
nication), we increased the generality of concepts by
filtering Wikipedia pages by two criteria: minimum
number of terms, and minimum number of in- and out-
going links. The original values were: 100 terms and
5 links; by requiring a minimum of 200 terms and 14
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links, we have attained the 2005 ρ value (more pre-
cisely: ρ = 0.7394). Fig. 6 displays ρ as a function
of our two criteria.
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Figure 6: Adapting ESA to 2011 Wikipedia data by increas-
ing the minimum number of distinct (stemmed) words and of
in- and outgoing links per page.

In the following table, the column 2011 displays the
results with original ESA setting, 2011* the ones with
modified settings, df is mean document frequency of
terms and term density is df

#concepts :

2005 2011 2011*
#concepts 132,689 311,209 155,767
#terms/concept 165 279 414
#terms 187,971 503,368 408,299
df 116.3307 173.7199 159.0395
term density 0.00088 0.00056 0.00102

As we see, terms are less densely distributed in the
2011 corpus, since the increase of their mean document
frequency, though important, is overruled by an even
more important increase in the number of concepts. By
more efficiently pruning concepts and leaving df rela-
tively stable, we manage to increase term density anew
and hence, enhance performance.

B Experiments

(Giraud-Carrier and Dunham, 2010) emphasize the im-
portance of sharing negative results. Responding to
their call, here are some of our failed attempts at in-
creasing ESA performance on the 2005 corpus. Note
that the standard ESA value we challenge is ρ =
0.7404.

B.1 At the Word Level: Lemmatization and POS
Filtering

ESA removes stop words and words with fewer than
three letters before applying the Porter stemmer thrice.
Instead of stemming, we lemmatized and then applied
two strategies: keeping only nouns and proper names
(Penn tags NN, NNP, and plurals), or also verbs and
adjectives (tags starting with NN, NNP, VB, and JJ).
Here are the results obtained:

Penn tags NN, NNS, NNP, NNPS ρ = 0.7194
Penn tags NN*, NNP*, VB*, JJ* ρ = 0.7178

The performance loss is due to lemmatization, proving
once again that while Porter stemming may seem a bru-
tal technique, it works better than anything else. Note
that, surprisingly, when adding verbs and adjectives we
get a (slightly) smaller ρ.

B.2 Filtering at the Sentence Level

We attempted to triple the weight of sentences con-
taining either the page title, or one of the (non stop-
)words of the page title, or one of the anchors point-
ing to the page. This operation affected 1,399,165 sen-
tences. Here are the results obtained:

Tripling weight of selected sentences ρ = 0.7293

B.3 Filtering at the Section Level

The idea is to avoid “historical sections” in pages de-
scribing current notions or objects. Historical sections
are detected by a higher frequency of past-tense verbs,
unless of course the whole page is of a historical na-
ture, and hence using primarily the past tense. Let
π = # past-tense verbs

# verbs for each Wikipedia page. We pruned
sections of π ≥ 0.8 when the page had π < 0.8.
We also pruned sections named “History,” “External
links,” “References,” “See also,” “Further reading,” and
“Bibliography.” This affected 111,028 sections out of
470,948. Here are the results obtained:

Pruning of “historical” and other sections ρ = 0.6608

C Implementation Details

Implementation of ESA was done from scratch in
Lex and Perl. To access WordNet v3, we used
the Perl module WordNet::Similarity (Peder-
sen et al., 2004). SVM calculations as well as 2D
figures were done in R, and the 3D figure in Mat-
lab. For lemmatizing and POS-tagging, we used Tree-
Tagger (Schmid, 1994). Our code is publicly avail-
able at http://omega2.enstb.org/yannis/
similarity.php.
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