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Abstract 

This paper investigates clausal data-driven de-
pendency parsing. We first motivate a clause 
as the minimal parsing unit by correlating in-
ter- and intra-clausal relations with relation 
type, depth, arc length and non-projectivity. 
This insight leads to a two-stage formulation 
of parsing where intra-clausal relations are 
identified in the 1st stage and inter-clausal rela-
tions are identified in the 2nd stage. We com-
pare two ways of implementing this idea, one 
based on hard constraints (similar to the one 
used in constraint-based parsing) and one 
based on soft constraints (using a kind of pars-
er stacking). Our results show that the ap-
proach using hard constraints seems most 
promising and performs significantly better 
than single-stage parsing. Our best result gives 
significant increase in LAS and UAS, respec-
tively, over the previous best result using sin-
gle-stage parsing. 

1 Introduction 

There has been a recent surge in addressing pars-
ing for morphologically rich free word order lan-
guages such as Czech, Turkish, Hindi, etc. These 
languages pose various challenges for the task of 
parsing mainly because the syntactic cues neces-
sary to identify various relations are complex and 
distributed (Tsarfaty et al., 2010; Ambati et al., 
2010; Nivre and McDonald, 2008; Tsarfaty and 
Sima'an, 2008; Seddah et al., 2009; Gadde et al., 
2010; Husain et al., 2009; Eryigit et al., 2008). 
There has also been a lot of interest in building 
ensemble systems (Zeman and Zabokrtsky, 2005; 
Sagae and Lavie, 2006) and parser stacking (Ni-
vre and McDonald, 2008; Martins et al., 2009) to 
improve the overall parsing accuracy by combin-
ing the strengths of multiple parsers. 

In this paper, we formulate clausal parsing as a 
two-stage setup where intra-clausal relations are 

identified in the 1st stage and inter-clausal rela-
tions are identified in the 2nd stage. We attempt 
to find out whether this two-stage parsing ap-
proach that has earlier been successful in con-
straint-based systems for parsing Hindi (Bharati 
et al., 2009) can also benefit data-driven parsing 
approaches (Nivre et al., 2006), and compare two 
ways of implementing this idea, one based on 
hard constraints (similar to the one used in con-
straint-based parsing), and one based on soft 
constraints (using a kind of parser stacking; (Ni-
vre and McDonald, 2008). We show that one of 
the ways in which clausal parsing helps is by 
better learning of features that leads to improved 
label accuracy for Hindi. In particular we show 
that ambiguous case markers (or suffixes) that 
appear with many relations can be disambiguated 
successfully. We also show that the setup reduc-
es many of the traditional MaltParser (Nivre et 
al., 2006) errors (McDonald and Nivre, 2007). 
Our results show that the approach using hard 
constraints seems most promising and performs 
significantly better than single-stage parsing. 

The paper is arranged as follows. In Section 2, 
we introduce the clause as a basic parsing unit. 
Section 3 gives a brief overview of two-stage 
parsing. In Section 4 we discuss data-driven 
parsing for Hindi and present two methods for 
implementing two-stage parsing within this 
framework. Section 5 explains the experimental 
setup, and Section 6 discusses the results. We 
conclude the paper in Section 7. 

2 Clauses as minimal parsing units 

We begin with the observation that certain de-
pendency relations are more likely to occur be-
tween the elements inside a clause and a different 
set of relations are more likely in showing de-
pendencies across clauses. We also note that the 
notion of clause can be correlated with short dis-
tance and long distance dependencies.  
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Figure 1 shows the distribution of dependency 
labels with respect to clause type (intra-clausal 
vs. inter-clausal) in the Hyderabad dependency 
treebank (Begum et al., 2008; Husain 2009). For 
ease of exposition, Figure 1 only shows the la-
bels with considerable coverage, together 
amounting to 93% of all dependency label occur-
rences. We can see clearly that many labels like 
k1 1 , r6, etc. are overwhelmingly intra-clausal 
relation, while others like nmod-relc, ccof, etc. 
have an inter-clausal bias.  

Figure 2 shows that short-distance dependen-
cies are mostly intra-clausal, whereas long-
distance dependencies tend to be inter-clausal. It 
is clear from Figure 1 and 2 that there is a clear 
correlation between labels and relation type on 
one hand and arc length and relation type on the 
other. Further, there is a correlation between in-
ter- vs. intra-clausal relations with respect to 
depth of relations as well. Figure 3 shows that 
low depth dependencies are both inter-clausal (in  
 
                                                 
1 The dependency label k1 can be roughly translated 
to ‘agent’, r6 is a dependency label for genitive rela-
tion, ccof is a relation signifying conjunction and 
nmod-relc is used for relative clause modification. For 
the complete description of the tagset and the depen-
dency scheme see (Begum et al., 2008). 

case of complex sentences involving coordina-
tion, relative clauses, embeddings, etc.) and in-
tra-clausal (simple sentences). It also shows that 
the percentage of inter-clausal relations decrease 
with increase in depth. 

Finally, there is a correlation between clause 
and non-projectivity: 70% of the non-projective 
relations are inter-clausal (Mannem et al., 2009). 

Properties such as relation type, arc length, 
depth, and non-projectivity are known to have 
specific effect on errors in data-driven dependen-
cy parsing (McDonald and Nivre, 2007). There-
fore, it is worth exploring the effect of clause 
(when treated as a minimal unit) on dependency 
parsing accuracy. For all the experiment de-
scribed in this paper, the following definition of 
clause is used: ‘A clause is a group of words con-
taining a single finite verb and its dependents’. 
More precisely, let T be the complete dependen-
cy tree of a sentence, and let G be a clausal sub-
graph of T. Then an arc x → y in G is a valid arc, 
if (a) x is a finite verb; (b) y is not a finite verb; 
(c) there is no z such that y → z, where z is a 
finite verb and y is a conjunct. 
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3 Two-stage parsing  

Two-stage parsing has been successfully used in 
a constraint based system for Hindi (Bharati et 
al., 2009, 2009b). This parser tries to analyze the 
given input sentence, which has already been 
POS tagged and chunked, in 2 stages; it first tries 
to extract intra-clausal dependency relations. In 
the 2nd stage it then tries to handle more complex 
relations such as those involved in constructions 
of coordination and subordination between 
clauses. 
 
(1)  mai    ghar      gayaa   kyomki      mai   
        ’I’   ’home’   ’went’  ’because’   ’I’          

  bimaar   thaa  
   ’sick’   ‘was’ 

     ‘I went home because I was sick’ 
 
The 1st stage output for sentence (1) is shown in 
Figure 4a. In Figure 4a, the parsed matrix clause 
subtree mai ghar gayaa and the subordinate 
clause are attached to _ROOT_. The subordinat-
ing conjunction kyomki is also seen attached to 
the _ROOT_. The dependency tree thus obtained 
in the 1st stage is partial, but linguistically sound. 
By introducing _ROOT_ we are able to attach all 
unprocessed nodes to it. _ROOT_ ensures that 
the output we get after each stage is a tree. Later 
in the 2nd stage the relationship between the two 
clauses are identified. The 2nd stage parse for the 
above sentence is shown in Figure 4b. The 2nd 
stage does not modify the parse sub-trees ob-
tained from the 1st stage, it only establishes the 
relations between the clauses. 

 

4 Two-stage data-driven parsing 

Since the availability of the Hyderabad Depen-
dency Treebank for Hindi (Begum et al., 2008) a 
considerable amount of work has gone into ex-
ploring various data-driven approaches for Hindi 
parsing (Bharati et al., 2008; Husain et al., 2009; 
Mannem et al., 2009b; Gadde et al., 2010). The 
ICON09 and ICON10 tools contests on Indian 
language parsing (Husain, 2009; Husain et al., 
2010) have also showcased various parsing ef-
forts and established the state-of-the-art for Hindi 
dependency parsing. During both these parsing 
contest MaltParser was used to achieve the best 
accuracy for Hindi. 

Through the experiments described in this 
paper, we aim to investigate the following 
questions: 
- What are the different ways in which one can 

treat clauses as minimal unit during the pars-
ing process? 

- Will this help improve parsing accuracy us-
ing MaltParser? 

 
We now present two data-driven paradigms 

that incorporate the notion of clause in different 
ways. Both paradigms use two stages to parse a 
sentence, but the way the two stages interact is 
different. 

4.1 2-stage parsing with hard constraints    
(2-Hard) 

The basic idea behind this strategy is essentially 
the same as constraint-based two-stage parsing. 
The 2nd stage MaltParser takes as input partial 
1st stage trees and establishes relationships be-
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tween clauses (and conjunctions). The 1st stage 
predictions are mutually exclusive of the 2nd 
stage predictions and cannot be overridden in the 
2nd stage. However, they can be used as features 
in the 2nd stage predictions. 

We now define the input to the 2nd stage for 2-
Hard more precisely, Let T be the complete tree 
that should be output by the 2nd stage parser and 
let G be the subgraph of T that is input to the 
second stage. Then G should satisfy the follow-
ing constraint: if the arc x → y is in G, then, for 
every z such that y → z is in T, y → z is also in 
G. In other words, if an arc is included in the 1st 
stage partial parse, the complete subtree under 
the dependent must also be included.  Unless this 
constraint is satisfied, there are trees that the 
second-stage parser cannot construct. This means 
that the 2nd stage MaltParser gets initialized with 
only those nodes that are attached to the 
_ROOT_ in the first stage parse (cf. Figure 4(a)). 
Figure 5 below shows the initial configuration of 
2nd stage Malt for sentence 3, the input will be 
the 1st stage parse shown in Figure 4(a). 
 

 
Fig 5. 2nd stage initialization using the 1st 

stage parse shown in Fig. 4(a) 
 
The 1st stage and 2nd stage parser will cater to 

different types of constructions. Note that, given 
the above constraint on the 2nd stage input struc-
tures, a relative clause (though being subordinate 
clause) cannot be handled in the 2nd stage and 
will have to be handled in the 1st stage itself. We 
explain the handling of relative clause using sen-
tence (2). 

 
(2)  vaha   vahaan        waba                puhuchaa             

  ‘He’   ‘there’    ‘when-COREL’     ‘reached’     
     jaba                sab            jaa   chuke the  
  ‘when-REL’  ‘everyone’   ‘go’     ‘had’ 
 ‘He reached there when everyone had left’ 
 
Figure 6(a) shows the 1st stage output of a 

relative clause construction in a standard 2-stage 
setup. Both the relative clause and the matrix 
clause are seen attached to the _ROOT_, the 
analysis of these clauses is complete. In second 
stage the relation between these two clauses is 
established (Figure 6b). Recall that we initialize 
the 2nd stage of 2-Hard with the children of 

_ROOT_ which in this case is the finite verbs of 
the two clauses (Figure 6c). Now recall the con-
straint on the input of the 2nd stage in 2-Hard; 
given this constraint the 2nd stage can only estab-
lish a relation between the two verbs and not, as 
is correct, between the relative clause verb and a 
noun dependent on the matrix verb. The noun 
‘waba’ is not present in the input buffer and can 
never be considered as a head of ‘jaa’. Because 
of this reason, 2-Hard handles relative clauses 
through a separate classifier after the 1st stage. 
This parse is then fed into the 2nd stage. This sys-
tem is discussed in the next section. 

4.1.1 Handling relative clauses 

We add the relative clause relations to the 1st 
stage parse, before they are fed into the 2nd stage. 
This task comprises of two sub-tasks, a) relative 
clause identification from the 1st stage output and 
b) identifying the head of the relative clause from 
the matrix clause. 

Most of the time, relative clause sentences in 
Hindi contain relative pronouns such as jo ‘who’, 
jaba ‘when’, jisa ‘which’ in the relative clause, 
which modifies an element (sometimes identi-
fied as a co-relative pronoun) in the matrix 
clause. The matrix clause, on the other hand, 
contains co-relative pronouns like waba ‘then’. 
This can be seen in the example sentence (2) in 
the previous section. However, both these ele-
ments can be dropped (though dropping relative 
pronouns is rare). This information is used in 
doing both the sub-tasks for the relative clause 
relation identification. 

The identification of relative clauses is rule 
based and depends on the presence of an exhaus-
tive list of relative and co-relative pronouns.  
Such a lexically driven approach is possible be-
cause of nature of relative clause constructions in 
Hindi. This system has an accuracy of 94%. The 
errors are mainly due to the dropping of the two 
type of cues discussed earlier. 

Having identified the relative clause in a sen-
tence, the remaining finite clauses are considered 
as possible matrix clauses. The nodes in each of 
these clauses are considered as possible heads for 
the relative clause. We use a maximum entropy 
(MaxEnt) based boolean classifier 2  to predict 
whether a node is a head or not. If more than one 
node is predicted as the head, we pick the node 
with the highest classifier confidence.

                                                 
2http://homepages.inf.ed.ac.uk/lzhang10/maxent_tool
kit.html 
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The Part-Of-Speech (POS) tag of a node, its di-
rection and distance from the relative clause are 
some of the important features to identify the 
modified noun.  Note that identification of the 
head noun in the absence of the co-relative pro-
noun can be very subjective. Table 1 shows the 
features that are used to train the classifier. 
 

Feature Description Values 
Lex Lexical item the lexical item 
POS POS tag  NN, RB etc.. 
Dir Direction of node -1, 1 
Dist Distance of node 4,8,12, 16, 20, 24 
Cue Relative pronoun  jaba, jo etc.. 

Table 1: Features used in maxent based node 
classification 

 
Dir is given 1 if a node is to the left of the rel-

ative clause and -1 if it is on the right. The dis-
tance of the node from the relative clause, Dist, 
is actually the modulus of the distance as direc-
tion is already taken care of. Further, it is norma-
lized to the above mentioned values to reduce the 
sparsity. Cue is given “None” if there is no rela-
tive pronoun (if it is dropped) modifying the 
node. 

We note that when compared to Husain et al. 
(2009) (who also do 2 stage parsing and use 
clauses as hard constraint) our method differs in 
two significant ways. The first one is obvious; 
they don’t handle constructions such as relative  

 
clauses etc in their setup. But more importantly, 
unlike Husain et al. (2009), the novel thing here 
is the combination of data-driven parsing and 
hard constraints, made possible by the new ver-
sion of MaltParser that accepts partial dependen-
cy graphs as input (both during training and pars-
ing) (cf. Figure 5). 

4.2 2-stage parsing with soft constraints      
(2-Soft) 

We can, instead of treating the output of the first-
stage parser as hard constraints for the second-
stage parser, treat them as soft constraints by 
simply defining features over the arcs produced 
in the first stage and making a complete parse in 
the second stage. Technically, this is the same 
technique that (Nivre and McDonald, 2008) used 
to integrate Malt and MST, called guided parsing 
or parser stacking. In this setup we ‘guide’ Malt 
with a 1st stage parse by Malt. The additional 
features added to the 2nd stage parser during 2-
Soft parsing encode the decisions by the 1st stage 
parser concerning potential arcs and labels con-
sidered by the 2nd stage parser, in particular, arcs 
involving the word currently on top of the stack 
and the word currently at the head of the input 
buffer. For more details on the guide features for 
MaltParser, see (Nivre and McDonald, 2008). 
Note again that, unlike the standard two-stage 
setup the 1st stage relations can now be overrid-
den during the 2nd stage (because we are guid-
ing), and unlike the standard guided parsing se-
tup a parser guides with only 1st stage relations. 
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Unlike the 2-stage parsing, guided parsing parses 
complete sentences twice. The results from one 
parser are used to extract features that guide the 
second parser. In 2-stage parsing, different com-
ponents of a sentence are parsed in two stages. 
Interestingly, Gadde et al. (2010) have proposed 
an alternative way of incorporating clauses as 
soft constraint by using clause boundary and 
clausal head/non-head features during parsing. 
Of course, theirs is not a 2-stage setup. 

5 Experimental setup  

All the results are reported for Hindi. We use the 
Hindi data set that was released as part of 
ICON10 parsing contest (Husain et al., 2010). 
The training set had 2972 sentences, the devel-
opment and test set had 543 and 321 sentences 
respectively. The parser models were trained us-
ing 5-fold cross validation; all the results are also 
reported for the cross-validation data. The setup 
used by (Ambati et al., 2010) for MaltParser3 is 
used as our baseline.  

Recall that the 1st stage and 2nd stage parser of 
2-Hard will cater to different types of construc-
tions. This is sometimes also reflected in the fea-
tures that get selected for each stage when com-
pared to the Baseline settings. One such case was 
the absence of morphological features of lexical 
items in the 2nd stage for 2-Hard. The morpho-
logical properties such as suffix, category, case, 
etc. are crucial in establishing relations between 
verbs and its arguments. This in 2-Hard will be 
handled in the 1st stage. The relations in the 2nd 
stage do not require such features. On the other 
hand, the POS category and the lexical item of 
the elements in Stack and Input buffer are more 
crucial for 2nd stage relations than for the 1st 
stage specific relations. This is reflected in the 
selection of ‘lemma’ of the word under consider-
ation in 2nd stage and not in baseline. 

Both 2-Soft and 2-Hard 1st stage parsers are 
trained on a modified treebank. The original trees 
are transformed into 1st stage trees. This is done 
by using the clause definition described in Sec-
tion 2. For example, the 1st stage tree for sen-
tence 3 is shown in Figure 4 (a). On the other 
hand, a normal single stage parser (our baseline 
parser) is trained on the full tree that looks like 
Figure 4 (b). 

                                                 
3 MaltParser (version 1.3.1) 

6 Results and discussion  

Table 2 shows the performance of the different 
parsers with 5-fold cross-validation. In all tables 
statistical significance with respect to baseline is 
marked with *. Significance is calculated using 
McNemar’s test (p <= 0.05). These tests were 
made with MaltEval (Nilsson and Nivre, 2008). 

 
 LAS UAS LA 
Baseline 75.02 88.82 77.80 
2-Soft 75.24 88.92 78.00 
2-Hard 75.65* 89.1* 78.73* 

Table 2: Overall parsing accuracy 
 (5-fold cross-validation) 

 
We see that both 2-Soft and 2-Hard outper-

form the Baseline result. However, only 2-Hard 
is statistically significant with that of Baseline 
for LAS, UAS as well as LS. 2-Soft, though giv-
ing a minimal improvement in the accuracies, is 
not statistically significant with the baseline. 
However, on analyzing the output parses of all 
the three setups, we found clear and similar im-
provement patterns (listed below) in case of both 
2-Hard and 2-Soft. This led us to look at the sen-
tences having at least two clauses, where the ef-
fect of the proposed approaches is more promi-
nent. These constitute 50.4% of the total sen-
tences in the data. Table 3 below shows the pars-
ing accuracies of all the setups on these complex 
sentences. 

 
 LAS UAS LA 
Baseline 74.87 88.82 77.44 
2-Soft 75.25* 89.03 77.78*
2-Hard 75.83* 89.36* 78.85*

Table 3: Parsing accuracy on complex sen-
tences (sentences having >1 finite clauses) 

(5-fold cross-validation) 
 

Interestingly, the improvements in both 2-Soft 
and 2-Hard are better than those shown in Table 
2. Also, 2-Soft is now statistically significant 
compared to the Baseline w.r.t. LAS and LS. 
Overall, both the approaches seem to perform 
better for labels over attachments. To analyze the 
results further, we breakdown the overall accura-
cy (shown in Table 2) into inter-clausal and in-
tra-clausal accuracies. Table 4 below shows 
these results. 
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 LAS UAS LA 
 Intra Inter Intra Inter Intra Inter 
Baseline 72.18 85.43 89.05 87.98 75.26 87.13
2-Soft 72.44 85.54 89.13 88.16 75.49 87.17
2-Hard 72.36 87.71 88.87 90.10 75.47 90.68

Table 4: Overall accuracy for intra- and inter-
clausal dependency relations 

 
Table 4 shows some interesting facts. 2-Hard 

performs far better than Baseline and 2-Soft in 
case of inter-clausal relations, where as its effect 
is less for intra-clausal relations. 2-Soft, on the 
other hand, gives the best accuracies for intra-
clausal relations over all the metrics. Note that 
the 2nd stage in 2-Soft approach has the flexibili-
ty to modify the dependencies given by the 1st 
stage parse. This could be the possible reason for 
2-Soft performing better than 2-Hard for the in-
tra-clausal relations, which are large in number 
as well as consisting of more deviant patterns 
compared to the inter-clausal relations. 

These experiments show us that there is a 
clear pattern in cases where parsing benefits 
from 2-Soft and 2-Hard. These benefits are 
spread over both 1st stage and 2nd stage. These 
cases are: 

 
1. Better identification of some relations with 

deviant/ambiguous postpositions in the 1st 
stage. For example, when ‘se’ appears for 
beneficiary/cause, instead of its default usage 
for instrument. Table 5 shows the label iden-
tification for some frequent postpositions. 

2. Better handling of non-finite verbs in the 1st 
stage 

3. Better handling of NULL nodes in the 2nd 
stage. Most NULL nodes are cases of el-
lipses where a syntactic heads such as finite 
verb or a conjunct is missing. Most of these 
cases fall into 2nd stage and are being better 
handled there. 

4. Better handling of some 2nd stage specific 
constructions, e.g. clausal complements. 

 
Closely related to the above four points is the 

performance of the clausal setups with respect to 
arc length, depth and non-projectivity. It is 
known that Malt suffers on the dependencies 
closer to the root (less depth) due to error-
propagation. Also, Malt suffers at long distance 
dependencies because of local feature optimiza-
tion (McDonald and Nivre, 2007). In other 
words, for Malt, depth and errors are negatively 

correlated while arc-distance and errors are posi-
tively correlated. 

Figure 7 shows the LAS of relations at various 
arc-lengths for the Baseline and clausal setups. 
Figure 8 shows the performance of relations at 
different depths. The 2nd stage of 2-Hard consid-
ers the heads of the partial trees produced by the 
1st stage as the nodes (minimal parsing unit), 
which reduces the arc-length of the inter-clausal 
dependencies. Hence, as the arc-length increases, 
the advantage of 2-Hard becomes more pro-
nounced. 

 
Postposition Baseline 2-Hard/ 

2-Soft 
0   

meM   

para  
GEN   

ko  
se   

Table 5: Label identification comparison be-
tween Baseline and the clausal approaches for 

ambiguous postpositions.  signifies better per-
formance. 0 and GEN signify null postposition 

and genitive postpositions respectively 
 
By distinguishing intra-clausal structures from 

inter-clausal structures, the 2-Hard setup is using 
shallower trees and is able to take better global 
decisions by using more contextual information. 
It is expected to reduce the error propagation for 
the low-depth dependency relations. This effect 
is clearly seen in Figure 8, where for less depth 
2-Hard outperforms Baseline. Cases (3) and (4) 
above reflect this.  

Cases (1) and (2) on the other hand show that 
the clausal setups also effects 1st stage perfor-
mance by learning verbal arguments (both com-
plements and adjuncts) better. It is known that 
MaltParser has a rich feature representation but 
with increase in sentence length its performance 
gets affected due error propagation. By treating a 
clause as a parsing unit we reduce this error 
propagation as the features are being exploited 
properly. 

It was found that both the clausal setups did 
not help in reducing the non-projective relations. 
As all the setups use the Arc-Eager parsing algo-
rithm, they fare equally badly in handling non-
projectivity. There were some sentences where 
non-projectivity got removed in the 1st stage,  
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Fig. 7. LAS at arc-length (1-10) for Baseline, 

2-Soft and 2-Hard. The numbers above the bars 
represent the % of relations at respective arc 

lengths. 
 

however the non-projective arc reappeared in the 
2nd stage, this happened in the case of paired 
connective constructions (cf., Mannem et al., 
2009). We are yet to investigate if pseudo-
projective parsing in the 2nd stage might prove 
beneficial in such cases. 

 
Fig. 8. LAS at depth (1-7) for Baseline, 2-Soft 

and 2-Hard. The numbers above the bars 
represent the % of relations at respective depths. 

7 Conclusion  

This paper investigated clausal data-driven de-
pendency parsing. We implemented this idea 
using two methods, one based on hard con-
straints (similar to the one used in constraint-
based parsing), and one based on soft constraints 
(using a kind of parser stacking). Our results 
showed that the approach using hard constraints 
seems most promising and performs significantly 
better than single-stage parsing. We showed that 
2-Hard benefits from parsing shallower trees, 
and shorter arc lengths when compared to the 
Baseline. We also showed that by better learning 
of features many case markers that appear with 
more than one relation can be disambiguated 
successfully using both 2-Hard and 2-Soft. 2-
Hard seems to perform better than 2-Soft in case 

of inter-clausal relations w.r.t. all the evaluation 
metrics, whereas 2-Soft is doing good in intra-
clausal relations. This gives us a future direction 
to explore a combination of 2-Hard and 2-Soft 
for inter and intra-clausal relations respectively, 
to see if one can benefit from the other.  

Since the improvement in LS and LAS in both 
2-Hard and 2-Soft seems to be more than in the 
UAS, it would be interesting to see the effect of 
clausal parsing on label identification and at-
tachments separately. To do this, we plan to ex-
plore sequential parsing by using different fea-
ture models for transitions and labels, as the cur-
rent parsing schemes do both attachments and 
labels at the same time. 
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