
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 1251–1259,
Chiang Mai, Thailand, November 8 – 13, 2011. c©2011 AFNLP

Abstract

Existing work shows that lexical dependen-
cies are helpful for constituent tree parsing.
However, only first-order lexical dependen-
cies have been employed and investigated in
previous work. In this paper, we propose a
method to employing higher-order1 lexical
dependencies for constituent tree evaluation.
Our method is based on a parse reranking
framework, which provides a constrained
search space (via N-best lists or parse forests)
and enables our parser to employ relatively
complicated dependency features. We eva-
luate our models on the Penn Chinese Tree-
bank. The highest F1

1 Introduction

 score reaches 85.74%,
thus outperforming all previously reported
state-of-the-art systems. The dependency ac-
curacy of constituent trees generated by our
parser has been significantly improved as well.

The most commonly used grammar for constitu-
ent structure parsing is probabilistic context-free
grammar (PCFG). However, as demonstrated in
Klein and Manning (2003a), PCFG estimated
straightforwardly from Treebank does not per-
form well. The reason is that the basic PCFG has
certain recognized drawbacks: its independence
assumption is too strong, and it lacks of lexical
conditioning (Jurafsky and Martin, 2008). To
address these drawbacks, several variants of
PCFG-based models have been proposed (Klein
and Manning, 2003a; Matsuzaki et al., 2005;
Petrov et al., 2006; Petrov and Klein, 2007). Lex-
icalized PCFG (LPCFG) (Collins, 1999;
Charniak, 2000; Bikel, 2004) is a representative
work that tries to ameliorate the deficiency of
lexical conditioning. In LPCFG, non-terminals
are annotated with lexical heads and the probabil-
ities of CFG rules are estimated conditioned upon
these lexical heads. Thus LPCFG becomes sensi-
tive to lexical heads, and its performance is im-
proved. However, the information provided by
lexical heads is limited. To obtain higher parsing
performance, we must seek additional informa-

tion. We believe that dependency trees are good
candidates because they encode grammatical re-
lations between words and provide much more
lexical conditioning than lexical heads for PCFG.

Dependency trees are usually factored into sets
of lexical dependency parts for evaluation. The
order of a lexical dependency part can be defined
according to the number of dependency arcs it
contains. For example, in Figure 1, dependency is
first-order, sibling and grandchild are second-
order and grand-sibling and tri-sibling are third-
order. During the past few years, higher-order1

lexical dependencies have been successfully used
for dependency parsing (McDonald et al., 2005;
McDonald and Pereira, 2006; Koo and Collins,
2010). But for constituent tree evaluation, only
first-order (bigram) lexical dependencies have
been used (Collins, 1996; Klein and Manning,
2003a; Collins and Koo, 2005). However, first-
order lexical dependency parts are quite limited
and thus lose much of the contextual information
within the dependency tree. To improve parsing
performance, we propose to evaluate constituent
trees with higher-order lexical dependencies.

 In this paper, we propose a method for evaluat-
ing constituent trees using higher-order lexical
dependencies within a parse reranking frame-
work. We evaluate our method on the Penn Chi-
nese Treebank (CTB). The F1

1 Lexical dependency part which contains more than one
dependency arcs is called higher-order, e.g., sibling, grand-
child and grand-sibling in Figure 1.

 score reaches
85.74%, thus outperforming the best previously
reported systems. Thanks to the lexical depen-
dencies, the dependency accuracy of the generat-
ed constituent trees is improved as well. These
experimental results show that higher-order lexi-

Parse Reranking Based on Higher-Order Lexical Dependencies

Zhiguo Wang and Chengqing Zong
National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences, Beijing, China, 100190
{zgwang, cqzong}@nlpr.ia.ac.cn

h m h s m g h m

g h s m h t s m

dependency sibling grandchild

grand-sibling tri-sibling
Figure 1. Lexical dependency types. The lower-
case letters h, m, s, g are words in a sentence.

1251

cal dependencies are highly beneficial for consti-
tuent tree evaluation.

The remainder of this paper is organized as fol-
lows: Section 2 briefly reviews related work and
proposes our ideas. Section 3 describes our pars-
ing approach. Section 4 describes our parse re-
ranking algorithms based on higher-order lexical
dependencies. In Section 5, we describe our
training algorithms. We discuss and analyze our
experiments in Section 6. Finally, we conclude
and mention future work in Section 7.

2 Related Work and Our Ideas

Over the past few years, two kinds of parse re-
ranking methods have been proposed. The first is
N-best reranking (Charniak and Johnson, 2005;
Collins and Koo, 2005). In this method, an exist-
ing generative parser is used to enumerate N-best
parse trees for an input sentence, and then a re-
ranking model is used to rescore the N-best lists
with the help of various sorts of features. How-
ever, the N-best reranking method suffers from
the limited scope of the N-best list in that poten-
tially good alternatives may have been ruled out.
The second method, called the forest reranking
model, was proposed by Huang (2008). In
Huang’s method, a forest, instead of an N-best
list, is generated first. Then a beam search algo-
rithm is used to generate N-best sub-trees for
each node in bottom-up order and the best-first
sub-tree of the root node is chosen as the final
parse tree.

In recent years, there have been many attempts
to use dependency trees for constituent parsing.
All these approaches can be classified into three
types. The first type is dependency-driven consti-
tuent parsing (Hall et al., 2007; Hall and Nivre,
2008). Given an input sentence, this approach
first parses it into a labeled dependency tree (with
complex arc labels, which makes it possible to
recover the constituent tree) and then transforms
the dependency tree into a constituent tree. The
second approach is dependency-constrained con-
stituent parsing (Xia and Palmer, 2001; Xia et al.,
2008; Wang and Zhang, 2010; Wang and Zong,
2010). In this approach, dependency trees, once
generated, are used to constrain the search space
of a constituent parser. The third approach is de-
pendency-based constituent parsing (Collins,
1996; Klein and Manning, 2003b). In this ap-
proach, the constituent tree is evaluated with the
help of its corresponding lexical dependencies.

All three existing approaches have certain li-
mitations. In the first approach, the dependency-

driven constituent parser is not constrained by the
Treebank grammar, so a constituent tree trans-
formed from its corresponding dependency tree
may contain context-free productions not seen in
the Treebank grammar. Although this limitation
may not affect the parsing F1

To overcome the drawbacks of the existing
approaches, we propose to evaluate constituent
trees using higher-order lexical dependencies
within a parse reranking framework. Our ap-
proach has the following advantages: 1) It utiliz-
es the higher-order lexical dependencies, which
provide more contextual information within the
dependency tree for constituent tree evaluation; 2)
the parse reranking method provides high-quality
candidates (N-best list or parse forest) which
yields a small search space, enabling the use of
relatively complicated features.

 score, it often has
undesirable effects on applications. For the
second approach, if the generated dependency
tree includes some erroneous parts, the correct
constituent tree may be pruned out directly, leav-
ing no way to recover the correct tree again. The
third approach parses sentences making use of
first-order lexical dependencies only. As men-
tioned, first-order lexical dependencies are quite
limited, and thus may lose much information
about the grammatical relations between words.
Consequently, the performance improvement of
this approach is limited as well.

3 Our Approach

For a sentence x, we define constituent parsing as
a search for the highest-scoring parse *c of x:

()
* arg max (,)

c GEN x
c Score x c

∈
= (1)

Where, GEN(x) is a set of candidate parsers for x,
and (,)Score x c evaluates the event that tree c is
the parse of sentence x.

In order to evaluate c with higher-order lexical
dependencies, we define:

(,) (,) (,)i ii
Score x c x c x cα α= Φ ⋅ = Φ∑ (2)

Where, Φ maps each (,)x c X C∈ × to lexical
dependency feature vector dyx ℜ∈Φ),(, and

dℜ∈α is the corresponding weight vector.

3.1 Representation of Constituent Tree with
Labeled Dependency Tree

The discriminative parsing model in Eq. (1) takes
lexical dependencies as features, so we must de-
sign a method of representing constituent trees

1252

with associated dependency trees. Our method
includes the following two steps:
Step 1: Lexicalize the constituent tree, i.e. anno-
tate each node in the constituent tree with its
head-word. First, find the head-child of each non-
terminal node using a head percolation table
(Yamada and Matsumoto, 2003). For example, in
Figure 2(a), node B is identified as the head-child
of rule A→ B C D E. Then the head-words prop-
agate up through the leaf nodes and each parent
receives its head-word from its head-child. For
example, in Figure 2(b), w0

Step 2: Transform the lexicalized tree into a
labeled dependency tree. First, let the head-word
of each non-head-child depend on the head-word
of the head-child for each rule. For example, in
Figure 2(b) for rule A

 is propagated up
from node B to A. According to this procedure,
we can get the lexicalized constituent tree (shown
in Figure 2(b)) for the constituent fragment
shown in Figure 2(a).

→ B C D E, the head words
of non-head-child (node C, D and E) which are
w1, w2 and w5 should depend on w0

: :h mN P N

 which is the
head word of head-child (node B). In order to
encoding the syntactic symbols in the constituent
tree into dependency tree, we annotate each de-
pendency arc with a label , where hN is
the head-child’s syntactic category, P is the
parent’s syntactic category and mN is the non-
head-child’s syntactic category. For example, in
Figure 2(c), the dependency arc between w1 and
w0 → is built through rule A B C D E, where w0
associates with B, w1

3.2 Mapping Higher-Order Lexical Depen-
dencies into Feature Vectors

 associates with C and the
parent node is A, so we can annotate the de-
pendency arc with B:A:C. According to the
procedure, the lexicalized tree in Figure 2(b) can
be transformed into the labeled dependency tree
shown in Figure 2(c).

To map lexical dependencies into feature vectors,

we define certain feature templates, as shown in
Table 1. We work with binary indicator features2

(,)x CΦ

for each lexical dependency. The feature vector

 of constituent tree C can be calculated
through the dependency tree D transformed from
C using the follow formula:

()
(,) ()

d S D
x C dφ

∈

Φ = ∑ (3)

In this formula ()S D is a set of all the lexical
dependencies extracted from D, and d is a lexical
dependency in ()S D . The function φ is used to
map each lexical dependency d into feature vec-
tor according to the templates in Table 1.

4 Parse Reranking Algorithms

A critical problem when training the discrimina-
tive model in Eq. (1) is the extensive training
time required, in which we must parse all the sen-
tences in the training set repeatedly. In this paper,
we adopt an approximate method: parse rerank-
ing. In parse reranking, ()GEN S in Eq. (1) is an
N-best list or a parse forest which provides a
small and well-formed search space for constitu-
ent parsing. Given this small space, we can ex-
ploit higher-order lexical dependencies
efficiently.

2 Binary indicator features are defined as follows: if a certain
feature is observed in an instance, the value of that feature is
1; otherwise, the value is 0.

Algorithm 1: Constituent Tree Evaluating
1: function Eval(C)
2: for P C∈ in bottom up topological order do
3: EvalSubTree (PC)
4: return ()Score C
5:
6: procedure EvalSubTree (PC)
7: Assume the constituent is 1 nP N N→
8: Find the head-child hN for P
9: PW ←

hNW

10: Building PD
11: for 1{ ,..., } \i n hN N N N∈ do
12: Link

hND and
iND with a dependency arc

13: Annotate the arc with label : :h iN P N
14: Make the root of

hND as PD ’s root
15: Extract all lexical dependencies for P

and map them into feature vector ()PΦ

16:
1

() () ()
i

n

P N
i

Score C P Score Cα
=

= Φ ⋅ +∑

(a) Constituent tree fragment (b) Lexicalized constituent tree

(c) Labeled dependency tree

B EDC

F HG

A
B(w0) C(w1) D(w2) E(w5)

F(w2) G(w3) H(w4)

A(w0)

w0 w1 w2 w3 w4 w5

B:A:C

B:A:D

F:D:G

F:D:H

B:A:E

Figure 2. Representation of constituent tree with
labeled dependency tree

1253

4.1 N-best Reranking Based on Higher-
Order Lexical Dependencies

The method of sub-section 3.1 determines that
each constituent sub-tree must have a corres-
ponding dependency sub-tree. Accordingly, we
now describe an efficient algorithm for evaluat-
ing constituent trees with higher-order lexical
dependencies. We define a quadruple

, , (),N N N NC D score C W< > for each non-terminal
node N, in which NC is the constituent sub-tree
rooted at N; ND is the dependency sub-tree trans-
formed from NC ; ()Nscore C is the score of

NC evaluated using Eq. (2); and NW is the head-
word of N in the tree.

Our algorithm (Algorithm 1) works bottom-up
to fill , , (),N N N NC D score C W< > for each node N.
For a constituent P in the parse tree, we first
find the head-child hN for P (line 8), then propa-
gate the head-word of hN to P (line 9). To
build PD , we simply build dependency arcs for
current constituent P ; then link

1ND , …,

nND with these dependency arcs; and then let the
root of

hND be PD ’s root (line 11 to line 14). We
extract all the lexical dependencies rooted at P’s
head-word PW through PD . For example, in Fig-
ure 2(b), all the lexical dependencies rooted at
node A’s head-word w0

()PΦ

 can be extracted from
the dependency tree in Figure 2(c); and all the
lexical dependencies have been shown in

Figure 3. Then we map the lexical dependencies
into feature vectors and sum over them as the
feature vector for P. Finally, we evaluate
the score of PC using formula (4) below:

1
() () ()

i

n

P N
i

Score C P Score Cα
=

= Φ ⋅ +∑ (4)

4.2 Forest Reranking Based on Higher-
Order Lexical Dependencies

As mentioned, N-best reranking suffers from the
limited scope of N-best list. Forest reranking, by
contrast, can rerank a packed forest of exponen-
tially many parses, and thus provides a good way
to overcome these limitations. Thus we also use
the forest reranking method, based on higher-
order lexical dependencies.

w0 w1

B:A:C

w0 w2

B:A:D

w0 w5

B:A:E

w0 w2 w5

B:A:D

B:A:E

w0 w1 w5

B:A:C

B:A:E

w0 w1 w2

B:A:C

B:A:D

w0 w2 w4

B:A:D F:D:H

w0 w2 w3

B:A:D F:D:G

w0 w2 w3 w4

B:A:D F:D:G

F:D:H

w0 w1 w2 w5

B:A:C

B:A:D

B:A:E

dependency

sibling

grand-sibling

grandchild

tri-sibling

Figure 3. Lexical dependencies for w0 in Figure 2(c).

h m
dependency

Basic Uni-gram Features

h s m
sibling

POS(h),N(h),POS(s),N(s),P(s),POS(m),N(m),P(m)
h , POS(h), N(h) POS(h),N(h),N(s),P(s),N(m),P(m)
h , POS(h) POS(h),N(h),POS(s),P(s),POS(m),P(m)
h , N(h) POS(h),N(h),POS(s),N(s),POS(m),N(m)
m , POS(m), N(m) POS(h),POS(s),POS(m)
m , POS(m) N(h),N(s),N(m)
m , N(m) N(h),P(s),P(m)

g h m
grandchild

Basic Bi-gram Features POS(g),N(g),POS(h),N(h),P(h),POS(m),N(m),P(m)
P(m) , h , POS(h), N(h), m), POS(m), N(m) POS(g),N(g),N(h),P(h),N(m),P(m)
h , POS(h), N(h), m , POS(m), N(m) POS(g),N(g),POS(h),P(h),POS(m),P(m)
P(m) ,POS(h), N(h), POS(m), N(m) POS(g),N(g),POS(h),N(h),POS(m),N(m)
P(m) , h , N(h), m , N(m) POS(g),POS(h),POS(m)
P(m) ,h , POS(h), m , POS(m) N(g),N(h),N(m)
P(m) ,h , m N(g),P(h),P(m)
P(m) , POS(h),POS(m)

g h s m
grand-sibling

P(m) , N(h), N(m) POS(g),POS(h),POS(s),POS(m)
 N(g),N(h),N(s),N(m)
Surrounding Word POS Features N(g),P(h),P(s),P(m)
P(m), N(h), POS(h), N(m), POS(m), POS(h)+1, POS(m)-1

h t s m
tri-sibling

P(m), N(h), POS(h), N(m), POS(m), POS(h)-1, POS(m)-1 POS(h),POS(t),POS(s),POS(m)
P(m), N(h), POS(h), N(m), POS(m), POS(h)+1, POS(m)+1 N(h),N(t),N(s),N(m)
P(m), N(h), POS(h), N(m), POS(m), POS(h)-1, POS(m)+1 N(h),P(t),P(s),P(m)

Table 1. Feature templates of various lexical dependency types. The lowercase letters h, m, s, g are words in
a sentence. POS(x) is x’s POS tag. POS(x)+1 is the POS tag of the word to the right of x. POS(x)-1 is the
POS tag of the word to the left of x. P(x), N(x) are syntactic categories of P and hN (or mN), which are
annotated on dependency arcs (We ignore dependency arc labels in the table for simplicity. More details can
be found in section 3.2).

1254

A forest is a compact representation of many

parse trees. Figure 4(c) is a sample forest which
is the compact representation of the constituent
trees shown in Figures 4(a) and 4(b). To obtain
forests, Huang (2008) tried to modify the Char-
niak parser to output forest directly. Inspired by
parser combination methods (Sagae and Lavie,
2006; Fossum and Knight, 2009), we have de-
signed a simple method of building forests start-
ing from N-best lists. First, we convert each parse
tree in an N-best list into context-free productions
and label each constituent in each production
with its span and syntactic category. Then these
converted context-free productions are used to
build the forest. For example, in Figure 4, given
two candidates (Figure 4(a) and Figure 4(b)), we
first convert them into context-free productions,
e.g. NP0,3ADJP0,1 NP1,3, NP0,3 NP0,2 NP2,3
and so on. Then we combine these productions
into the forest shown in Figure 4(c). The recom-
bined forest probably contains some parse trees
that are not included in the N-best list, as will be
shown in sub-section 6.1.

Our algorithm for forest reranking is similar to
Algorithm 1. The only difference is that there
may be more than one hyperedge for each node
in a forest. So we make use of a beam search al-
gorithm (Huang and Chiang, 2005) and store N-
best sub-trees for each internal node. Finally, we
choose the best-first sub-tree of the root node as
the result.

5 Training Algorithm

The training task is to tune the parameter weights
α in Eq. (1) using the training examples as evi-
dence. We employ the online-learning algorithm
shown in Algorithm 2 because it has been proven

to be effective and efficient in many studies
(Collins, 2002; Collins and Roark, 2004;
McDonald et al., 2005). For Algorithm 2, we de-
fine two parameter update strategies (line 5 in
Algorithm 2) as follows.

The first strategy is perceptron updating. We
first obtain the oracle tree tc + that has the highest
F1 tc score according to the gold-standard tree ,

1()
arg max (,)

t
t tc GEN x

c F c c+

∈
= (5)

Then we get the highest scoring tree t̂c with cur-
rent weights ()iα ,

()

()
ˆ arg max (,)

t

i
t tc GEN x

c x c α
∈

= Φ ⋅ (6)

If t̂c is not equal to tc + , the weights will be up-
dated through

(1) () ˆ() ()i i
t tc cα α+ +← +Φ −Φ (7)

Otherwise, the current weights are kept.
Although the perceptron updating strategy

works well, parameter updating must wait until
the entire tree has been built. We believe that this
strategy probably misses the best opportunity for
parameter updating and introduces some noise
into the updating procedure. So, inspired by Col-
lins and Roark (2004), we propose an early up-
dating strategy for forest reranking. The key idea
is to insert the parameter updating procedure into
the forest reranking procedure. We parse a forest
bottom up with the current parameter ()iα . When
the best-first sub-tree ˆNs for internal node N is
different from oracle sub-tree Ns + , we stop the
parsing procedure and update the parameters
immediately using the following formula:

(1) () ˆ() ()i i
t ts sα α+ +← +Φ −Φ .

Then we continue to parse the current forest with
the newer parameters (1)iα + . Unlike the percep-
tron updating strategy, this strategy updates pa-
rameters at the moment that an error sub-tree is
built, and this is why we call it the early updating
strategy.

Algorithm 2:Generic online learning algorithm
1:Input: training data (,)t tx c for 1t T=
2: (0) 0α ← ; v←0; i←0 initial weights
3: for n in 1…N do N iterations
4: for t in 1…T do T training instances
5: (1)iα + ←update ()iα according to (,)t tx c

6: v←v + (1)iα +
7: i← i + 1
8:α ←v/(N*T) averaging weights
9: return α

NP

NP NP

NPADJP

JJ NN NN

高 科技 项目

NP

NPADJP

JJ NN NN

高 科技 项目

(a) gold-standard (b) generated by LPCFG

(c) packed forest

NP0,3

NP0,2

ADJP0,1 NP1,2

NP1,3

NP2,3

高 科技 项目

JJ NN NN

(high) (technology) (project)

Figure 4. Constituent trees and forest

1255

6 Experiments and Analysis

We evaluate our method on the Penn Chinese
Treebank Version 5.0 with the standard division:
Art.301-325 as the development set, Art. 271-300
as the test set and others as the training set. All
the F1 scores are evaluated with EVALB3

6.1 To Obtain N-best Lists and Forests

.

We first employ existing parsers to generate N-
best lists and then recombine the N-best lists into
forests according to the method described in sub-
section 4.2. We split the training set into 20 folds
averagely and generate 50-best lists for one fold
with both the Berkeley parser4 and the Charniak
parser5

 (trained on the remaining 19 folds) indi-
vidually. The development set and the test set are
parsed with models trained on the entire training
set.

The oracle F1 scores of N-best lists and forests
on test set are listed in Table 2, where ‘Berke-
ley(50)’ means the performance of 50-best lists
from Berkeley parser; ‘Charniak(50)’ means the
performance of 50-best list from Charniak parser;
‘Comb(100)’ means the performance of 100-best
lists by combining the two 50-best lists; “Nbest”
means the oracle F1 of N-best lists; and “Forest”
means the oracle F1 of forests which are eva-
luated through the Forest Oracle Algorithm pro-
posed in Huang (2008). In Table 2, we can see
that the oracle F1

6.2 Parameter Tuning on Development Set

 scores of forests are much bet-
ter than associated N-best lists. This result clearly
demonstrates that the approach of obtaining fo-
rests by recombining N-best lists is effective.

We tuned some parameters manually for our
models in the sub-section, including the number
of iterations in the training algorithm, and the
beam size k in the forest reranking algorithm.
Models are trained with training set’s 100-best
lists and evaluated on development set’s 100-best
lists.

The F1 score curves varying with iteration
times are shown in Figure 5. Although there are
some fluctuations, we can see that the F1

3 http://nlp.cs.nyu.edu/evalb/

 score

4 http://code.google.com/p/berkeleyparser/
5 http://bllip.cs.brown.edu/download/reranking-
parserAug06.tar.gz

tends to improve with the incremental iteration
times, and that the average model yields addi-
tional improvement. To avoid the problem of
overfitting to the training set, we fix the iteration
times at 10 in the following experiments. Figure
6 shows F1

6.3 Evaluation on Test Set

 score curves varying with beam size.
We see that when the beam size exceeds 5, the
performance fluctuates slightly, so we fix the
beam size at 5 in our experiments. In Figure 6,
we can also see that the model trained with the
early updating strategy can obtain better perfor-
mance than with the perceptron updating strategy.

In this sub-section, we build three parsing sys-
tems using the methods described in the previous
sections. For brevity, we annotate the N-best re-
ranking system trained with the perceptron updat-
ing strategy as “NbestRerank”; the forest
reranking system trained with the perceptron up-
dating strategy as “ForestRerank”; and the forest
reranking system trained with the early updating
strategy as “EarlyUpdate”. We also employ the
Charniak parser (Charniak) and the Berkeley

0 1 2 3 4 5 6 7 8 9 10
83.0

83.5

84.0

84.5

85.0

85.5

86.0

86.5

F1

beam size

 Perceptron Update
 Early Update

Figure 6. The F1 score curves on the development
set varying with beam size in forest reranking.

0 1 2 3 4 5 6 7 8 9 10 11
70.0

72.5

75.0

77.5

80.0

82.5

85.0

F1

Iterator times

 Perceptron Update
 Early Update

average

Figure 5. The F1 score curves on the development
set varying with iteration times in Algorithm 2.

 Berkley(50) Charniak(50) Comb(100)
Nbest 89.13 89.20 91.61
Forest 90.22 90.38 94.05

Table 2. Oracle F1 (%) of N-best lists and forests

1256

parser (Berkeley) as our baselines.
Using the parameter configuration tuned on

development set, we have evaluated all the sys-
tems on test set. The F1 scores are shown in Ta-
ble 3.We can find that the F1 scores are improved
enormously when we make use of higher-order
lexical dependencies. No matter which N-best list
is used, EarlyUpdate system gets the highest F1

Intuitively, since they benefit from the higher-
order lexical dependencies, the generated consti-
tuent trees should show better dependency accu-
racy as well. So we convert the generated
constituent trees into dependency trees and calcu-
late their unlabeled dependency accuracy (UA)

.
However, the improved ranges vary with N-best
list. The improvement is 1.93% for Berkeley
parser’s 50-best list, while it is 0.91% for Char-
niak parser’s 50-best list. In our opinion, the rea-
son is that Charniak parser has made use of head-
word information during parsing, so it is less sen-
sitive to lexical dependencies than Berkeley pars-
er. When we use the combined 100-best lists for
training and testing, all the three systems are im-
proved. NbestRerank gets 1.55% improvements
than Berkeley does, ForestRerank gets 1.04%
improvements further than NbestRerank does,
and EarlyUpdate makes the final performance up
to 85.74%.

6

6 To compare with dependency parsing systems whose de-

.

To demonstrate the effectiveness of our systems,
we also train a 1-order MSTPaser7

The figures shown in Table 3 and Table 4 clear-
ly reveal that our parsing approach obtains con-
stituent trees with both better F

 (MST 1-ord)
and a 2-order MSTParser (MST 2-ord), and then
use them to parse the test set with gold-standard
POS tags and automatically annotated POS tags
(accuracy is 95.17%). All of the results are shown
in Table 4. We see that the UAs of our systems
are much better than those of Charniak and
Berkeley. Although our systems employ no gold-
standard POS tags during parsing, their UAs ex-
ceed those of MST 1-ord, which does employ
such tags; and the UA of EarlyUpdate is even
comparable with those of MST 2-ord, which also
employs such tags.

1

6.4 Ablation studies

 scores and better
UAs.

The experimental results above have shown that
reranking parses based on higher-order lexical
dependencies is effective. To verify the contribu-
tions of different lexical dependency types, we
further evaluate the development set using the
EarlyUpdate system trained with combined fo-
rests. First, we reranked forests with first-order
(dependency) lexical dependencies. Then we
added the second-order (sibling and grandchild)
lexical dependencies into our system. Finally, we
added the third-order (grand-sibling and tri-
sibling) lexical dependencies. All of the parsing
results are shown in Table 5. It is clear that all of
the lexical dependency types are helpful for con-
stituent tree evaluation.

6.5 Comparison with State-of-the-art Re-
sults

Table 6 compares our best results with that of
state-of-the-art parsers. Compared to the

pendency arc labels are different from ours, we simply cal-
culate the UAs.
7 http://sourceforge.net/projects/mstparser/

 F1(%)
Baseline 84.59

+dependency
(first-order) 85.46

+sibling & grandchild
(second-order) 86.20

+grand-sibling & tri-sibling
(third-order) 86.37

Table 5. F1 (%) score on development set of the
EarlyUpdate system using different lexical depen-
dency types.

Parsers UA(%)
Charniak 82.31
Berkeley 84.05

NbestRerank 85.89
ForestRerank 85.69
EarlyUpdate 86.26

MST 1-ord (automatic POS) 79.62
MST 2-ord (automatic POS) 80.24

MST 1-ord (gold-standard POS) 85.23
MST 2-ord (gold-standard POS) 86.66

Table 4. Unlabeled dependency accuracy (UA).
NbestRerank, ForestRerank and EarlyUpdate are
trained and tested with combined 100-best lists

 Berkeley Charniak Combine
Baseline 83.13 82.41 -----

NbestRerank 84.68 83.29 84.68
ForestRerank 84.31 83.11 85.72
EarlyUpdate 85.06 83.32 85.74

Table 3. F1 (%) scores on Test Set. The column
headed by “Berkeley” is trained and tested with
Berkley parser’s 50-best list; the column headed by
“Charniak” is trained and tested with Charniak
parser’s 50-best list; the column headed by “Com-
bine” is trained and tested with 100-best list gener-
ated by Berkeley parser and Charniak parser.

1257

“Charniak & Johnson Reranker” 8 which is a
parse reranking system and exploits various sorts
of features including 1-order lexical dependen-
cies (Charniak and Johnson, 2005), our NbestRe-
rank parser, which uses higher-order lexical
dependency features, gets a higher F1

7 Conclusion and Future Work

. Compar-
ing with the parsers combination system (Zhang
et al., 2009) which combines scores evaluated by
Berkeley parser and Charniak parser to evaluate a
parse tree, our EarlyUpdate system haven’t used
scores evaluated by first stage parsers and still
gets a higher F1 score. Although our EarlyUpdate
system uses no resources other than CTB, it still
obtains better results than other parsers which
have employed extra resources (Burkett and
Klein, 2008; Huang and Harper, 2009; Niu et al.,
2009). These comparisons allow us to confident-
ly conclude that exploitation of higher-order lexi-
cal dependencies is highly beneficial for
constituent parsing.

We have presented a method for evaluating con-
stituent trees using higher-order lexical depen-
dencies. Within a parse reranking framework, our
models rerank N-best lists and forests based on
dependency features. Experimental results show
that higher-order lexical dependencies can yield
greater improvements in constituent parsing per-
formance than commonly used first-order lexical
dependencies. The best results of our models
outperformed all previous results on the CTB,
and the dependency accuracy of generated consti-
tuent trees is significantly improved as well. All
of the results demonstrate that exploitation of

8 The F1 score of Charniak & Johnson Reranker on CTB
was reported in Niu et al. (2009).

higher-order lexical dependencies provides sig-
nificant benefits for constituent tree evaluation.
 Although all of our experiments were carried
out only on the Chinese Treebank, our method is
language independent. It can be adapted to any
languages which can represent constituent trees
with labeled dependency trees. We will apply our
methods to other languages in the future.

Acknowledgments
The research work has been funded by the Natu-
ral Science Foundation of China under Grant No.
60975053 and 61003160, supported by the Ex-
ternal Cooperation Program of the Chinese
Academy of Sciences, and also partially sup-
ported by the China-Singapore Institute of Digital
Media (CSIDM) project under grant No.
CSIDM-200804 as well. Sincere thanks to Mark
Seligman for his careful revision work.

References
Daniel M. Bikel, 2004. Intricacies of Collins' parsing

model. Computational Linguistics, 30 (4). pages
479-511.

David Burkett and Dan Klein, 2008. Two languages
are better than one (for syntactic parsing). In
EMNLP 2008.

Eugene Charniak, 2000. A maximum-entropy-inspired
parser. In NAACL 2000.

Eugene Charniak and Mark Johnson, 2005. Coarse-to-
fine n-best parsing and MaxEnt discriminative re-
ranking. In ACL 2005.

Michael Collins, 1999. Head-driven statistical models
for natural language parsing. University of Penn-
sylvania.

Michael Collins, 2002. Discriminative training me-
thods for hidden markov models: Theory and expe-
riments with perceptron algorithms. In EMNLP
2002.

Michael John Collins, 1996. A new statistical parser
based on bigram lexical dependencies. In ACL
1996, pages 184-191.

Michael Collins and Terry Koo, 2005. Discriminative
reranking for natural language parsing. Computa-
tional Linguistics, 31 (1). pages 25-70.

Michael Collins and Brian Roark, 2004. Incremental
parsing with the perceptron algorithm. In ACL
2004.

Victoria Fossum and Kevin Knight, 2009. Combining
constituent parsers. In NAACL 2009, pages 253-
256.

Individual System
(Petrov and Klein, 2007) 83.32

(Huang and Harper, 2009) 84.15
N-best Reranking

Charniak & Johnson Reranker8 83.30
Our NbestRerank System 84.68

Parsers Combination
(Zhang et al., 2009) 85.45

Using Extra Resource
(Burkett and Klein, 2008) 84.24
(Huang and Harper, 2009) 85.18

(Niu et al., 2009) 85.20
Reranking with Lexical Dependencies

Our EarlyUpdate System 85.74
Table 6. F1 (%) scores of state-of-the-art methods
compared with ours on the Chinese Treebank.

1258

Johan Hall and Joakim Nivre, 2008. A dependency-
driven parser for German dependency and constitu-
ency representations. In PaGe-08, pages 47-54.

Johan Hall, Joakim Nivre and Jens Nilsson, 2007. A
Hybrid Constituency-Dependency Parser for Swe-
dish. In NODALIDA 2007, pages 284-287.

Liang Huang, 2008. Forest reranking: Discriminative
parsing with non-local features. In ACL 2008.

Liang Huang and David Chiang, 2005. Better k-best
parsing. In IWPT 2005.

Zhongqiang Huang and Mary Harper, 2009. Self-
Training PCFG grammars with latent annotations
across languages. In ACL 2009.

Daniel Jurafsky and James H. Martin, 2008. Speech
and Language Processing: An introduction to natu-
ral language processing, computational linguistics,
and speech recognition: Prentice Hall.

Dan Klein and Christopher D. Manning, 2003a. Accu-
rate unlexicalized parsing. In ACL2003, pages 423-
430.

Dan Klein and Christopher D. Manning, 2003b. Fast
exact inference with a factored model for natural
language parsing. In NIPS 2003.

Terry Koo and Michael Collins, 2010. Efficient Third-
Order Dependency Parsers. In ACL 2010.

Takuya Matsuzaki, Yusuke Miyao and Jun'ichi Tsujii,
2005. Probabilistic CFG with latent annotations. In
ACL 2005.

Ryan McDonald, Koby Crammer and Fernando Perei-
ra, 2005. Online large-margin training of depen-
dency parsers. In ACL 2005.

Ryan McDonald and Fernando Pereira, 2006. Online
learning of approximate dependency parsing algo-
rithms. In EACL 2006.

Zheng-Yu Niu, Haifeng Wang and Hua Wu, 2009.
Exploiting heterogeneous treebanks for parsing. In
ACL 2009.

Slav Petrov, Leon Barrett, Romain Thibaux and Dan
Klein, 2006. Learning accurate, compact, and in-
terpretable tree annotation. In ACL 2006.

Slav Petrov and Dan Klein, 2007. Improved inference
for unlexicalized parsing. In ACL 2007.

Kenji Sagae and Alon Lavie, 2006. Parser combina-
tion by reparsing. In NAACL 2006, pages 129-132.

Rui Wang and Yi Zhang, 2010. Hybrid Constituent
and Dependency Parsing with Tsinghua Chinese
Treebank. In LREC 2010.

Zhiguo Wang and Chengqing Zong, 2010. Phrase
Structure Parsing with Dependency Structure. In
Coling 2010.

Fei Xia and Martha Palmer, 2001. Converting depen-
dency structures to phrase structures. In The 1st
Human Language Technology Conference (HLT-
2001).

Fei Xia, Owen Rambow, Rajesh Bhatt, Martha Palmer
and Dipti Misra Sharma, 2008. Towards a multi-
representational treebank. Proc. of the 7th
Int'lWorkshop on Treebanks and Linguistic Theo-
ries (TLT-7). pages.

Hiroyasu Yamada and Yuji Matsumoto, 2003. Statis-
tical dependency analysis with support vector ma-
chines. In IWPT 2003.

Hui Zhang, Min Zhang, Chew Lim Tan and Haizhou
Li, 2009. K-best combination of syntactic parsers.
In EMNLP 2009.

Ying Zhang, Stephan Vogel and Alex Waibel, 2004.
Interpreting BLEU/NIST scores: How much im-
provement do we need to have a better system. In
LREC 2004.

1259

