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Abstract

We present a model that represents word
meaning in context by vectors which are
modified according to the words in the tar-
get’s syntactic context. Contextualization
of a vector is realized by reweighting its
components, based on distributional infor-
mation about the context words. Evalua-
tion on a paraphrase ranking task derived
from the SemEval 2007 Lexical Substi-
tution Task shows that our model outper-
forms all previous models on this task. We
show that our model supports a wider range
of applications by evaluating it on a word
sense disambiguation task. Results show
that our model achieves state-of-the-art per-
formance.

1 Introduction

Distributional vector-space models of word mean-
ing have proven helpful for a number of basic natu-
ral language processing tasks, such as word sense
discrimination (Schütze, 1998) and disambiguation
(McCarthy et al., 2004), or modeling of selectional
preferences (Erk, 2007), and have been success-
fully used in a variety of applications like informa-
tion retrieval (Manning et al., 2008) or question
answering (Tellex et al., 2003). Standard distri-
butional models of meaning are attractive because
they are simple, have wide coverage, and, in par-
ticular, can be acquired using unsupervised meth-
ods at virtually no cost. Vector-space models of
meaning lend themselves as a basis for determining
a soft and gradual concept of semantic similarity
(e.g., through the cosine measure), which does not
rely on a fixed set of dictionary senses with their
well-known problems (Kilgarriff, 1997).

The sensitivity of word meaning to the context
of use, however, poses a major challenge for dis-
tributional semantics. Meaning vectors are based

on co-occurrence counts for words across all word
senses and usages. This means that, for instance,
any occurrence of the verb charge, such as in the
expressions charge a fee or charge a battery, is as-
signed the same vector representation, ignoring the
difference of word sense. On the other hand, the
fact that charge and impose are near-synonyms in
charge/impose a fee will not be properly reflected
in their respective meaning vectors, since the for-
mer, but not the latter, includes (context words
reflecting) the “supply electricity” sense of charge.

The problem of modeling context-sensitivity in
a distributional framework has first been addressed
in the seminal paper of Schütze (1998), who uses
second-order bag-of-words vectors for the task of
word sense discrimination. Recently, the issue
has been taken up by several approaches that in-
clude some kind of syntactic information, in part
under the heading of “distributional composition-
ality” (Mitchell and Lapata, 2008; Erk and Padó,
2008), in part as “syntax-sensitive contextualiza-
tion” (Thater et al., 2010). These approaches have
in common that the contextual influence on the
meaning of a target word w is modeled through
vector composition: The meaning of w in context c
is represented by a vector obtained by combining
the vectors of w and c using some operation such
as component-wise multiplication or addition.

The results published during the last couple of
years show a considerable increase of performance,
but at the price of an increasing complexity and
lack of intuitive transparency of the models. In
this paper, we will demonstrate that one can keep
the model simple and at the same time outperform
the state of the art. We achieve this as follows:
First, we take a different, more general view on
the basic operation of contextualization. Like the
aforementioned approaches, we model contextu-
alization as modification of the target vector, but
we do not restrict this operation to variants of vec-
tor composition, but consider a broader range of
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operations, which re-weight individual vector com-
ponents. Second, we identify the distributional
similarity score between the words defining the
vector components on the one hand, and the ac-
tual context words in a given syntactic position on
the other hand as the most effective basis for this
re-weighting.

We evaluate our method on two different tasks:
paraphrase ranking and word sense disambigua-
tion. The paraphrase ranking task has been used
in several approaches and provides benchmarks for
our system, and the controlled conditions of the
experiment make it easy to assess the influence of
different design decisions on the performance. In
practical terms, we will use a paraphrase ranking
task derived from the SemEval 2007 Lexical Sub-
stitution Task (McCarthy and Navigli, 2007). We
exceed the state of the art by almost 6% in terms
of generalized average precision.

The application to word sense disambiguation
(WSD) demonstrates that our model is more gener-
ally applicable. We phrase the WSD task as a para-
phrase ranking task: Roughly speaking, finding the
contextually appropriate word sense amounts to
identifying the WordNet synset containing the best
paraphrase candidate for the target. We evaluate
our system on the SemEval 2007 coarse-grained
unsupervised WSD task (Navigli et al., 2007). Our
results are competitive to the results reported in the
literature.

Plan of the paper. We will first review related
work in Section 2, before we present our model in
Section 3. We evaluate our model’s performance
on a paraphrase ranking task in Section 4 and on
the task of word sense disambiguation in Section 5.
Section 6 concludes.

2 Related work

Inspired by earlier work of Kintsch (2001), who
proposes a network algorithm to extract context-
specific vector representations for words in context,
Mitchell and Lapata (2008) investigate the system-
atic combination of distributional representations
of word meaning along syntactic structure. They
propose to represent the meaning of a complex ex-
pression that consists of two syntactically related
words w and w′ by a vector obtained by combin-
ing the word vectors of w and w′, and find that
component-wise multiplication performs best for
the task under consideration. They consider their
proposal primarily under the aspect of composi-

tionality, but it can also be taken to be a method to
contextualize a target word through its dependents.

Erk and Padó (2008) propose structured vector
representations, where each word is characterized
by a standard co-occurrence vector, plus separate
vector representations for the (inverse) selectional
preferences for subject, object, and other syntactic
relations. Contextualization is modeled by combin-
ing, e.g., the basic vector of the target verb with the
selectional preferences of subject and object.

Thater et al. (2010) propose a similar approach,
where word meaning is modeled as a second-order
vector obtained by summing over first-order vec-
tors representing the inverse selectional preferences
of a word’s syntactic arguments. Contextualization
is modeled as above in terms of vector composi-
tion. Among the aforementioned approaches, their
proposal performs best, but at the cost of a rather
complex and unintuitive concept of second-order
co-occurrence vectors.

Other approaches achieve good results without
using vector composition. Dinu and Lapata (2010)
represent word meaning in context by using a la-
tent variable model, where context-dependence is
modeled by conditioning the latent variable on the
context in which a word occurs. Similar proposals
have been made by Reisinger and Mooney (2010a)
and Li et al. (2010).

A different approach has been taken by Erk and
Padó (2010) and Reisinger and Mooney (2010b).
Instead of “refining” vector representations rang-
ing over all words in a corpus by means of vector
composition, they start out from “token” vectors
for individual instances of words in context, and
then group these token vectors into different sense-
specific clusters.

3 The model

We propose a model of word meaning that allows
the computation of vector representations for in-
dividual uses of words, characterizing the specific
meaning of a word in its sentential context. For
instance, the vector of the verb charge in the ex-
pression charge a tax should reflect its monetary
sense, while its vector in the expression charge
a battery should be representative of its “supply
electricity” sense.

We derive a contextualized vector from the basic
meaning vector of a target word by reweighting
its components on the basis of the context of the
occurrence, where we take the context to be made
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Figure 1: Graphical representation for a basic vector for charge (a), and two contextualized vectors for
charge in context charge a tax, obtained by (b) a strict and (c) our more sophisticated contextualization
method based on semantic similarity.

up of the direct syntactic dependents of the target
(and its direct inverse dependents). The dimensions
of both basic and contextualized vectors represent
co-occurring words in specific syntactic relations.
Fig. 1a shows the basic vector for charge as an ex-
ample, where we use arrows to indicate the internal
structure of the vector; the weights of the vector
components are omitted for simplicity.

The operation of contextualization reinforces
those dimensions of the basic vector that are
licensed by the context of the specific instance
under consideration. The easiest way of adapting
the vector of a word to its context of use is to retain
only those dimensions corresponding to its syntac-
tic neighbors, which results in an extremely sparse
vector with zero values for most of its dimensions.
For instance, contextualizing the vector for charge
in charge a tax (Fig. 1b) would zero out all (r,w)
components with r 6= OBJ or w 6= tax, retaining
only one non-zero dimension (the one for tax).

As we will see in Section 4, this simple approach
is surprisingly successful. However, we achieve
substantially better results by leveraging semantic
similarity information about the context words. In-
stead of considering only the dimensions of the
context words themselves, we retain dimensions of
those words that are distributionally similar to the
context words, weighted by their similarity score.
The vector for charge in charge a tax will then con-
tain additional non-zero dimensions for all words
similar to tax (Fig. 1c). In a way, similarity-based
contextualization is a formalization of the intuitive
concept of “the meaning of w in the context of a
word like w′.”

Formal description. We assume a set W of
words and a set R of syntactic relations. The latter
includes dependency relation labels such as SUBJ

or OBJ for subject and object, as well as the cor-
responding inverse relations such as SUBJ−1. We

represent the meaning of any word w ∈W by a
vector in the vector space V spanned by the set of
basis vectors {e(r,w′) | r ∈ R,w′ ∈W}. Such a vec-
tor records the association strength between w and
any context word w′ occurring in relation r. Specif-
ically, we associate a word w ∈W with a vector
v(w) ∈V by setting

v(w) := ∑
r∈R,w′∈W

f (w,r,w′) · e(r,w′)

where f is a function that assigns a weight to the
dependency triple (w,r,w′). In the simplest case,
this could be the frequency of w occurring together
with w′ in relation r in a corpus of dependency trees.
In the experiments reported below, we use point-
wise mutual information (Church and Hanks, 1990)
instead, as it proved superior to raw frequency
counts:

PMI(w,r,w′) = log
p(w,w′ | r)

p(w, · | r)p(·,w′ | r)

Here the dots stand for marginalization over the
relevant variables.

Given an occurrence of a word w in the context
of another word wc, related by the syntactic relation
rc, we now define a contextualized version of v(w)
by reweighting the vector components. We set

vrc,wc(w) := ∑
r∈R,w′∈W

αrc,wc,r,w′ · f (w,r,w′) · e(r,w′)

Here, the weights αrc,wc,r,w′ quantify the degree to
which a vector dimension (r,w′) is compatible with
the observed context (rc,wc). We consider three
alternative definitions of these weights, correspond-
ing to the three cases shown in Figure 1:

No contextualization: αrc,wc,r,w′ := 1

In this case the definition of vrc,wc(w) coin-
cides with that of v(w).
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Strict contextualization:

αrc,wc,r,w′ := δrc,rδwc,w′

=

{
1 if rc = r and wc = w′

0 else

Here, we only retain the one dimension
(rc,wc) that is licensed by the context and set
all other dimensions to 0.

Similarity-based contextualization:

αrc,wc,r,w′ := δrc,r · sim(wc,w′)

=

{
sim(wc,w′) if rc = r
0 else

Here, we generalize over the surface context
and license all words w′ that are semantically
similar to the context word wc.

While any measure of semantic similarity can
be employed, in the experiments reported be-
low we compute the similarity between wc

and w′ as the cosine of the angle between their
basic vector representations v(wc) and v(w′).

Of course, we want to take into account more
than a single context word for a given occurrence
of w. Given context words w1, . . . ,wn and corre-
sponding syntactic relations r1, . . . ,rn, we obtain a
contextualized vector of w by superimposing the
vectors vri,wi (1≤ i≤ n) through vector addition:

vr1,w1,...,rn,wn(w) :=
n

∑
i=1

vri,wi(w)

The resulting vector vr1,w1,...,rn,wn(w) is our com-
pletely contextualized representation for the
word w that contains information about all context
words.

4 Ranking Paraphrases

In this section, we evaluate to what extent our
model supports the choice of contextually appropri-
ate paraphrases for different uses of a target word.
We follow previous work (Thater et al., 2010; Erk
and Padó, 2010; Dinu and Lapata, 2010) and con-
sider the following task: We are given a target
word w in a sentential context and a set of refer-
ence words w1, . . . ,wk, where each wi is a lexical
paraphrase of w in one of w’s senses. The task is
to rank the candidate words wi according to their
appropriateness as paraphrases of w in the given
context. Ideally, the model will rank, for instance,
levy higher than recharge as a paraphrase of charge
in charge a fee, and lower in charge the battery.

4.1 Experimental Set-up
Gold standard. We derive our gold standard
from the SemEval 2007 lexical substitution task
dataset (McCarthy and Navigli, 2007). The orig-
inal dataset contains 10 instances for each of 201
target words (nouns, verbs, adjectives and adverbs)
in different sentential contexts. For each instance,
five subjects were asked to name appropriate para-
phrases. Table 1 shows an example of three in-
stances of charge together with their gold standard
paraphrases. Each paraphrase comes with a weight,
which corresponds to the number of times it was
chosen by the different subjects.

The original task addresses two subtasks: identi-
fying paraphrase candidates and ranking them ac-
cording to the context. Here, we restrict ourselves
to the second subtask. Following previous work,
we pool all annotated gold-standard paraphrases
of a target word w across all contexts into a set of
paraphrase candidates for w, which our model is
supposed to rank with respect to contextual appro-
priateness for the individual instances of w. We do
not extract multi-word expressions, for which our
model cannot compute vector representations, and
obtain a dataset consisting of 1986 instances for
197 different words. In our derived dataset, each
word type has an average of 17 paraphrases, 3.5
of which are correct (on average) for individual
instances of the word.

Vector space. We draw on dependency trees ob-
tained by parsing the English Gigaword corpus
(LDC2003T05) to build our vector space model.
The corpus consists of news from several newswire
services, and contains over four million documents.
We used the Stanford parser (de Marneffe et al.,
2006) to parse the corpus. The resulting depen-
dency trees were modified in a post-processing step
by folding prepositions into edge labels to make
the relation between a head word and the head
noun of a prepositional phrase explicit. Further-
more, we collapsed particle verb constructions into
single nodes. To facilitate processing and reduce
noise, we excluded all dependency triples that oc-
curred less than 3 times or had a PMI score below 0,
which resulted in a corpus of about 888 million de-
pendency triples accounting for 28 million triple
types.

To further reduce computational costs, we set
higher frequency and PMI thresholds for the com-
putation of the similarity scores used in the contex-
tualization of vectors: in the experiments reported
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Sentence Substitution candidates

Annual fees are charged on a pro-rata basis [. . . ] levy 2; require 1; impose 1; demand 1
Plug in you h 10 in the usb outlet and it will charge
without the plug in adaptor.

recharge 2; supply electricity 1; charge up 1

Pauline Gilmore, 32, was charged with possessing
a blast bomb.

indict 3; accuse of 2; accuse 1

Table 1: Three examples from the lexical substitution task data set for the target word charge.

below, we consider only (vectors based on) depen-
dency triples that occur at least 5 times and have a
PMI score of at least 2. Note that these thresholds
are used only to speed up processing. The effect on
the overall performance is minimal: an experiment
on a randomly chosen 10% subset of the test set
shows that we obtain almost identical scores, but
runtime is reduced by a factor of more than 35.

Scoring. We rank the paraphrase candidates for a
target word in context by the similarity of their ba-
sic vectors to the contextualized vector of the target.
Contextualizing both the target and the paraphrase
candidate has been observed to reduce performance
(Thater et al., 2010; Dinu and Lapata, 2010). Sim-
ilarity is measured in terms of the dot product of
the vectors. In cases where the Stanford parser
produced dependency trees that are inconsistent
with the information about the target word in the
gold standard, or where the contextualized vector
is zero, we use the basic vector of the target as a
fallback. This fallback method applies to 7% of all
instances in the dataset.

Evaluation method. Following previous work
(Thater et al., 2010; Erk and Padó, 2010), we use
Generalized Average Precision (Kishida, 2005) to
compare the ranking predicted by our model with
the gold standard. GAP takes values between 1.0
and 0.0, where a value of 1.0 indicates that all
correct items are ranked before all incorrect ones,
and that higher-weighted items are ranked before
lower-weighted ones. Statistical significance of
differences in performance are computed by ap-
proximate randomization (Chinchor et al., 1993).

4.2 Results

Table 2 shows results for three versions of our
model, corresponding to the three definitions of the
weighting factors that were detailed in Section 3:

(a) No contextualization

POS Random No context Strict Sim.-based

Verb 27.4 38.4 41.6 48.8
Noun 30.1 45.2 47.3 52.9

Adj 28.4 42.2 45.8 51.1
Adv 36.4 51.6 50.6 55.3
All 30.0 43.7 46.0 51.7

Table 2: Results for our model using different con-
textualization methods, compared to a random base-
line.

(b) Strict contextualization

(c) Similarity-based contextualization

In addition, we show the performance of a baseline
that ranks paraphrase candidates randomly.

We observe that similarity-based contextualiza-
tion is very effective, improving performance by
8% compared to the “no context” variant, and still
by almost 6% compared to the strict variant that
uses surface context only. The differences are sta-
tistically significant (p < 0.001).

Figure 2 provides a different view on system
performance. It shows how often the k first can-
didates in the ranking contain at least one gold
standard paraphrase. In particular, we can observe
that similarity-based contextualization predicts a
good top-ranked candidate in 55% of the cases; the
top three contain a correct paraphrases in more than
80% of the cases.

Table 3 compares our model to previous models
that have been evaluated using the Lexical Substitu-
tion Task (LST) dataset. Our model outperforms all
previously proposed methods. Although all mod-
els have been evaluated on test-sets derived from
the LST dataset in essentially the same way, the
datasets differ slightly due to technical details, so
strictly speaking the results cannot be compared
directly. However, since all authors report similar
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Figure 2: The figure shows how often the k first
candidates in the ranking contain at least one gold
standard paraphrase (for k ≤ 10).

Model GAP Random

Erk and Padó (2008) 27.4† N/A
Erk and Padó (2010) 38.6‡ 28.5

Dinu and Lapata (2010) 42.9 30.3
Thater et al. (2010) 46.0 30.0

Our model 51.7 30.0
† Cited from Erk and Padó (2010). The result refers to
a small subset of the Lexical Substitution Task dataset.
‡ Evaluated on nouns, verbs, and adjectives (not adv.).

Table 3: Comparison to previous work

scores for the random baselines, we assume that the
complexity of the subsets used in previous work is
more or less comparable.

Learning curve. The corpus used in our study
is much larger than the British National Corpus
(BNC) that has been used, for instance, in Erk
and Padó’s (2008; 2010) models. To assess the
contribution of the corpus size to the performance
of our model, we randomized the order of depen-
dency trees in the parsed Gigaword corpus and
constructed vector space models using increasing
subsets of the complete corpus with a step size of
5%. The resulting learning curve is shown in Fig-
ure 3. We see that our model performs well even
on small subsets of Gigaword. When we use only
5% of the dependency trees, which is roughly two
third of the size of BNC, we already obtain a GAP
score of 46.0%, which is 5.7% less than our result
with full Gigaword, but 7.4% more than the best
reported BNC-based model.

Syntactic information. Finally, we investigated
the impact of syntactic information by comparing
our model against two variants: (i) a “bag of words”
variant that does not use syntactic information at
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Figure 3: Learning curve: GAP with varying cor-
pus size.

all and (ii) a “syntactically filtered” variant similar
to Padó and Lapata (2007) that uses syntactic infor-
mation but does not explicitly represent syntactic
role information in the vector representations. Vari-
ant (i) is based on co-occurrence statistics on pairs
(w,w′) of content words within a five-word win-
dow; for variant (ii) we consider all pairs (w,w′)
such that w and w′ are linked by some syntactic
relation. Technically, we represent these pairs as
dependency triples involving some arbitrary fixed
syntactic role label.

We observe that syntactic information con-
tributes to the success of our approach both by
selecting relevant context words and by character-
izing their syntactic relations: In terms of GAP, the
“bag of words” variant achieves 48.7%, the “syntac-
tically filtered” variant 50.9%, and our full model
51.7%. The relatively small difference between
the two syntactic variants, while maybe surprising
at first sight, is explained by the fact that in most
cases the syntactic role of a dependency triple is
predictable from the words it connects: For more
than 88% of all dependency triples in Gigaword,
the syntactic role is actually the most frequent one
for the respective pair of words. Yet, the difference
between the two variants is statistically significant
(p < 0.05): The model supports correct decisions
in those cases where syntactic role information mat-
ters.

5 Word Sense Disambiguation

In a second experiment, we applied our model to
the task of word-sense disambiguation. For an in-
dividual instance of a word, we predict the correct
WordNet sense (Fellbaum, 1998) of the target based
on its immediate syntactic context, without relying
on any manually annotated training data. Our sys-
tem is knowledge-based, according to the classifi-
cation of WSD approaches proposed in McCarthy
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(2009) and Navigli (2009). It is a knowledge-lean
system, in contrast to many other systems that ex-
ploit external resources, since it uses only a small
subset of the structural information provided by
WordNet – just as much as is required to adapt our
contextualization model to the WSD task.

The state of the art in knowledge-based WSD
systems not trained on annotated data is defined by
the models of Navigli and Velardi (2005), Ponzetto
and Navigli (2010) and Li et al. (2010). The former
two rely on a rich inventory of additional knowl-
edge resources. Li et al. (2010) restricts itself to
WordNet information in a similar way as our ap-
proach, and therefore is our natural benchmark.

5.1 Method

We frame the task of choosing the right WordNet
sense as a paraphrase ranking task like the one con-
sidered in Section 4, with all possible synonyms of
the target word constituting the set of (lexical) para-
phrase candidates. The basic idea for predicting a
sense of the target word is to choose the synset that
contains the most similar paraphrase. As the Word-
Net synsets of the target word are often singletons,
just containing the target itself, we additionally in-
clude all words from direct hypernym, hyponym,
and similar synsets (WordNet relation “similar to”).
We ignore multiword expressions since our model
does not provide vector representations for them.

While we generally found the richer collection
of candidates to improve system performance, the
inclusion of hypernyms can have a negative ef-
fect on sense discrimination, since different word
senses frequently share the same hypernym. To
counter this effect, we consider the average similar-
ity scores of the best two paraphrase candidates of
each sense rather than relying on the most similar
candidate alone. More technically speaking, we
collect all relevant sense paraphrases ci,1, . . . ,ci,ki

for each sense si of the target word. We compare
the contextualized vector of the target word to the
basic meaning representations of these candidate
words, obtaining a similarity score for each of them.
The score of the sense si is then defined as the aver-
age of the scores of the two top-scoring candidate
words, and the sense with the highest such score
is predicted. Our model fails to predict a sense
for an ambiguous target if the candidate set of any
sense is empty, which can happen in cases where
all applicable sense paraphrases are multiword ex-
pressions.

We will experiment with two instantiations of
this model: the basic version described above,
and a version that additionally integrates informa-
tion about prior sense distributions by multiplying
the score of each synset with its prior probability,
and falls back to the most frequent sense in cases
where the basic model fails to make a prediction.
Prior probabilities are estimated by using sense
frequency information from WordNet.

5.2 Experimental setup
Gold standard. We evaluate our model on the
SemEval 2007 Coarse-grained English All-words
Task (Navigli et al., 2007) test set. The test set
consists of 5,377 words of running text from five
documents from different genres. All open-class
words in this corpus are annotated with coarse-
grained sense labels, which are defined as clusters
of WordNet senses and are obtained by mapping
WordNet 2.1 senses to the Oxford Dictionary of
English (Soanes and Stevenson, 2003). On a subset
of 710 instances an inter-annotator agreement of
93.80% was reported, which can be considered the
upper bound for any WSD system on the data set.

Predicting coarse-grained senses. The method
described in Section 5.1 predicts (fine-grained)
WordNet senses. It can be straightforwardly ex-
tended to the coarse-grained WSD task by picking
the sense cluster containing the top-ranked synset.
We achieved slightly better results by applying a
different method: We normalize the scores of all
synsets so that they sum up to 1, which allows us
to interpret them as a probability distribution. We
then compute probabilities for each sense cluster
by aggregating over its constituent synsets, and pre-
dict the most probable one (which need not be the
one containing the most probable synset).

Baselines. We compare our model against a ran-
dom baseline and the most frequent sense (MFS)
baseline that always predicts the sense with the
highest sense frequency according to WordNet.

5.3 Results
Table 4 summarizes results on the test set in terms
of precision, and compares them to two baselines
and the state-of-the-art system of Li et al. (2010).
Except in the case of our basic system (-MFS) with-
out prior information, which cannot use informa-
tion about most frequent senses as fallback and
covers only 74.6% of the test cases, coverage is
100% and therefore precision coincides with recall.
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Model +MFS -MFS

Random 52.4 52.4
Most frequent sense (MFS) 78.9 —

Li et al. (2010) 81.3‡ 78.8‡

Our Model 80.9 78.7†

Combined system 82.2 78.9
† Covers 74.6% of the dataset.
‡ Results reported here are higher than the results re-
ported by Li et al. (2010). Our results are based on
the scoring script provided by the organizers of the Se-
mEval 2007 shared task. Differences are due to details
such as sensitivity to capitalization when system predic-
tions are compared with the gold standard.

Table 4: Precision of our model on the WSD task,
with (+MFS) and without (-MFS) prior knowledge
about sense distributions, compared to the state-of-
the-art system by Li et al.

We can see that our model’s performance is com-
petitive with the state of the art: In both settings our
model outperforms the two baselines, and reaches
the performance level of the benchmark system of
Li et al. (2010).

Interestingly, the strengths of our and Li el al.’s
systems are complementary. For example, in the
sentence “The diners at my table simply lit more
Gauloises [...],” our model correctly predicts the
sense “person eating a meal” of the target din-
ers, based on the leading sense paraphrase eater.
The system by Li et al. (2010), on the other hand,
predicts the sense “passenger car where food is
served”, which fits the general topic similarly well,
but is highly implausible in the given syntactic con-
text. However, in the sentence “The program text,
or source, was converted into machine instructions
using a special program called a compiler,” the
system by Li et al. (2010) is able to leverage topi-
cal clues to correctly predict the software sense of
compiler, whereas our system ranks the sense para-
phrase author over program and thus incorrectly
predicts the sense “person who compiles encyclo-
pedias.”

Given this complementary nature of the two sys-
tems, we tried to combine them in a straightforward
way, by averaging their predicted probability dis-
tributions (defaulting to Li et al. for instances not
covered by our model). Table 4 shows that the com-
bined system outperforms both individual systems
both with and without MFS information. In the
former case (with MFS), the improvement of 0.9%

is statistically significant (p < 0.01) according to
McNemar’s test.

6 Conclusions and Future Work

We have presented a technically simple and in-
tuitively transparent vector space model of word
meaning in context. Contextualization of a vector
is realized by reweighting its components, using
semantic similarity information about the words
occurring in the target’s local syntactic context.

We evaluated our method on a paraphrase rank-
ing task derived from the SemEval 2007 Lexical
Substitution Task dataset and showed that it sub-
stantially outperforms all previous approaches, ex-
ceeding the state of the art by almost 6% in terms
of generalized average precision. We showed that
our model supports a wider range of application
by evaluating it on a word sense disambiguation
task. The model reaches the performance level of
the state-of-the-art benchmark system of Li et al.
(2010). The combination of the two systems per-
forms significantly better than either system used in
isolation, and outperforms the most-frequent-sense
baseline by over 3%.

The contextualization operation takes only the
words in the targets local syntactic context into ac-
count. A natural direction for future research is to
generalize the contextualization operation so that
the context words themselves can be contextualized
in a recursive fashion and all words in the target’s
complete syntactic environment can contribute in-
formation.

Our present model incorporates syntactic rela-
tions, although semantic information should ideally
be expressed in terms of underlying semantic roles.
We have seen that the use of syntactically struc-
tured vector representations leads to a relatively
small, but statistically significant increase in perfor-
mance, compared to variants of our model that do
not represent rich syntactic information. We expect
that further progress can be made by integrating
semantic role information.
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