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Abstract

Multi-modality manifold-ranking is re-
cently used successfully in topic-focused
multi-document summarization. This ap-
proach is based on Bag-Of-Words (BOW)
assumption where the pair-wise similar-
ity values between sentences are computed
using the standard cosine similarity mea-
sure (TF*IDF). However, the major lim-
itation of the TF*IDF approach is that it
only retains the frequency of the words
and disregards the syntactic and semantic
information. In this paper, we propose the
use of syntactic and shallow semantic ker-
nels for computing the relevance between
the sentences. We argue that the addi-
tion of syntactic and semantic information
can improve the performance of the multi-
modality manifold-ranking algorithm. Ex-
tensive experiments on the DUC bench-
mark datasets prove the effectiveness of
our approach.

1 Introduction

Text summarization is a good way to compress a
huge amount of information into a concise form
by selecting the most important information and
discarding redundant information. According to
Mani (2001), automatic text summarization takes
a partially-structured source text from multiple
texts written about the same topic, extracts in-
formation content from it, and presents the most
important content to the user in a manner sensi-
tive to the user’s needs. In contrast to summariz-
ing one document that is termed as single docu-
ment summarization, multi-document summariza-
tion deals with multiple documents as sources that
are related to one main topic under consideration.
As compared to generic summarization that must
contain the core information central to the source

documents, the main goal of topic-focused multi-
document summarization (i.e. query-based multi-
document summarization) is to create from the
documents a summary that can answer the need
for information expressed in the topic or explain
the topic (Wan et al., 2007). In this paper, we con-
sider the problem of producing extraction-based1

topic-focused multi-document summaries given a
collection of documents.

In recent years, a variety of manifold-ranking
based methods are applied successfully to topic-
focused multi-document summarization. The ba-
sic manifold-ranking method is a typical graph-
based summarization method that makes uni-
form use of the sentence-to-sentence relation-
ships and the sentence-to-topic relationships in
a manifold-ranking process (Wan et al., 2007).
In the multi-modality manifold-ranking algorithm,
sentence relationships are classified into within-
document relationships and cross-document re-
lationships, and each kind of relationships are
considered as a separate modality (graph) (Wan
and Xiao, 2009). These methods are based
on Bag-Of-Words (BOW) assumption where the
pair-wise similarity values between the sentences
are computed using the standard cosine measure
(TF*IDF). The major limitation of the TF*IDF ap-
proach is that it only retains the frequency of the
words and does not take into account the sequence
of them (word ordering). It ignores the syntactic
and semantic structure of the sentences and thus,
cannot distinguish between “The police shot the
gunman” and “The gunman shot the police”. Tra-
ditionally, information extraction techniques are
based on the BOW approach augmented by lan-
guage modeling. But when the task like multi-
document summarization requires the use of more

1An extract summary consists of sentences extracted from
the document while an abstract summary employs words and
phrases not appearing in the original document (Mani and
Maybury, 1999).
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complex semantics, the approaches based on only
BOW are often inadequate to perform fine-level
textual analysis. Although some improvements on
BOW are given by the use of dependency trees and
syntactic parse trees (Hirao et al., 2004), (Pun-
yakanok et al., 2004), (Zhang and Lee, 2003b),
but these too are not adequate in terms of docu-
ments having very long and articulated sentences
or even paragraphs. Shallow semantic representa-
tions could prevent the sparseness of deep struc-
tural approaches and the weakness of BOW mod-
els (Moschitti et al., 2007). Thus, attempting an
application of syntactic and semantic information
in measuring the relevance between the sentences
seems natural and hardly controversial.

In this paper, we extensively study the impact of
syntactic and semantic information in computing
the similarity between the sentences in the multi-
modality manifold learning framework for topic-
focused multi-document summarization. We be-
lieve that the augmentation of the similarity mea-
sures based on the syntactic and semantic infor-
mation could be helpful to characterize the re-
lation between the sentences in a more effective
way than the traditional TF*IDF based similarity
measures alone. To include syntactic and seman-
tic information into the multi-modality manifold-
ranking framework, we apply the tree kernel func-
tions (Collins and Duffy, 2001) and re-implement
the syntactic and shallow semantic tree kernel
model according to Moschitti et al. (2007). We
run our experiments on the DUC2-2006 bench-
mark dataset, and the results show that the ad-
dition of syntactic and semantic information im-
proves the performance of the BOW-based multi-
modality manifold-ranking approach. The rest of
this paper is organized as follows: Section 2 fo-
cuses on the related work, Section 3 describes the
multi-modality manifold ranking model, Section 4
discusses the syntactic and shallow semantic ker-
nels, Section 5 presents the experimental details
with evaluation results and finally, Section 6 con-
cludes the paper.

2 Related Work

In recent years, researchers have become more
interested in topic-focused summarization and
hence, different methods have been proposed
ranging from heuristic extensions of generic
summarization schemes (by incorporating topic-

2http://duc.nist.gov/

biased information) to novel ones. For instance,
Nastase (2008) expands the query by using ency-
clopedic knowledge in Wikipedia and use the topic
expanded words with activated nodes in the graph
to produce an extractive summary. Hal Daumé
and Marcu (2006) present BAYESUM (“Bayesian
summarization”), a sentence extraction model for
query-focused summarization.

Wan et al. (2007) propose a manifold-ranking
method to make uniform use of sentence-to-
sentence and sentence-to-topic relationships
whereas the use of multi-modality manifold-
ranking algorithm is shown in Wan and
Xiao (2009). However, these methods use
the standard cosine similarity measure to compute
the relatedness between the sentences ignoring
the syntactic and semantic information. The
importance of syntactic and semantic features in
finding textual similarity is described by Zhang
and Lee (2003a), Moschitti et al. (2007), and
Moschitti and Basili (2006). An effective way
to integrate syntactic and semantic structures
in machine learning algorithms is the use of
tree kernel functions (Collins and Duffy, 2001)
which has been successfully applied to question
classification (Zhang and Lee, 2003a; Moschitti
and Basili, 2006). In this paper, we use the tree
kernel functions and to the best of our knowledge,
no study has used tree kernel functions before to
encode syntactic/semantic information for more
complex tasks such as computing the relatedness
between the sentences in the multi-modality
manifold ranking algorithm for topic-focused
multi-document summarization.

3 Multi-Modality Manifold-Ranking
Model

In this section, we present the theoretical de-
tails of the manifold-ranking method (Zhou et
al., 2003a; Zhou et al., 2003b), a universal rank-
ing algorithm. This method is employed to rank
data points and has been successfully applied in
topic-focused document summarization in Wan et
al. (2007) where the data points refer to the topic
description and all the sentences in the documents.
The manifold-ranking process for the summariza-
tion task can be formalized as follows (Wan and
Xiao, 2009):

Given a set of data points � =
{x0, x1, ⋅ ⋅ ⋅ , xn} ⊂ Rm, the first point x0
represents the topic description (query point) and
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the rest n points represent all the sentences in the
documents (data points to be ranked). The basic
manifold-ranking algorithm treats the sentence
relationships in a single modality (Wan et al.,
2007) whereas, in Wan and Xiao (2009), the
relationships between the sentences in a document
set are classified as either within-document
relationship or cross-document relationship to
form two separate modalities to reflect the local
information channel and the global information
channel between the sentences, respectively.
The two modalities are applied in the multi-
modality manifold-ranking algorithm for ranking
the sentences effectively. Based on each kind
of modality, an undirected graph is built to
reflect each kind of sentence relationships. Let
W a =

[
W a

ij

]
(n+1)×(n+1)

be the within-document

affinity matrix containing only the within-
document links for the n + 1 data points, where
W a

ij is the cosine similarity3 value between xi
and xj if xi and xj belong to the same document
or one of xi and xj is x0; Otherwise, W a

ij is set

to 0. Similarly, let W b =
[
W b

ij

]
(n+1)×(n+1)

be

the cross-document affinity matrix containing
the cross-document links, where W b

ij is the
cosine similarity value between xi and xj if xi
and xj belong to different documents or one
of xi and xj is x0; Otherwise, W b

ij is set to 0.
All the relationships between the topic, x0 and
any document sentence xi (i ≥ 1) are included
in both W a and W b. Then, W a and W b are
normalized by Sa = (Da)−

1
2 W a (Da)−

1
2 and

Sb =
(
Db
)− 1

2 W b (Da)−
1
2 , respectively, where

Da and Db are the diagonal matrices with (i, i)-
element equal to the sum of the ith row of W a

and W b, respectively. Then the multi-modality
learning task for topic-focused summarization is
to infer the ranking function f from W a, W b and
y:
{
(W a, Da, Sa) ;

(
W b, Db, Sb

)
; y
}
→ f .

Linear Fusion: For fusing the two modalities,
we use the linear fusion scheme as this was shown
to perform the best in Wan and Xiao (2009). This
scheme fuses the constraints from Sa, Sb and y
simultaneously by a weighted sum. The cost func-
tion associated with f is defined as:

3We augment syntactic and/or semantic information with
this measure in our proposed model using the syntactic and/or
shallow semantic kernels described in Section 4 and argue
that the combined measure performs better.

Q(f) = � ⋅
n∑

i,j=0

W a
ij ∣

1√
Da

ii

fi − 1√
Da

jj

fj ∣2 +

� ⋅
n∑

i,j=0

W b
ij ∣

1√
Db

ii

fi − 1√
Db

jj

fj ∣2 + � ⋅
n∑

i=0

∣fi − yi∣2 (1)

where �, �, and � capture the trade-off between
the constraints4.

As discussed previously, the basic multi-
modality manifold-ranking model lacks sensitiv-
ity to the context in which the words appear
since it is solely based on the BOW assumption.
It ignores the internal structure of the sentences
and does not consider word orders. Our aim in
this paper is to propose a similarity measure in
which syntactic and/or semantic information can
be added to enhance the multi-modality manifold-
ranking model by encoding the relational informa-
tion between the words in sentences. We claim
that for a complex task like topic-focused multi-
document summarization where the relatedness
between the document sentences is an important
factor, the multi-modality manifold algorithm for
ranking sentences would perform more effectively
if we could incorporate the syntactic and seman-
tic information with the standard cosine measure
(i.e. TF*IDF) in calculating the similarity between
sentences. In the next section, we describe how
we can encode syntactic and semantic structures
in calculating the similarity between sentences.

4 Syntactic and Shallow Semantic
Structures

Given a sentence (or query5), we first parse it
into a syntactic tree using a parser like (Charniak,
1999) and then, calculate the similarity between
the two trees using the tree kernel (discussed in
Section 4.1). However, syntactic information is
often not adequate when dealing with long and
articulated sentences or paragraphs. Shallow se-
mantic representations, bearing a more compact
information, could prevent the sparseness of deep
structural approaches (Moschitti et al., 2007). Ini-
tiatives such as PropBank (PB) (Kingsbury and
Palmer, 2002) have made possible the design of
accurate automatic Semantic Role Labeling (SRL)
systems like ASSERT (Hacioglu et al., 2003).

4The first two terms of the right-hand side in the cost func-
tion are the smoothness constraints for the two modalities
while the last term denotes the fitting constraint.

5The query is denoted as the first point in the data space
of the manifold ranking framework and represented by x0.
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Figure 1: Example of semantic trees

For example, consider the PB annotation:

[ARG0 all][TARGET use][ARG1
the french franc][ARG2
as their currency]

Such annotation can be used to design a shal-
low semantic representation that can be matched
against other semantically similar sentences, e.g.

[ARG0 the Vatican][TARGET use]
[ARG1 the Italian lira][ARG2
as their currency]

In order to calculate the semantic similarity be-
tween the sentences, we first represent the anno-
tated sentence (or query) using the tree structures
like Figure 1 which we call Semantic Tree (ST). In
the semantic tree, arguments are replaced with the
most important word-often referred to as the se-
mantic head. We look for noun first, then verb,
then adjective, then adverb to find the semantic
head in the argument. If none of these is present,
we take the first word of the argument as the se-
mantic head. This reduces the data sparseness
with respect to a typical cosine measure represen-
tation used in the basic multi-modality manifold-
ranking model.

4.1 Tree Kernels
Once we build the trees (syntactic or semantic),
our next task is to measure the similarity be-
tween the trees. For this, every tree T is rep-
resented by an m dimensional vector v(T ) =
(v1(T ), v2(T ), ⋅ ⋅ ⋅ vm(T )), where the i-th element
vi(T ) is the number of occurrences of the i-th tree
fragment in tree T . The tree fragments of a tree
are all of its sub-trees which include at least one
production with the restriction that no production

Figure 2: (a) An example tree (b) The sub-trees of
the NP covering “the press”.

rules can be broken into incomplete parts. Fig-
ure 2 shows an example tree and a portion of its
subtrees.

Implicitly we enumerate all the possible tree
fragments 1, 2, ⋅ ⋅ ⋅ ,m. These fragments are the
axis of this m-dimensional space. Note that this
needs to be done only implicitly, since the num-
ber m is extremely large. Because of this, (Collins
and Duffy, 2001) defines the tree kernel algorithm
whose computational complexity does not depend
on m.

The tree kernel of two trees T1 and T2 is actually
the inner product of v(T1) and v(T2):

TK(T1, T2) = v(T1).v(T2) (2)

We define the indicator function Ii(n) to be 1
if the sub-tree i is seen rooted at node n and 0
otherwise. It follows:

vi(T1) =
∑

n1∈N1

Ii(n1)

vi(T2) =
∑

n2∈N2

Ii(n2)

where, N1 andN2 are the set of nodes in T1 and
T2 respectively. So, we can derive:
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TK(T1, T2) = v(T1).v(T2)

=
∑

i

vi(T1)vi(T2)

=
∑

n1∈N1

∑

n2∈N2

∑

i

Ii(n1)Ii(n2)

=
∑

n1∈N1

∑

n2∈N2

C(n1, n2) (3)

where, we define C(n1, n2) =
∑

i Ii(n1)Ii(n2).
Next, we note that C(n1, n2) can be computed in
polynomial time, due to the following recursive
definition:

1. If the productions at n1 and n2 are different
then C(n1, n2) = 0

2. If the productions at n1 and n2 are the
same, and n1 and n2 are pre-terminals, then
C(n1, n2) = 1

3. Else if the productions at n1 and n2 are not
pre-terminals,

C(n1, n2) =

nc(n1)∏

j=1

(1 + C(cℎ(n1, j), cℎ(n2, j))) (4)

where, nc(n1) is the number of children of n1
in the tree; because the productions at n1 and n2
are the same, we have nc(n1) = nc(n2). The i-th
child-node of n1 is cℎ(n1, i). TK is the similarity
value (tree kernel) between the sentences s (and/or
the query sentence q) based on the syntactic struc-
ture. For example, for the following sentence s
and query q we get the following score:

Query (q): Describe steps taken and worldwide
reaction prior to introduction of the Euro on
January 1, 1999. Include predictions and ex-
pectations reported in the press.

Sentence (s): Europe’s new currency, the euro,
will rival the U.S. dollar as an international
currency over the long term, Der Spiegel
magazine reported Sunday.

Score: 65.5

4.2 Shallow Semantic Tree Kernel (SSTK)
The tree kernel (TK) function computes the num-
ber of common subtrees between two trees. Such
subtrees are subject to the constraint that their
nodes are taken with all or none of the children

they have in the original tree. Though, this defini-
tion of subtrees makes the TK function appropriate
for syntactic trees but at the same time makes it not
well suited for the semantic trees (ST). The criti-
cal aspect of steps (1), (2) and (3) of the TK func-
tion is that the productions of two evaluated nodes
have to be identical to allow the match of further
descendants. This means that common substruc-
tures cannot be composed by a node with only
some of its children as an effective ST representa-
tion would require. (Moschitti et al., 2007) solve
this problem by designing the Shallow Semantic
Tree Kernel (SSTK) which allows to match por-
tions of a ST. The SSTK is based on two ideas:
first, it changes the ST by adding SLOT nodes.
These accommodate argument labels in a specific
order i.e. it provides a fixed number of slots, possi-
bly filled with null arguments, that encode all pos-
sible predicate arguments. Leaf nodes are filled
with the wildcard character * but they may alterna-
tively accommodate additional information. The
slot nodes are used in such a way that the adopted
TK function can generate fragments containing
one or more children. As previously pointed out,
if the arguments were directly attached to the root
node, the kernel function would only generate the
structure with all children (or the structure with no
children, i.e. empty). Second, as the original tree
kernel would generate many matches with slots
filled with the null label, we have set a new step
0 in the TK calculation:
(0) if n1 (or n2) is a pre-terminal node and its child
label is null, C(n1, n2) = 0;

and subtract one unit to C(n1, n2), in step 3:

(3)C(n1, n2) =

nc(n1)∏

j=1

(1+C(cℎ(n1, j), cℎ(n2, j)))−1

The above changes generate a new C which,
when substituted (in place of original C) in Eq. 3,
gives the new SSTK. For example, for the follow-
ing sentence s and query q we get the semantic
score:

Query (q): Describe steps taken and worldwide
reaction prior to introduction of the Euro on
January 1, 1999. Include predictions and ex-
pectations reported in the press.

Sentence (s): The Frankfurt-based body said in
its annual report released today that it has
decided on two themes for the new currency
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history of European civilization and abstract
or concrete paintings.

Score: 9

5 Experiments and Results

5.1 Task Description

In this paper, we re-implement the multi-modality
manifold ranking algorithm for topic-focused
multi-document summarization by encoding the
syntactic and semantic information to measure
sentence relationships. We use the linear approach
for fusing the modalities as this was shown to per-
form the best (Wan and Xiao, 2009). The purpose
of our experiments is to study the impact of the
syntactic and semantic representation in the multi-
modality manifold-ranking framework.

Over the past three years, complex ques-
tions have been the focus of much attention in
both the automatic question-answering and multi-
document summarization (MDS) communities.
While most current complex QA evaluations (in-
cluding the 2004 AQUAINT Relationship QA Pi-
lot, the 2005 Text Retrieval Conference (TREC)
Relationship QA Task, and the 2006 GALE Dis-
tillation Effort) require systems to return unstruc-
tured lists of candidate answers in response to a
complex question, recent MDS evaluations (in-
cluding the 2005, 2006 and 2007 Document Un-
derstanding Conferences (DUC)) have tasked sys-
tems with returning paragraph-length answers to
complex questions that are responsive, relevant,
and coherent. The DUC conference series is run
by the National Institute of Standards and Tech-
nology (NIST) to further progress in summariza-
tion and enable researchers to participate in large-
scale experiments. We use the main task of DUC
2006 for evaluation. The task was: “Given a
complex question (topic description) and a collec-
tion of relevant documents, the task is to synthe-
size a fluent, well-organized 250-word summary
of the documents that answers the question(s) in
the topic”. To accomplish this task, we generate
summaries for a subset of 10 topics of DUC 2006
dataset by each of our six systems as defined be-
low:
(1) COSINE: This system is the original multi-
modality manifold ranking method described in
Section 3 that uses the standard cosine similarity
measure based on TF*IDF and does not consider
the syntactic/semantic information.

(2) SYN: This system measures the similarity be-
tween the sentences using the syntactic tree and
the general tree kernel function defined in Sec-
tion 4.1.
(3) SEM: This system measures the similarity be-
tween the sentences using the shallow semantic
tree and the shallow semantic tree kernel function
defined in Section 4.2.
(4) COSINE+SYN: This system measures the
similarity between the sentences using both stan-
dard cosine similarity measure and the syntactic
tree kernel.
(5) COSINE+SEM: This system measures the
similarity between the sentences using both stan-
dard cosine similarity measure and the shallow se-
mantic tree kernel.
(6) COSINE+SYN+SEM: This system measures
the similarity between the sentences using stan-
dard cosine similarity measure, syntactic tree ker-
nel, and shallow semantic tree kernel.

5.2 Automatic Evaluation

We carried out automatic evaluation of our candi-
date summaries using ROUGE (Lin, 2004) toolkit,
which has been widely adopted for automatic
summarization evaluation. ROUGE stands for
“Recall-Oriented Understudy for Gisting Evalua-
tion”. It is a collection of measures that determines
the quality of a summary by comparing it to ref-
erence summaries created by humans. The mea-
sures count the number of overlapping units such
as n-gram, word-sequences, and word-pairs be-
tween the system-generated summary to be eval-
uated and the ideal summaries created by humans.
For all our systems, we report the widely accepted
important metrics: ROUGE-2 and ROUGE-SU.
We also present the ROUGE-1 scores since this
has a high correlation with the human judgement.
All the ROUGE measures were calculated by run-
ning ROUGE-1.5.5 with stemming but no removal
of stopwords. ROUGE run-time parameters were
set as the same as DUC 2007 evaluation setup.
They are:

ROUGE-1.5.5.pl -2 -1 -u -r 1000 -t 0 -n 4 -w 1.2
-m -l 250 -a

Table 1 to Table 3 show the ROUGE-1,
ROUGE-2, and ROUGE-SU scores of our six dif-
ferent systems. In the experiments, the regularized
parameter for the fitting constraint is fixed at 0.4,
as in Wan et al. (2007). We kept � = � = 0.3 as it
was shown to be the most effective choice for the
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linear fusion scheme in Wan and Xiao (2009).

Systems Recall Precision F-score
COSINE 0.3619 0.3043 0.3305

SYN 0.3571 0.3105 0.3320
SEM 0.3814 0.2909 0.3299

COSINE+SYN 0.3627 0.3105 0.3346
COSINE+SEM 0.3737 0.3140 0.3412

COSINE+SYN+SEM 0.3648 0.3117 0.3360

Table 1: ROUGE-1 measures

Systems Recall Precision F-score
COSINE 0.0584 0.0488 0.0532

SYN 0.0638 0.0558 0.0595
SEM 0.0732 0.0555 0.0631

COSINE+SYN 0.0611 0.0522 0.0563
COSINE+SEM 0.0691 0.0581 0.0631

COSINE+SYN+SEM 0.0658 0.0560 0.0605

Table 2: ROUGE-2 measures

Systems Recall Precision F-score
COSINE 0.1262 0.0890 0.1043

SYN 0.1190 0.0903 0.1025
SEM 0.1406 0.0818 0.1033

COSINE+SYN 0.1278 0.0937 0.1081
COSINE+SEM 0.1334 0.0944 0.1104

COSINE+SYN+SEM 0.1282 0.0939 0.1083

Table 3: ROUGE-SU measures

For all the systems, Table 4 shows the F-scores
of the reported ROUGE measures. From these re-
sults, we clearly see the positive impact of syntac-
tic and semantic information in the multi-modality
manifold ranking method for topic-focused multi-
document summarization. The SYN system im-
proves the ROUGE-1 and ROUGE-2 scores over
the COSINE system by 0.45%, and 11.84% while
underperforms the ROUGE-SU score by 1.75%
respectively. The SEM system improves the
ROUGE-2 scores over the COSINE system by
18.60% while underperforms the ROUGE-1 and
ROUGE-SU scores by 0.18%, and 0.96% respec-
tively. The COSINE+SYN system improves the
ROUGE-1, ROUGE-2, and ROUGE-SU scores
over the COSINE system by 1.24%, 5.82%, and
3.64% respectively. The COSINE+SEM sys-
tem improves the ROUGE-1, ROUGE-2, and
ROUGE-SU scores over the COSINE system by
3.23%, 18.60%, and 5.84% respectively. Lastly,
the COSINE+SYN+SEM system improves the
ROUGE-1, ROUGE-2, and ROUGE-SU scores
over the COSINE system by 1.66%, 13.72%, and
3.83% respectively. Deep analysis of all these re-

sults yields that the proposed systems (that encode
the syntactic and/or semantic information in the
multi-modality manifold ranking framework) con-
siderablely outperform the standard cosine simi-
larity based manifold approach. The results also
denote that encoding the syntactic and/or seman-
tic information on top of the standard cosine sim-
ilarity measure often outperform the systems that
consider only syntactic and/or semantic informa-
tion. From all our six systems, we can see that
the SEM and COSINE+SEM are the best per-
forming systems on average while performance
of the COSINE+SYN+SEM decreases a bit indi-
cating the fact that encoding both syntactic and
semantic information on top of the standard co-
sine similarity measure has a negative impact on
the multi-modality manifold ranking method. This
may be due to the fact that the SYN system does
not perform too well as seen from the results
and thus deteriorates the performance of the CO-
SINE+SYN+SEM system.

Systems R-1 R-2 R-SU
COSINE 0.3305 0.0532 0.1043

SYN 0.3320 0.0595 0.1025
SEM 0.3299 0.0631 0.1033

COSINE+SYN 0.3346 0.0563 0.1081
COSINE+SEM 0.3412 0.0631 0.1104

COSINE+SYN+SEM 0.3360 0.0605 0.1083

Table 4: ROUGE F-scores for different systems

In Table 5, the proposed methods are compared
with the NIST baseline. The NIST baseline is the
official baseline system established by NIST that
generated the summaries by returning all the lead-
ing sentences (up to 250 words) in the ⟨TEXT ⟩
field of the most recent document(s). We also list
the average ROUGE scores of all the participating
systems for DUC-2006 (i.e. AverageDUC). From
the tables, we can see that the proposed multi-
modality manifold ranking methods based on the
syntactic and semantic measures mostly outper-
form the NIST baseline system. They can also
achieve higher ROUGE scores as comparable to
the average scores of all the participating systems
of DUC-2006.

Confidence Intervals We also show 95% con-
fidence interval of the important evaluation met-
rics for our systems to report significance for do-
ing meaningful comparison. We use the ROUGE
tool for this purpose. ROUGE uses a random-
ized method named bootstrap resampling to com-
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Systems ROUGE-1 ROUGE-2
COSINE 0.3305 0.0532

SYN 0.3320 0.0595
SEM 0.3299 0.0631

COSINE+SYN 0.3346 0.0563
COSINE+SEM 0.3412 0.0631

COSINE+SYN+SEM 0.3360 0.0605
Baseline 0.3209 0.0526

AverageDUC 0.3778 0.0748

Table 5: System comparison (F-scores)

pute the confidence interval. Bootstrap resam-
pling has a long tradition in the field of statistics
(Efron and Tibshirani, 1994). We use 1000 sam-
pling points in the bootstrap resampling. Table 6
reports the 95% confidence intervals of the impor-
tant ROUGE measures.

Systems R-2 R-SU
COSINE 0.0401 - 0.0682 0.0854 - 0.1207

SYN 0.0439 - 0.0802 0.0845 - 0.1313
SEM 0.0530 - 0.0753 0.0928 - 0.1128

COSINE+SYN 0.0366 - 0.0805 0.0918 - 0.1286
COSINE+SEM 0.0499 - 0.0799 0.0873 - 0.1328

COSINE+SYN+SEM 0.0436 - 0.0795 0.0949 - 0.1205

Table 6: 95% confidence intervals for different
systems

5.3 Manual Evaluation
Even if the ROUGE scores had significant im-
provement, it is possible to make bad summaries
that get state-of-the-art ROUGE scores (Sjöbergh,
2007). So, we conduct an extensive manual eval-
uation in order to analyze the effectiveness of our
systems. Two university graduate students judged
the summaries for linguistic quality and overall re-
sponsiveness according to the DUC-2007 evalu-
ation guidelines6. The given score is an integer
between 1 (very poor) and 5 (very good) and is
guided by consideration of the following factors:
1. Grammaticality, 2. Non-redundancy, 3. Refer-
ential clarity, 4. Focus and 5. Structure and Coher-
ence. They also assigned a content responsiveness
score to each of the automatic summaries. The
content score is an integer between 1 (very poor)
and 5 (very good) and is based on the amount of
information in the summary that helps to satisfy
the information need expressed in the topic. Ta-
ble 7 presents the average linguistic quality and
overall responsive scores of all our systems. These

6http://www-nlpir.nist.gov/projects/duc/duc2007/quality-
questions.txt

results also justify our claim by showing positive
impacts of encoding syntactic and/or semantic in-
formation in the multi-modality manifold ranking
framework. From these results, we can see that the
proposed syntactic and/or semantic measure based
systems outperform the COSINE system by a con-
siderable margin.

Systems Lin. Quality Responsiveness
COSINE 2.50 3.60

SYN 3.40 3.80
SEM 4.10 4.40

COSINE+SYN 3.50 4.00
COSINE+SEM 2.60 3.40

COSINE+SYN+SEM 4.00 4.30

Table 7: Linguistic quality and responsiveness
scores

6 Conclusion

In this paper, we proposed to encode the syntactic
and semantic information for measuring sentence
relationships in the multi-modality manifold rank-
ing algorithm for topic-focused multi-document
summarization and reported that adding syntactic
and/or semantic information on top of the stan-
dard cosine measure improves the performance
over the cosine measure alone. We parsed the sen-
tences into the syntactic trees using the Charniak
parser and applied the general tree kernel func-
tions to measure the similarity between sentences.
We used the shallow semantic tree kernel to mea-
sure the semantic similarity between two seman-
tic trees. To the best of our knowledge, no other
study has used syntactic and semantic information
in the multi-modality manifold ranking model to
improve its performance. We evaluated our sys-
tems automatically using ROUGE and conducted
an extensive manual evaluation. Experimental re-
sults proved our claim by showing the effective-
ness of the proposed methods.
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