
Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 846–855,
Chiang Mai, Thailand, November 8 – 13, 2011. c©2011 AFNLP

Entity Disambiguation Using a Markov-Logic Network 

 

Hong-Jie Dai
1,2

 Richard Tzong-Han Tsai
3*

 Wen-Lian Hsu
1,2*

 
1
Department of Computer Science, National Tsing Hua University,  

300 No. 101, Section 2, Kuang-Fu Road, Hsinchu, Taiwan, R.O.C. 
2
Intelligent Agent Systems Lab., Institute of Information Science, Academia Sinica, 

128 Academia Road, Sec.2, Nankang, Taipei, Taiwan, R.O.C. 
3
Department of Computer Science & Engineering, Yuan Ze University 

135 Yuan-Tung Road, Chungli, Taoyuan, Taiwan, R.O.C. 

hongjie@iis.sinica.edu.tw 

thtsai@saturn.yzu.edu.tw 

hsu@iis.sinica.edu.tw 

 

 

Abstract* 

Entity linking (EL) is the task of linking a 

textual named entity mention to a knowledge 

base entry. It is a difficult task involving 

many challenges, but the most crucial 

problem is entity ambiguity. Traditional EL 

approaches usually employ different 

constraints and filtering techniques to 

improve performance. However, these 

constraints are executed in several different 

stages and cannot be used interactively. In 

this paper, we propose several 

disambiguation formulae/features and employ 

a Markov logic network to model 

interweaved constraints found in one type of 

EL, gene mention linking. To assess our 

systems effectiveness in different 

applications, we adopt two evaluation 

schemes: article-wide and instance-based 

precision/recall/F-measure. Experimental 

results show that our system outperforms the 

baseline systems and state-of-the-art systems 

under both evaluation schemes. 

1 Introduction 

Entity linking (EL) is the task of linking a textual 

named entity mention to a knowledge base (KB) 

entry, such as linking a person/organization 

mention to its Wikipedia entry (Kulkarni, Singh 

et al. 2009; McNamee and Dang 2009). This task 

has broad applications and is important in 

information extraction (IE) and text mining. 

EL involves many challenges, but the most 

crucial problem in EL is entity ambiguity. Take 

the name John A. Smith for example. It might 

                                                 
*Corresponding author 

appear in KB as John Alexander Smith, John 

Blair Smith, John D. Smith, etc. Entity 

disambiguation determines which of all the 

possible John Smith KB entries a given “John 

Smith” refers to. Several disambiguation 

approaches have been proposed to address the 

entity ambiguity problem. For example, Dredze 

et al. (2010) formulated the disambiguation task 

as a ranking problem and developed features to 

link entities to Wikipedia entries. Zhang et al. 

(2010) used an automatically generated corpus to 

train a binary classifier to reduce ambiguities. 

Dai et al. (2010) collected external knowledge 

for each entity and calculated likelihoods stating 

the similarity of the current text with the 

knowledge to improve the disambiguation 

performance. 

In addition to the entity ambiguity problem, 

the EL task in Text Analysis Conference (TAC) 

2009 introduce the absence issue (McNamee and 

Dang 2009): for entities that have no 

corresponding entry in the KB a NIL should be 

returned. To deal with the absence issue, 

Bunescu and Pasca (2006) filtered out linked 

mentions whose scores are less than a fixed 

threshold. Li et al. (2009) trained a separate 

binary classifier to validate linked mentions. 

Dredze et al. (2010) treated the NIL as another 

KB entry candidate to train their EL ranking 

model. 

Most previous works employed separate 

stages to execute NIL-filtering and 

disambiguation. However, a separate-stage 

approach ignores possible dependencies between 

NIL-filtering and disambiguation can result in 

error propagation. Figure 1 illustrates the 

problem. It shows a biomedical abstract, which 

discusses the relationship of the gene “CD59” to 
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other lymphocyte antigens. An EL system must 

link the human gene entity “CD59” and all its 

instances in the body of the abstract (including 

“membrane inhibitor of reactive lysis”, 

“protectin”, and “MIRL”, in the first sentence) to 

the EntrezGene database entry ID:966. However, 

the same name “CD59” in the title refers to a 

murine gene and, therefore, must be linked to 

ID:12509 instead. A separate-stage approach is 

likely to run into trouble with this example. In 

the EL stage, “MIRL” can be unambiguously 

linked to ID:996 with high confidence, because a 

search for the name in EntrezGene returns only 

one match. Linking the other mentions (e.g. 

“CD59” and “protectin”) to ID:996 is not as easy. 

For example, “CD59” alone has 18 candidate 

entries. However, because we know that these 

names are synonyms of MIRL, we can then link 

them more easily. Unfortunately, a separate NIL-

filtering stage may filter out the entity mention 

“MIRL” because it is listed as an abbreviation of 

organization names, such as Mineral Industry 

Research Laboratory. With a joint inference 

process we can carry out both tasks 

simultaneously to avoid this type of error 

propagation (Poon and Domingos 2007). 

Joint inference has become popular recently, 

because they make it possible for features and 

constraints to be shared among tasks. For 

example, Che and Liu (2010) created a joint 

model for word sense disambiguation (WSD) 

and semantic role labeling, and Finkel and 

Manning (2009) integrated parsing and named 

entity recognition in a joint model. In this paper, 

we use the Markov Logic Network (MLN) 

(Richardson and Domingos 2006), a joint model 

which combines first order logic (FOL) and 

Markov networks, to unify the NIL-filtering and 

entity disambiguation stages. The model captures 

the contextual information of the recognized 

entities for entity disambiguation as well as the 

constraints when linking an entity mention to a 

KB entry—for example, an entity mention can 

only be linked to a database entry when the 

mention has not been recognized as an NIL. 

Another advantage of employing MLN in our 

EL disambiguation model is that it is easy to 

model arbitrary longer range dependencies 

among entities. For example, the saliency of a 

given entity in a given discourse is one property 

that can be modeled with MLN. This property 

was defined by Gale et al. (1992) in WSD, but 

has not been applied to EL disambiguation. It 

states that in a given discourse, there is precisely 

one entity that is the center of attention. This 

entity is mentioned over and over again, makes it 

more salient than others. We can utilize this 

phenomenon to improve the disambiguation 

confidence. Continuing with the example shown 

in Figure 1, ID:996 is a candidate KB entry for 

the entity “CD59” and all its instances, including 

“membrane inhibitor of reactive lysis”, 

“protectin”, and “MIRL” in the first sentence, we 

can then assume that ID:996 is more salient than 

other candidate KB entries. As described in the 

previous paragraph, we can link the entity 

“MIRL” to ID:996 with high confidence. 

Therefore, we are more likely to be able to link 

all the other entities to ID:996 as well. 

Finally, existing EL approaches in biomedical 

domain assess system performance in terms of 

the effectiveness of database curation (Morgan, 

Wellner et al. 2007). In addition, we evaluate our 

system at a fine-grained resolution, entity by 

entity. Such an evaluation is more relevant to IE 

tasks such as the bio-molecular event extraction. 

2 Markov Logic 

In FOL, formulae are constructed using four 

types of symbols: constants, variables, functions, 

and predicates. Constants represent objects in a 

domain of discourse (e.g. people: Ann, John, etc., 

or database entries). Variables (e.g.,  ,  ) range 

over the objects. Predicates represent the 

relations among objects (e.g.           ), or 

attributes of objects (e.g.         ). Variables 

and constants may be typed. An atom is a 

predicate symbol applied to a list of arguments, 

which may be variables or constants (e.g. 

                ). A ground atom is an atom all 

of whose arguments are constants 

(e.g.                    ). A world is an 

assignment of truth values to all possible ground 

atoms. A KB is a partial specification of a world; 

each atom in it is true, false or (implicitly) 

unknown.  

TITLE: Structure of the CD59-encoding gene: further 

evidence of a relationship to murine lymphocyte antigen 

Ly-6 protein 

ABSTRACT: The gene for CD59 [membrane inhibitor 

of reactive lysis (MIRL), protectin], a phosphatidylino-

sitol-linked surface glycoprotein that regulates the for-

mation of the polymeric C9 complex of complement and 

that is deficient on the abnormal hematopoietic cells of 

patients with paroxysmal nocturnal hemoglobinuria, con-

sists of four exons spanning 20 kilobases. …  

PMID [1381503] 

Figure 1: An Example of Entity Linking. 
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A Markov network represents the joint 

distribution of a set of variables             

  as a product of factors:        
 

 
∏        , 

where each factor    is a non-negative function 

of a subset of the variables   , and   is a 

normalization constant. As long as          

for all  , the distribution can be equivalently 

represented as a log-linear model:        
 

 
    ∑          , where the features       are 

arbitrary functions of (a subset of) the variables’ 

state.  

An MLN   is a set of pairs        , where    is 

a formula in FOL and    is a real number 

represented a weight. Together with a finite set 

of constants  , it defines a Markov network     , 

where      contains one node for each possible 

grounding of each predicate appearing in  . The 

value of the node is 1 if the ground predicate is 

true, and 0 otherwise. The probability 

distribution over possible worlds   is given by 

       
 

 
   (∑ ∑               )  where   is 

the partition function,   is the set of all first-

order formulae in the MLN,    is the set of 

groundings of the  th first-order formula, and 

        if the  th ground formula is true and 

        otherwise. General algorithms for 

inference and learning in Markov logic are 

discussed in Richardson and Domingos (2006). 

We employ thebeast toolkit (downloaded from 

http://code.google.com/p/thebeast/) to implement 

our MLN model. It uses 1-best MIRA online 

learning method for learning weights and 

employs cutting plane inference (Riedel 2008) 

with integer linear programming as its base 

solver for inference at test time and the MIRA 

online learning process. 

3 Methods 

In this paper, we tackle one type of EL, gene 

mention linking, which links each gene entity 

mention to one EntrezGene ID. EntrezGene 

(Maglott, Ostell et al. 2006) is the most popular 

large scale gene database. Generally speaking, 

the EL task can be separated into four steps: (1) 

identifying entities in a given article, (2) filtering 

NIL entity mentions, (3) finding candidate KB 

entries (or database IDs) for the remaining entity 

mentions, and (4) picking one KB entry for each 

entity mention. To concentrate on EL’s major 

challenge, our MLN-based system only focuses 

on steps 2 and 4. In the following section, we 

define the main formulae used in our MLN-

based EL system. 

3.1 Linking Constraints Formulae 

First, we illustrate a basic formula for the 

assumption that if an entity is mapped to only 

one KB entry, it should be linked to the entry: 

Formula L.1 
                                         

where                    represents that the  th 

entity mention has a candidate entry   ; and 

                 represents that   is linked to   . 

Note that we refer to an entity by its order in 

the article (e.g., the  th entity) for several reasons. 

One, not all names can be found in the training 

data. Secondly, even if two entities have the 

same surface string, they may link to different 

KB entries. Lastly, this allows us to model the 

order information and dependency among all 

entities.  

Because the objective of the EL task is to 

discover a unique KB entry for each entity, we 

must define a formula to ensure that the 

constraint is satisfied. We use the following 

formula to prevent an entity associating with 

more than two entries. 

Formula L.2                           
                   

Formula L.2 is a hard constraint that must always 

hold whereas the others are soft and can be 

violated. 

3.2 Saliency Formula 

The saliency property can be written as follows: 

Formula S.1: Saliency: 
                                       

                  

In other words, if the KB entry    is linked to an 

entity   that precedes the current mention  , and 

   is a candidate KB entry of  , then the current 

entity   should also be linked to   . 

3.3 Disambiguation Formulae 

As shown in Table 1, there are numerous 

observed predicates defined for the 

disambiguation process. Before diving into the 

details of all the formulae, we summarize the 

basic idea and describe how one could apply it to 

other EL tasks.  

In our disambiguation approach, we rely on 

background knowledge  , such as an entity’s 

inhabited location, or an entity’s skill or 

functionality.   describes various aspects of the 

entity  ’s ambiguous KB entry,   . Whenever the 

entity is discussed, some of these aspects will be 

mentioned as well. Using  , we can write 

formulae like the following for disambiguation: 
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hasCandidate(i, id) 

hasChromosomeInfo(i, id, sd) 

hasWord(w): the abstract contain a word w. 

PPIKeyword(w), isPPIPartner(id1, id2) 

hasPPIPartnerRank (i, id, r), hasGOTermRank(i, id, r), 

hasTissueTermRank(i, id ,r) 

hasPrecedingWord(i, w, l), hasFollowingWord(i, w, l) 

hasUnigramBetween(i, j, w) 

V
ariab

le T
y

p
e 

i: an integer, which refers to the ith gene mention in the 

given article (similarly j refers to the jth mention) 

id: an EntrezGene ID, which refers to a linked KB entry. 

sd: an integer, which refers to the sentence distance. 

w: a word. 

r: an integer, which refers to the rank of the matching. 

l: an integer, which refers to a context window length. 

Table 1:  Main Predicates for Disambiguation.  
 

                                           

The formula shows that if the context of the 

entity  , which has a linking candidate KB entry 

  , contains the background knowledge 

information  , the entity   should be linked to   . 

In this paper, we define four predicates to 

capture the recognized genes’ background 

information, including chromosome location, 

protein-protein interaction (PPI), tissue type and 

gene ontology. For example, the predicate 

                           indicates that the 

chromosome location information of the  th 

entity, which has the KB entry    as its linked 

candidate entry, can be found in the surrounding 

text in the range   . Applying this predicate to 

the sentence: “The human UBQLN3 gene was 

mapped to the 11p15 region of chromosome 11,” 

the entity mention UBQLN3 must be linked to 

the KB entry ID:50613 because 50613’s 

chromosome location, 11p15, is found in the 

same sentence. The formula describing the 

relation of                   and            

is defined as follows: 
                           

                  

Here, we can see that there is an additional 

parameter (    ) in                  . sd 

indicates where the chromosome information 

corresponding to    locates. The “ ” notation in 

the above formula indicates that we must learn a 

separate weight for each grounded variable (  ). 

For example,                           and 

                           are given two 

different weights in our MLN model after 

training. 

Correlation information, such as “KB entry     

usually interacts with an entry    ”, can be used 

in disambiguating an entity   as follows. The PPI 

information recorded in the database can provide 

the correlation information. Based on the 

correlation information as well as the candidate 

KB entry distribution in the current context, the 

   that correlated with the most unambiguous 

entries is the most likely    to be linked to  . We 

define the predicate                           

to represent this concept. The formula defining 

the relationship between                   

and            is: 
                              

              
              
                  

One can see that there are two predicates, 

        and           , in this formula that 

check if the article contains PPI keywords. Two 

similar predicates,              and 

                 , represent the concept that i 

should be linked to the    with the largest 

number of corresponding gene ontology terms 

(entity’s function) or tissue terms (entity’s 

location) found in the context. 

For the correlation information, we further 

define the following formula to capture the 

dependency that an entity   should be linked to 

    if another entity   has been linked to    , and 

    forms a correlation with    :  

Formula D.1 
                           

                  
                    
                      
                   

This formula shows another long range 

dependency among entities used in our MLN 

model (The first long dependency formula is S.1). 

Finally, an entity mention   may sometimes be 

followed by its variant   (abbreviation or full 

name). Usually, the variant   is put in parentheses. 

If   can be uniquely linked to   , it is very likely 

that   is also linked to   . An example formula is 

shown as follows: 

                          
                    )     

                             
                              

                  

3.4 NIL-filtering Formulae 

We approach the absence issue by filtering the 

following mention type: those belonging to 

classes that are not in the database curation target; 

called NILs. In linking gene mentions to KB 

entries, NILs appear when the gene mentions are 

protein families or complexes, or in a specific 

organism that is not considered. For example, in 

Figure 1, an EL system must return NIL for “C9 
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hasName(i, n) 

hasFirstWord(i, w), hasLastWord(i,  w),  

isBlacklisted(w): the word sequence w is blacklisted, 

containsMoreSpecificMentions(i): the i-th gene mention 

collocates with more specific gene mentions in the current 

context. 

SpeciesTerm(w), AllUpperCase(i), hasPartOfSpeech(i, k, p) 

V
ariab

le 

T
y

p
e 

n: a word or a sequence of words that refer to the 

surface name of a gene mention. 

ch: characters. 

d: an integer. 

k: the kth index of the gene mention. 

p: a part-of-speech 

Table 2:  Main Predicates for NIL-filtering.
 

complex” in the first sentence, because the 

mention is a protein complex that is not 

EntrezGene’s curation target. The predicate 

                     describes this concept. 

We then employ the following formula to 

ensure that, whenever the  th entity is linked to a 

KB entry   , it must be an entity suitable for 

linking. 

                                         

The formula models the stage decisions 

determined by traditional EL systems. The KB 

entry    does not have to be linked to the entity   

proposed by the entity recognition/classification 

stage; however, the    cannot be assigned to the 

 th gene mention that has not been proposed as a 

potential entity. The formula is a hard constraint. 

The initial formula containing 

                     treats any entity   with 

surface name   as a potential entity: 

                                      

Again, the “ ” notation in the above formula 

indicates that the MLN must learn a separate 

weight for each entity name  . 

In person name EL, for example, one could 

define          to indicate that a title, such as Mr. 

or Mrs., appears in the  th entity’s context and 

apply the formula for the                      

predicate: 

                                      . 

In our work, we construct our formulae by 

using the observed predicates defined in Tables 1 

and 2 to determine whether or not   is a NIL by 

checking  ’s context. For example: 

                                  
                         

implies that a certain gene mention  ’s suitability 

for linking depends on whether or not  ’s first 

word is a certain species keyword  . 

4 Results 

4.1 Evaluation Metrics 

We use two metrics to evaluate our approach and 

compare it with other EL disambiguation 

methods. Both use the standard precision, recall, 

and F-measure metrics (PRF) at two resolutions 

(article and instance). 

Article-wide evaluation is based on the 

standard used in the BioCreative challenge 

(Morgan, Lu et al. 2008), which was designed to 

determine an EL system’s performance as an aid 

for the curation of biological databases. The EL 

system outputs a list of EntrezGene IDs for a 

given article. The list is then compared to the 

gold standard IDs list for the article. The PRF 

scores are calculated based on the sums of 

true/false positives/negatives (TP, TN, FP, FN). 

Instance-based evaluation measures the EL 

performance at a fine-grained IE resolution, 

which can support the development of advanced 

IE tasks. In contrast to the first metric, the PRF 

scores are calculated based on the sums of TP, 

TN, FP and FN for all instances in the test 

dataset; we further consider whether the 

boundary matches that of the linked KB entry’s 

mention. Therefore, under this criterion, an FP 

could link a true entity to the wrong KB entry or 

link a false entity to any KB entry; while an FN 

could link a true entity to the wrong KB entry or 

fail to recognize a true entity. In cases where a 

true entity is linked to the wrong KB entry, both 

the FN and FP are increased by 1.  

For TP/FP/FN, we need to determine when the 

predicted boundary matches that of the gold 

standard. Most entity recognition tasks use 

“exact-matching” as the primary criterion. Under 

this criterion, a candidate entity can only be 

counted as a TP if both its left and right 

boundaries fully coincide with the gold answer. 

However, in a real scenario, a gene mention can 

be tagged in several ways  e.g., “… between 

serum <entity>LH</entity>” and “… between 

<entity>serum LH</entity>” are both correct). 

Furthermore, for the EL task, the correctness of 

the linked KB entry is more important than its 

boundaries. Therefore, we use approximate-

matching (Subramaniam, Mukherjea et al. 2003) 

to determine the boundary criterion. For example, 

a TP is counted when a machine-linked gene 

mention is a substring of the gold standard-

linked gene mention or vice versa, and the linked 

KB entry is equal to the gold entry. 
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4.2 Dataset 

In the experiments we used the training and test 

sets released by the BioCreative II gene 

normalization (GN) task (Morgan, Lu et al. 

2008). The dataset provides a list of human gene 

EntrezGene database entries (IDs) that appear in 

each abstract. Although the gold standard 

answers contain each EntrezGene database 

entry’s surface name shown in the abstract, they 

do not give the exact location of the 

corresponding entity mention in the abstract. So 

the original BioCreative II dataset can only be 

used to evaluate article-wide EL performance. 

To obtain instance-based evaluation results, 

we need to expand the original annotation of the 

dataset. Our in-lab biologists annotated the exact 

locations and boundaries of the KB entries’ gene 

mentions in a semi-automated manner. The 

automated annotation process used the entry’s 

surface name provided by the gold standard to 

tag the entire corpus. Human annotators then 

corrected the recognized entities and linked 

results based on the context. 

To compile the EL training corpus for our EL 

models, we employed a state-of-the-art gene 

mention linking system released by Lai et al. 

(2009) to recognize all gene mentions and 

generate candidate KB entries for each entity. 

For each mention m in a sentence s recognized 

by Lai’s system and the set of KB entry 

candidates for m output by Lai’s system, we 

searched s for the first human annotated mention 

n overlapping with m and set n’s KB entry as m’s 

true KB entry. Other candidates were set as m’s 

incorrect KB entries.  

For the NIL-filtering corpus (NIL corpus), 

again, for each mention m in a sentence s 

recognized by Lai’s system, we checked whether 

or not the boundary of the mention m match with 

the human annotated boundary. All matched 

mentions are regarded as true positives while the 

others are negative instances. 

4.3 Model Configurations 

For our experiments, we constructed four MLN-

based configurations. In addition, separate-stage 

models for NIL-filtering and disambiguation 

were also constructed. 

MLNLINK: To assess baseline performance 

without disambiguation and NIL-filtering, we 

constructed an MLN-based configuration, 

MLNLINK, only employing formulae related to 

linking constraints (refer to section 3.1). We 

compared its performance with that of a 

modified version of Lai’s system, for which all 

mentions with only one KB entry were directly 

treated as answers, and entities with more than 

one candidate KB entry were discarded. This 

system is referred to as LaiNO_DIS. 

MLNSAL: To assess the performance gain from 

the saliency property, we constructed a second 

MLN-based configuration, MLNSAL, by adding 

the formula corresponding to the saliency 

property (Formula S.1) to the MLNLINK 

configuration. 

MLNDIS: This configuration uses the constraints 

defined in Section 3.1, the saliency property in 

Section 3.2, and the disambiguation formulae 

defined in Section 3.3. We compared it with two 

other previous approaches: Lai et al.’s rule-based 

approach and Crim et al.’s (2005) supervised 

learning approach, which treated the EL 

disambiguation task as a classification problem 

and solved by employing the maximum entropy 

(ME) model. For Lai et al.’s approach, denoted 

as LaiDIS, we directly employed Lai et al.’s 

original system, which had been well-tuned on 

the BioCreative II GN dataset. One can refer to 

their work (Lai, Bow et al. 2009) for more details. 

For the supervised learning approach, denotes as 

MEDIS, we transformed the formulae described 

in Section 3.3 to binary feature functions in ME. 

MLNJOINT: The final MLN-based configuration 

(MLNJOINT) was constructed by adding the NIL-

filtering formulae to MLNDIS. That is, all 

formulae introduced in Section 3 were employed.  

MENF for separate NIL-filtering: To simulate 

and compare the separate-stage NIL-filtering and 

EL disambiguation approach with MLNJOINT, we 

developed a separate NIL-filtering model for 

LaiDIS and MEDIS, denoted as MENF. The MENF 

model was executed before the disambiguation 

step. We formulated the NIL-filtering task as a 

classification problem and used the features 

equivalent to the formulae described in Section 

3.4 to train a ME-based classifier. 

We employed the greedy backward sequential 

selection algorithm (Aha and Bankert 1995) to 

select the optimized feature sets for MENF with 

ten-fold cross validation on the training dataset. 

The algorithm starts from all features 

transformed from NIL-filtering formulae and 

repeatedly removes a feature whose removal 

yields the maximal performance improvement in 

the overall EL task. Note that the feature 

selection procedure is designed for optimizing 
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Metrics Instance-based (%)  Article-wide (%) 

Config. P R F Adv P R F Adv 

LaiNO_DIS 

MLNLINK 

 80.7 

80.7 

 56.3 

56.3 

 66.3 

66.3 

- 

- 

77.3 

77.3 

71.5 

71.5 

74.3 

74.3 

- 

- 

MLNSAL 79.5 59.0 67.7  +2.1 77.2 71.3 74.1 -0.2 

LaiDIS 72.9 63.9 68.1  +2.7 82.6 83.4 83.0 +11.7 

MEDIS 79.2 58.2 67.1 +1.2 88.8 79.0 83.6 +12.5 

MLNDIS 73.8 64.3 68.7 +3.6 86.1 83.0 84.5 +13.7 

MENF+LaiDIS 73.7 64.2 68.7 +3.6 84.1 83.7 83.9 +12.9 

MENF+MEDIS 80.2 58.4 67.6 +2.0 90.2 79.0 84.3 +13.4 

MLNJOINT 77.5 63.7 70.0 +5.6 87.7 83.8 85.7 +15.3 

Table 3:  Instance-/Article-wide Results on the 

BioCreative Test Set. 
 

the performance of EL not NIL-filtering. We will 

discuss this in Section 5.3. 

In the next sub-section, we discuss the 

instance-based IE results. Then, we derive 

BioCreative’s evaluation results by merging the 

linked KB entries in all indexes and removing 

duplicated entries. 

4.4 Experiment Results 

Table 3 shows the instance-based and article-

wide results evaluated on the test set. The first 

three columns show each system’s PRF. The last 

column shows the relative advantage of F-score 

over the rule-based baseline (LaiNO_DIS).  

In the second row, we can see that MLNLINK 

achieves exactly the same performance as 

LaiNO_DIS, indicating that the MLN-based system 

can simulate LaiNO_DIS by only employing the 

linking constraints. In the third row, we can 

observe that, by adding S.1, the recall rate is 

improved by 2.7% which results in an improved 

F-score. This shows that the saliency property is 

effective in instance-based evaluation. However, 

MLNSAL performs slightly worse than MLNLINK 

in the article-wide evaluation, the reason for 

which is explained in Section 5.1. 

From the fourth to the sixth row, we can see 

that MLN outperforms the other two models. 

Adding disambiguation formulae also further 

boost the EL performance in both instance-based 

and article-wide evaluations by an apparent large 

margin (3.6% and 13.7%). 

Finally, in the last configuration set (7
th
, 8

th
, 

and 9
th
 row), we can see that MLNJOINT does 

better than the compared separate-stage methods 

under both evaluation metrics. MLNJOINT also 

achieves the best performance among all MLN-

based models under both instance-based and 

article-wide evaluations. 

5 Discussion 

5.1 Model Long-range Dependencies 

One advantage of employing MLN in our EL 

modeling is that it is easy to model arbitrary 

longer range dependencies, as expressed by the 

formula S.1 and D.1. It is difficult to model such 

dependencies using ME. As shown in Table 3 

(MLNSAL), adding the S.1 dependency improves 

instance-based EL performance without any 

domain knowledge. A similar result is achieved 

by adding D.1 with PPI—instance-based 

performance can be improved by 1.1%/0.6% on 

the training/test set, respectively. We also 

observe that adding Linking formulae with S.1 

reduces the recall rate in the article-wide 

evaluation. According to our analysis, S.1 

improves the recall in the instance-based 

evaluation. In contrast, for article-wide, S.1 

slightly reduces the recall. This is because after 

adding S.1, mentions tend to be linked to “salient” 

KB entries. In instance-based evaluation, the 

salient KB entries have higher frequency; 

therefore, the improvement of linking salient 

entries can cover the losses caused by 

disregarding the un-salient entries. However, in 

the article-wide evaluation, all entries in an 

article are counted equally; therefore, the 

improvement of instance-based evaluation does 

not transfer to article-wide evaluation. 

5.2 Linking to Multiple KB Entries 

Another advantage of our model is its flexibility. 

The EL task is usually defined as linking an 

entity to a unique KB entry. However, in some 

cases, there are entities that cannot be uniquely 

linked. For example, the “ABCB9 protein” in the 

sentence “ABCB9 protein appears to be most 

highly expressed in the Sertoli cells of the 

seminiferous tubules in mouse and rat testes.” 

The EL system cannot link each of the gene 

mentions in the above sentences to just one 

EntrezGene KB entry. Our model can deal with 

the issue easily by modifying the constraint in 

L.2 with a larger cardinality, or introducing 

additional formulae to determine the cardinal 

constraint dynamically. 

5.3 Joint Model vs. Separate-stage Models 

Compared with the two separate-stage 

approaches, MLNJOINT has the following two 

advantages: (1) it performs several functions 

using one model, and (2) it finds the optimal 

solution for the integrated stages. The first 

advantage has been illustrated by Meza-Ruiz et 

al. (2009). This is to be contrasted with separate-

stage systems where several components need to 

be trained and integrated by different strategies. 
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The second advantage is based on our 

observation on the training set, employing all 

features transformed from NIL-filtering formulae 

in the MENF model might be able to achieve the 

best NIL-filtering performance, but it does not 

guarantee that the final integrated EL 

performance can also be the best. This is the 

reason why we need to employ the backward 

feature selection algorithm to optimize EL 

performance for the separate-stage systems as 

described in Section 4.3. 

5.4 Boundary Issue in EL 

Our experiment results raise an interesting 

question: What causes absolute score differences 

between the instance-based and article-wide 

evaluations. Several works have studied the 

boundary issue in entity recognition (Finkel, 

Dingare et al. 2005; Tsai, Wu et al. 2006). We 

observe that the issue also has a significant effect 

on the performance of EL. For example, consider 

the following sentence in the training set (PMID: 

9346890):  “<entity id=3083>Hepatocyte growth factor 

(HGF) activator</entity> is a serine protease 

responsible for proteolytic activation of <entity 

id=3082>HGF</entity> in response to tissue injury” 

We found that Lai et al.’s system and the three 

publically available gene mention recognition 

systems
1
 all separate the first gene mention 

(ID:3083) into at least one mention, (“hepatocyte 

growth factor” or “HGF”). The incorrect 

boundary leads to errors in EL, and could result 

in the extraction of an incorrect self-activation 

event: <entity id=3082>HGF</entity> activates <entity 

id=3082>HGF</entity>. An experiment conducted on 

the test set shows that our MLN model can 

achieve an F-score 79.4% in instance-based 

evaluation if we replaced the predicted mentions’ 

boundaries with their corresponding overlapping 

gold boundaries. 

5.5 Related Works 

The EL problem comes up in many fields of 

research. Among database researchers, this 

problem is described as data de-duplication 

(Sarawagi and Bhamidipaty 2002). In the AI 

community, the same EL problem is described as 

entity resolution (Singla and Domingos 2006; 

Bhattacharya and Getoor 2007). In the 

biomedical field, term identification 

(Krauthammer and Nenadic 2004) or 

normalization (Hirschman, Colosimo et al. 2005) 

are used to refer to the same concepts. 

                                                 
1ABNER, GENIA tagger and BANNER. 

Several approaches had been proposed to deal 

with EL tasks. The following four points explain 

the distinctiveness of our work. The first is that, 

as the names of different database entries might 

be identical, techniques based purely on 

character/token-based similarity metrics do not 

work well. The second is that, in our task, all KB 

entries in the database are unique while it is not 

true in the tasks tackled by previous works. Third, 

in our EL task, measuring the similarity between 

a KB entry and an entity mention requires 

comparing their related information (fields). The 

former’s can be acquired from the KB while the 

latter’s should be extracted from its context. The 

latter’s is hard to extract because the context is 

written in natural language, which is 

unstructured and some information may not 

appear in the context. This phenomena is against 

the assumption most previous EL approaches 

(Fellegi and Sunter 1969; Elmagarmid, Ipeirotis 

et al. 2007) based on: entities should have the 

same set of fields. Finally, as described in 

Section 1, our work needs to consider the 

absence issue to filter out NIL entities, which are 

not considered in the most previous EL 

approaches. 

6 Conclusion 

In this paper, we present a novel approach that 

employs MLN to model the constraints and 

decisions in the EL task. The contribution of this 

paper is threefold. First, we propose several 

features for EL disambiguation and NIL-filtering 

and demonstrate a feasible approach for 

modeling them by using an MLN. Second, unlike 

existing EL disambiguation approaches, which 

do not model the dependencies among entities, 

the proposed approach learns to model the 

dependencies, including the saliency and 

interaction among KB entries, and the 

performance improvement is promising. Third, 

we describe a new evaluation scheme that use the 

BioCreative corpus to analyze EL tasks from an 

additional perspective, instance-based evaluation, 

which have not yet been applied in the EL field 

thus far. 
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