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Abstract

The task of documenting the world’s lan-
guages is a mainstream activity in linguis-
tics which is yet to spill over into computa-
tional linguistics. We propose a new task
of transcription normalisation as an algo-
rithmic method for speeding up the pro-
cess of transcribing audio sources, leading
to text collections of usable quality. We
report on the application of sentence and
word alignment algorithms to this task,
before describing a new algorithm. All
of the algorithms are evaluated over syn-
thetic datasets. Although the results are
nuanced, the transcription normalisation
task is suggested as an NLP contribution
to the grand challenge of documenting the
world’s languages.

1 Introduction

The majority of the world’s 6800 languages are rel-
atively unstudied. Although some of the world’s
languages have been carefully described and anal-
ysed, most of them have not yet even been docu-
mented. Such documentation consists of ‘compre-
hensive and transparent records supporting wide
ranging scientific investigations of the language’
(Woodbury, 2010). In this context then, it is
striking that 50 years of research in computational
linguistics have so far only touched about 1% of
the world’s languages. In 100 years, 90% will be
extinct or on the way out (Krauss, 2007). Ac-
cordingly, we set ourselves the following question:
what can computational linguistics offer to support
the urgent task of documenting and analyzing the
world’s endangered languages? There have been
other recent efforts to address this question, fo-
cussing on interlinear text (Xia and Lewis, 2007;
Baldridge and Palmer, 2009). Our focus is dif-
ferent, being concerned with creating the unanno-
tated text that is presupposed by this earlier work.
We also differentiate our work from more general
computational support for documentary and de-
scriptive linguistics, such as tools for transcribing
audio or editing lexicons.

Recently, Abney and Bird (2010) have proposed
to incorporate machine translation (MT) into the
workflow of language documentation. However, a
significant challenge for this program is posed by
the fact that the majority of the world’s languages
are not written. How can NLP techniques be ap-
plied to improve the speed and efficiency of audio
transcription for unwritten languages?

The task of transcription differs from transliter-
ation (Knight and Graehl, 1998) in several ways.
Transliteration is required in the context of ma-
chine translation for dealing with proper names,
which are a common source of out-of-vocabulary
items. The goal is to make the words pronounce-
able in a target language having a different inven-
tory of sounds and syllables, and having different
grapheme-to-phoneme rules. Since the source and
target languages have established orthographies,
the correct placement of word boundaries is never
in question.

Transcription, on the other hand, involves rep-
resenting spoken utterances in written form. In
the absence of a standard orthography or lexicon,
two transcribers will usually represent sounds us-
ing different symbols, and will often disagree on
the placement of word boundaries. Transcribers
may use a mixture of conventions from other lan-
guages, e.g. ”vowels as in Italian, consonants as in
English”, and may invent their own system of dia-
critics. The goal is to faithfully capture all of the
significant aspects of pronunciation. By obtain-
ing many independent transcriptions of the same
utterance, we can hope that the most consistent
practices will come to dominate, giving rise to
a collectively-defined system of normalized tran-
scriptions.

This paper reports on an investigation into algo-
rithmic methods for normalising sets of transcrip-
tions of an audio recording. We begin by describ-
ing the role that MT could yet play in language
documentation efforts, and discuss the initial chal-
lenge of audio transcription (section 2). Next, we
observe that the problem of aligning the words of
two audio transcriptions is analogous to sentence-
by-sentence alignment of two documents: there is
no-reordering, and only contiguous material needs
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to be split or merged. In section 3, we perform
transcription alignment and evaluate its effective-
ness by adapting two existing algorithms. In sec-
tion 4 we describe a novel method using an exten-
sion of Hidden Markov Models in order to infer
the hidden ‘sound’ sequence heard by transcribers.
This permits each transcription to be normalised
into a sequence of ‘sounds’. Each of the methods
is evaluated using synthetic data (section 5), data
that has been generated in order to have known
ground truths on which to evaluate the methods.

2 MT for unwritten languages

Recently, Abney and Bird (2010) have proposed
to incorporate MT into the workflow of language
documentation. MT supports the task of ensuring
interpretability of the language records. It is not
feasible to construct richly annotated resources,
such as treebanks, for low-density languages. In-
stead, as argued by Abney and Bird (2010), we
should take translation into English (or some other
reference language) to be an adequate representa-
tion of the meaning of source language texts. Fur-
thermore, also following (Abney and Bird, 2010),
we assume that a language documentation is only
complete if an adult who is already proficient in one
of the world’s major languages is able to acquire
fluency in the language using only the archived
bilingual resources. Obviously, such a test would
take years to perform, and would need to be done
again, each time the resources for a language are
updated. However, a statistical machine transla-
tion (SMT) system can attempt this acquisition
automatically, and its mistakes highlight any short-
comings in the documentation while there is still
time to collect more. All that is required then, is
substantial quantities of bilingual text, or n-lingual
text in the general case, in machine-readable for-
mat. A structure that has been proposed to ac-
commodate this data is the Universal Corpus.

A significant challenge for this program is posed
by the fact that the majority of the world’s lan-
guages are not written. Amongst the remaining
languages that have a writing system, the majority
do not have widespread literacy. Even where liter-
acy is widespread, the majority of languages do not
have a substantial community of writers. Finally,
the presence of an orthography and users of the
orthography does not ensure consistent spelling.
How then, could we hope to obtain significant
quantities of text in such languages?

Substantial efforts are already underway to
record the oral literature of endangered languages
while there is still time. This is painstaking work,
and transcription is usually a slow process given
the issues with orthography just identified. How-
ever, such transcriptions are an essential step to
the creation of other language resources such as

lexicons and grammars. This leads to a more nar-
rowly focussed question: how can NLP techniques
be applied to improve the speed and efficiency of
audio transcription for unwritten languages?

Let us suppose that, for a given language, sev-
eral native speakers were available to transcribe
large quantities of audio recordings. We can be
sure that no two speakers will transcribe the same
source recording the same way. There will be
variations in spelling, word segmentation, capital-
isation, punctuation, and so forth. These varia-
tions will stem from varying levels of education,
and varying experience of literacy in other lan-
guages. With enough resources, we could arrange
for each source to be transcribed by more than
one speaker. What would it take to automatically
combine and normalise these transcriptions to pro-
duce a single transcription per source, of sufficient
quality to be useful for downstream language tech-
nologies? These normalised transcriptions could
then be aligned with manually supplied transla-
tions, leading to a bitext collection.

3 Existing methods

3.1 The Gale-Church Algorithm

The Gale-Church Algorithm (GCA) aligns the sen-
tences of a document with those of its translation
in a foreign language (Gale and Church, 1993).
The algorithm exploits the fact that longer sen-
tences in one language tend to correspond to longer
sentences in the other. A pair of documents is
aligned into cliques of zero, one or two consecutive
sentences from each language.

Model Description. The model assumes that
for a sentence of length L1, the length of the corre-
sponding clique of sentences in the foreign language
is distributed as:

L2 ∼ N(cL1, s
2L1) (3.1)

where c represents the mean number of characters
emitted in the foreign language for each character
in the source language, and s2 is the variance per
translated character. Empirical studies on Euro-
pean languages determined the optimal parameters
to be c = 1, s2 = 6.8 (Gale and Church, 1993).

The best alignment between paragraphs is de-
termined by minimising a cost metric for align-
ments, based on the distribution given in Equation
3.1, and prior probabilities for different alignment
types. Specifically, the cost of an alignment be-
tween a set of sentences E (of total length L1) and
a foreign set F (of total length L2) is defined by

D(F,E) = − logP (#F |#E)P (L2|L1) (3.2)

P (L2|L1) is calculated by integrating the normal
distribution given in Equation (3.1) over all val-
ues more extreme (further from the mean) than
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Alignment 0-1 1-1 2-1 2-2
Prior 0.010 0.890 0.089 0.011

Table 1: Original prior probabilities for alignment
types in the GCA (Gale and Church, 1993).

ðə tiːt geɪv əbʊk tu ðəbɔɪ

thuh tee-cher geyvuh book tuh thuh boi

ʃə
16 88 208

1812 24 12 9 12 9

16 16

Figure 1: Aligning words from non-standard ortho-
graphic transcriptions with the Gale-Church Algo-
rithm, using normalised word lengths.

L2. P (#F |#E) is the prior probability of align-
ment between sentence sets of sizes |F | and |E|.
The priors for alignment types used in the original
algorithm are given in Table 1.

Then, for two paragraphs with numbers of sen-
tences L1 and L2, their highest-probability align-
ment is derived using the following procedure. De-
note the probability of the best alignment between
the sentences 1 ... i ≤ I and 1 ... j ≤ J by P (i, j),
and the alignment itself by B(i, j). Then B(i, j) is
determined by:

arg max
b∈{0,1,2}2

[
P (i− b1, j − b2)×

D({i− b1 + 1, ..., i}, {j − b2 + 1, ..., j})
]

Application to transcription normalisation.
The GCA can be applied to align transcriptions
at the level of words, rather than sentences, with-
out violating the assumptions of the model (see
Figure 1). In this way, the algorithm may be
used to pre-process documents by splitting them
into smaller pieces – aligned words – for further
character-level processing such as alignment and
transliteration.

The algorithm as defined is only applicable to
aligning two sentences at a time. However, it has
a simple extension to allow alignments of N tran-
scriptions simultaneously. The best alignment be-
tween sentences {1, ..., i1}, ..., {1, ..., iN} is deter-
mined by:

arg max
b∈{0,1,2}N

[
P (i1 − b1, ..., iN − bN )×

D({i1 − b1 + 1, ..., i1}, . . . , {iN − bN + 1, ..., iN})
]

where the distance function D is defined as an N-
dimensional generalisation of the original GCA dis-
tance function.

Limitations. The GCA only uses the informa-
tion about the lengths of the word fragments.
Hence it ignores other useful information such as
the characters used in the word fragments. A

tightly coupled character pair, e.g. characters cor-
responding to a rare sound, may strongly indi-
cate the true fragment alignment. In determin-
ing the most likely alignment between sentences,
the algorithm uses predefined prior probabilities
of alignment types, based on European languages.
In order to apply the algorithm to word fragment
alignments, these prior probabilities should be re-
estimated. Since the GCA is only applied to syn-
thetic data in this work, we will retain the original
priors and generate data according to them.

3.2 Moses

In order to perform a system-level evaluation
of the GCA as a transcription pre-processor for
character-based aligners, we require an established
alignment system. For this purpose we use Moses,
which is an SMT system designed to extend the
IBM Models for unsupervised phrase-based trans-
lation (Koehn, 2010).

Model description. Moses uses a mathematical
model to determine a probability distribution over
possible translations of a sentence. Given a source
language sentence e, a foreign language sentence
f , and a division of the sentences into I phrases
(blocks of consecutive words), the probability of
the foreign sentence given the source sentence is
defined as follows (Koehn, 2010):

p(f I |eI) =

I∏

i=1

φ(fi|ei)d(starti− endi−1−1) (3.3)

where ei and fi are the ith phrases in the source
and foreign languages, φ(f |e) is the probability of
translating the phrase e into f , starti is the po-
sition of the first word in the ith phrase, endi is
the position of the last word in the ith phrase, and
d is a function that penalises re-ordering (when
starti − endi−1 − 1 6= 0).

Application to transcription problem. To
apply Moses to the transcription normalisation
problem, we adopt the basic unit of characters in-
stead of words. In this context, a “phrase” corre-
sponds to a word fragment, or sequence of charac-
ters.

The first step of Moses training uses GIZA++
(Och and Ney, 2003) to establish likely word align-
ments. We use the HMM model for word align-
ment (Vogel et al., 1996), since the IBM models
encompass reorderings which are not relevant for
transcription alignment. An example of training
Moses to detect regular sound correspondences be-
tween Portuguese and Spanish from a comparative
wordlist (Wagner, 2010) is shown in Table 2.

4 HMM method

In this section a new method for transcription nor-
malisation based on Hidden Markov Models is in-
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ES PT φ(ES|PT) N
ie e 0.72 50
rse r se 0.93 28
rs r se 0.81 32
ón ão 0.71 24

Table 2: Sample of results from training Moses
on a Spanish-Portuguese comparative wordlist. φ
is the proportion of instances of the ES fragment
aligning with the PT fragment. N is the number
of samples of the ES fragment.

troduced. This method aims to address the prob-
lem of N-way transcription normalisation.

4.1 Model description

The leading idea in the new model is that whatever
orthography is used, the sequence of characters in
a transcription corresponds closely to the sequence
of sounds heard by the transcriber. This suggests a
model in which the characters are treated as emis-
sions and the sounds are treated as hidden states
in a modified version of a Hidden Markov Model.
Our goal is to infer the most likely hidden state
(sound) sequence given a set of N transcriptions
of the same audio, and to use this as a normalised
form.

Each hidden state (sound) is associated with
a probability distribution over all possible emis-
sions. Emissions are character sequences ranging
in length from 0 up to some maximum, denoted
LE. Hence, denoting the emission probability dis-
tribution for hidden state element s by φs,

φs(e) :

LE⋃

i=0

{c1, c2, ..., cN}i → [0, 1] (4.1)

where the {ci} is an inventory of all the characters
used in the orthography.

This setup would be sufficient if character emis-
sions occur in a strict linear order with respect to
the hidden states emitting them, but that is not al-
ways true. A counter-example is given by the En-
glish word date. In Figure 2, the last three sounds
together cause the emission ate: the emission of
the character e is unique to the combination of the
sounds. This phenomenon is not modelled suffi-
ciently by, say, adding some probability of emitting
the characters te from the t sound; the extra letter
is only emitted when the sounds occur together.

To address this problem, we allow emissions from
blocks of hidden states acting in unison, referred to
as source blocks or just sources. A source block,
s, is defined by:

s ∈
LB⋃

i=1

{h1, h2, ..., hM}i (4.2)

Figure 2: Transcriptions of the word date using
English orthography and a hypothetical phonetic
orthography. The true sequence of sounds is shown
in IPA in the center. The correspondence be-
tween sounds and orthographic representation is
indicated using arrows. Note that the last three
sounds together are responsible for the emission of
the characters ate in English orthography.

where LB is the length of the longest source block
allowed by the model, and the hi are the hidden
states of the model, of which there are M in total.
Each block has its own emission probability dis-
tribution which treated as being independent from
the emission distributions of its components. In
Figure 2, the last three sounds act as a block in
the top transcription language. Apart from block
emissions, no other provisions are made for out-of-
order emissions.

Given a set of N transcriptions assumed to be
of the same audio, we can compute its probabil-
ity with respect to a given hidden state sequence
using the ideas of source blocks and emissions. A
model is a pair composed of a hidden state se-
quence S =

(
h1, h2, ..., h|S|

)
and an alignment ψ

of the state sequence to the characters in the tran-
scriptions. The alignment is constructed by split-
ting each transcription into emissions, and splitting
the hidden state sequence into source blocks, which
are assigned to the emissions in order (hence, for
each transcription, there must be an equal num-
ber of source blocks and emissions). Note that
the hidden state sequence may be split into source
blocks differently for each transcription. Hence,
the complete alignment is a vector of independent
per-transcription alignments, ψ = (ψi). An align-
ment ψi of a hidden state sequence of length |S| to
a particular transcription of length Li is defined as
a vector of pairs (see Figure 3):

ψi = [([s1, s2), [t1, t2)) , ([s2, s3), [t2, t3)) , . . . ,

([sJ , |S|), [tJ , Li + 1))]
(4.3)

where s1 = t1 = 1, J = |ψi| is the number of
source blocks, and ti may equal ti+1 in the case
of a zero-length emission. Then, the probability of
an observed set of M transcriptions given a state
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Alignment 1

Alignment 2

Hidden State Sequence

Transcription 2

Transcription 1

Figure 3: Sample alignment of a hidden state
sequence of length 5 to two transcriptions. In
transcription 1, sounds [2, 3] emit characters [3, 6]
as a block, and in transcription 2, sounds [1, 2]
emit characters [1, 2] as a block. The align-
ment for Transcription 1 as defined in (4.3) is:
ψ1 = (([1, 2) , [1, 3)) , ([2, 4) , [3, 7)) , ([4, 5) , [7, 10)) ,
([5, 6) , [10, 11))).

sequence and alignment is given by:

P (T1, T2, ...,TM |S, ψ) =

M∏

i=1

J∏

j=1

φi([tj , tj+1)|[sj , sj+1)) (4.4)

where we have defined φi(e|s) to be the probability
of emitting the emission e from the source block s
in the ith transcription language. For the purpose
of inferring the most likely hidden state sequence,
we use Bayes’ Theorem: the probability of a model
given a set of transcriptions is proportional to:

P (S, ψ|T1, T2, ...,TM ) ∝
P (S, ψ)P (T1, T2, ..., TM |S, ψ)

(4.5)

where to calculate P (S, ψ), we use a first order
Markov Model on the hidden state sequence, and
make no relative penalties for different alignments:

P (S, ψ) = P (S) =
∏

(Si,Si+1)

P (Si+1|Si) (4.6)

4.2 Model Implementation

The model and an EM training procedure were im-
plemented in C++.

Training. Training follows a modified Expecta-
tion Maximisation format. The emission distribu-
tions and bigram model for the hidden states are
initialised randomly, then the following process is
looped over a fixed number of iterations:

1. Model fitting:

(a) State sequences are sampled randomly for
each sentence group in the corpus.

(b) Random alignments to the transcriptions
are generated for each state sequence.

(c) Probability of the random fits calculated.

2. Model re-estimation:

(a) Count for each emission event and state
sequence event are weighted by probabil-
ity of the sample in which they occur and
added to running totals.

(b) Weighted counts for each event are nor-
malised and smoothing is applied.

(c) Pairs of sources with low information
radii are merged.

Sampling Strategy. We use a greedy sampling
strategy to ensure that some high likelihood mod-
els are included in the sample. Specifically, the
process is as follows:

1. Choose a random number of sounds for the
state sequence.

2. Choose a (uniformly) random alignment to the
transcriptions.

3. For each state sequence position, randomly se-
lect sounds and evaluate the probability of the
partial model.

4. Choose the sound that had the highest prob-
ability.

The number of times random sounds are drawn
in step 3 is equal to the number of hidden states
used by the model. This ensures a good chance
of a higher-probability sound being chosen, while
preventing lower probability samples from being
unrepresented.

Clustering. The last part of the E-step in the
main training procedure is a form of clustering.
The two most similar source blocks (defined by
similarity of their emission distributions) are com-
bined. One source block takes on the average dis-
tribution of the two, while the other is re-initialised
with a uniform distribution. This leaves one source
block free to acquire a new emission probability
distribution, which may lead to a better overall
modelling of the data. Hence, the clustering step
provides a way for the training to jump out of lo-
cal maxima. Clustering may be repeated a variable
number of times, to merge multiple similar source
pairs in a single training iteration. The similarity
measure over emission distributions used to deter-
mine which source pairs to merge is the informa-
tion radius (Manning and Schütze, 1999).

Length normalisation. Longer sentences natu-
rally correspond to longer state sequences. Hence
there are more possible models for a longer sen-
tence, and therefore the probability of any given
model is lower. This reduces the weight associ-
ated with a longer sentence when training. In fact,
given two sentences, one twice as long as the other,
the weight of the longer sentence will be roughly
the square of the weight of the shorter one. Since
the event counts are weighted by the probability
of the sample containing them (and hence weights
are < 1), longer sentences will contribute less data
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when training. This bias can be prevented using
length normalisation. Length normalisation scales
the weight of a sample according to its length. The
length normalised weight for a sample is given by
w∗ = |S|√w where |S| is the length of the state se-
quence and w is the model probability computed
using Equation (4.4).

4.3 Limitations

While the hidden state sequence is a natural nor-
malised form for transcriptions, it is not enlight-
ening when inspected. Hidden states are labelled
only by integers, hence there is no immediate indi-
cation of what sound a particular hidden state may
represent. Thus, a further decoding procedure may
be needed to convert the true normalised form to
a human-readable form.

Another limitation of the method is that it
does not consider previously-known correspon-
dences between transcription styles. For example,
transcribers using similar character sets would be
likely to use the same characters to mean the same
sounds. The algorithm converts each data set into
a list of integers, where each unique character has a
single entry in a map. The maps for each transcrip-
tion language are independent. Taking this type of
information into account in advance may speed up
the training process and improve its accuracy.

A further limitation is that the emission distri-
bution associated with a source block is treated as
being independent from the emission distributions
of its constituent sounds. This is unrealistic; for
example, if a source block in English contains the
sound t, it is very likely that the emission produced
by that source block will contain the letter t, but
this is not captured in the model.

5 Evaluation

In the first sections we outline two synthetic data
generation methods. These are designed to allow
evaluation of character-based aligners based on the
ground truth emission correspondences in the gen-
erated corpora. A metric quantifying the differ-
ence between the emission distributions learned by
the character aligner and the ground-truth distri-
butions is also defined. The evaluation is limited
to the case of two parallel transcriptions. Evalua-
tion of a character-based aligner involves an 18 part
test performed for each data generation method:
combinations of 3 sentence lengths (5, 10, and 15
words), and 3 corpus sizes (10, 25, 50 sentences),
with and without GCA pre-processing of the cor-
pus. Each test was performed 3 times with dif-
ferent randomly generated corpora and the results
were averaged to give the presented value.

The next section involves an evaluation of GCA
for the purpose of pre-processing transcriptions for
normalisation. For this purpose, we outline a sim-

ple data generation scheme to produce parallel cor-
pora with known ground truth alignments. Fur-
thermore, the efficacy of the GCA as a preproces-
sor for character-based alignment tools is examined
by studying the effect of GCA pre-processing on
alignments learnt by the well-known Moses SMT
system.

5.1 Synthetic method 1

This method is intended to produce corpora with
character-aligned text in two randomly generated
‘languages’. First, a set E of random possible emis-
sions are generated in the first language. For each
emission e ∈ E, a probability distribution over
emissions in the second language, φe(f), is ran-
domly generated. The support of each φe(f) distri-
bution includes a small number of emissions, uni-
formly chosen between 1 and 5.

To generate words, a random integer is chosen
from a gamma distribution, and that number of
emissions are drawn uniformly from the set E of
possible emissions in the first language. For each
emission e included in the word, a corresponding
emission f is drawn from the φe(f) distribution.
The emissions are concatenated to form the words.
An alignment type is then drawn from the GCA
priors (Table 1). The corresponding words are split
according to the alignment type, where split points
are chosen uniformly along the length of the words.
Sentences are generated by stringing together se-
ries of words generated in this way. Hence the
true emission correspondence distributions φe are
known and can be compared to those learnt by an
aligner.

5.2 Synthetic method 2: Block-based
HMM

The second synthetic method involves generation
of parallel corpora under the assumptions of the
HMM method. This method may be used to gen-
erate any number of transcriptions simultaneously,
but for this application we limit generation to two
languages at a time. The data generation process
is as follows:

1. A random language model for hidden states is
generated, a random set of valid source blocks
is generated, and random emission distribu-
tions for all valid source blocks are generated
as in Synthetic Method 1.

2. For each individual word, a state sequence
length is drawn from a gamma distribution.

3. For each word, a random sequence of sounds of
that length is generated according to the lan-
guage model, with initial probabilities equal
to the stationary probabilities of the chain.

4. Starting with the longest block length, LE,
and working back to blocks of length 1, emis-
sions are chosen for any valid blocks appearing
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in the state sequence.
5. The resulting emissions are concatenated to

form the words for each transcription.
6. An alignment type is chosen from the GCA

priors and the words are split according to
that alignment, uniformly along their length.

7. Words formed this way are strung together to
form sentences.

To calculate the true correspondence distributions
between emissions we use Bayes’ Theorem. Let f
be an emission in the second language, and e an
emission in the first language. Then the probabil-
ity of an instance of e corresponding to f in the
corpus is:

P (f |e) =
∑

s∈S
P (f, s|e) ∝

∑

s∈S
P (s)P (e|s)P (f |s)

(5.1)

Where S is the set of possible source blocks. Note
that emissions selected for the different transcrip-
tions from a common source are independent, so
that P (f |s, e) = P (f |s). Note also that the di-
vision of the hidden state sequence into blocks is
common to both transcription languages. To cal-
culate Equation (5.1), P (e|s) and P (f |s) are taken
directly from the emission distributions. P (s) is
calculated using the stationary properties of the
Markov chain used in sequence generation. Writ-
ing s = s1, s2, ..., sN , we have the approximation:

P (s) = α(s1)P (s1|s2) ... P (sN−1|sN ) (5.2)

where α(s1) is the stationary probability of the first
sound of the source block. Equation (5.2) is only
correct if word boundaries are treated as states
in the HMM, which they are not; state sequence
lengths are pre-drawn from a gamma distribution.
However, the assumption becomes more accurate
as the mean word length increases, and the aver-
age source block length decreases. Keeping block
lengths short (maximum of 2-sound blocks) mit-
igates the effects of this inaccuracy, and the as-
sumption will be kept.

5.3 Evaluation metric

For each of the data generation methods explained
above, we have access to ground truth distributions
for regular emission correspondences between the
two languages. We define an accuracy metric based
on the information radii between the true corre-
spondence distributions (produced during corpus
generation) and those produced by the aligners.
Moses automatically produces emission correspon-
dence distributions, and for the HMM method they
are calculated using Equation (5.1).

Although information radius is only defined for
two distributions, we can define a new metric quan-
tifying the distance between a set of paired distri-
butions. Let the paired distribution sets be {Pi}

Align P R F-score N
0 - 1 0.00 0.00 0.00 104
1 - 1 0.90 0.95 0.93 8886
1 - 2 0.82 0.67 0.74 893
2 - 2 0.00 0.00 0.00 117

Table 3: Results of running GCA on a corpus

and {Qi}, i ∈ E, (E is the set of all emissions ob-
served in the first language). Then we will use the
metric:

D =
∑

i∈I
wiIRad(Pi, Qi) (5.3)

where IRad is the information radius (Manning
and Schütze, 1999), and the weight wi is the pro-
portion of occurrences of the ith emission in the
corpus, relative to all other emissions.

5.4 Gale-Church evaluation

For evaluation of the GCA, parallel corpora were
generated using the following procedure:

1. A random sequence of alignments (0-1,1-1,
etc.) was drawn with probabilities equal to
the priors in the GCA (Table 1).

2. For each alignment, a random word length was
drawn from a gamma distribution to form the
first corpus. The parameters of the gamma
distribution were chosen to be similar to those
in the distribution of lengths of English words
(West, 2008).

3. Each such word was randomly ‘translated’ un-
der the assumptions of the GCA; the corre-
sponding word length was drawn from a nor-
mal distribution according to the assumptions
of the GCA (Gale and Church, 1993).

4. Each word pair in both corpora was then
split according to their associated alignment
type. Word splitting was distributed uni-
formly along the length of the word.

The parallel corpora generated were aligned using
the unmodified GCA, and the accuracy of the re-
sulting alignment was quantified using an F-score.

Results of running the GCA on a corpus gen-
erated using the above method are presented in
Table 3. The algorithm did not correctly identify
any 0-1 or 2-2 alignments. This effect occurs when
aligning short (word size of less than 10 characters)
fragments; increasing the word lengths to sentence
size (∼100 characters) causes the alignments to be
picked up by the algorithm. The effect likely re-
lates to the very low priors assigned to those align-
ment types (see Table 1). On the other alignment
categories, the algorithm performs well.

The results of running Moses on corpora gener-
ated using synthetic methods 1 and 2 are shown in
Tables 4 and 5 respectively. For both data gener-
ation methods it is clear that pre-processing using
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M/+G
#Sentences

10 25 50

#
W
o
rd
s 5 0.33/0.27 0.28/0.16 0.31/0.15

10 0.46/0.29 0.46/0.16 0.30/0.10
15 - /0.31 - /0.22 - /0.16

Table 4: Moses accuracy scores calculated using
(5.3) (lower is better), for Synthetic Method 1.
M: Moses alone, M+G: corpus pre-processed us-
ing the GCA. A dash represents failure of Moses
to train (common with long sentences).

M/+G
#Sentences

10 25 50

#
W
o
rd
s 5 0.18/0.06 0.05/0.03 0.03/0.03

10 0.29/0.04 0.18/0.01 0.32/0.05
15 0.28/0.03 0.33/0.04 0.21/0.02

Table 5: Moses accuracy scores calculated using
(5.3) (lower is better), for Synthetic Method 2.
M: Moses alone, M+G: corpus pre-processed us-
ing the GCA.

GCA improves the ability of Moses to learn emis-
sion correspondences. The effect of using GCA as
a pre-processor is especially pronounced in the case
of synthetic method 2, where dramatic decreases in
the evaluation metric are observed. In addition to
improving the accuracy of the training, the GCA
also makes training possible on corpora which in-
clude longer sentences.

5.5 HMM Method

The results of running the HMM Method on cor-
pora generated using synthetic methods 1 and 2
are shown in Tables 6 and 7 respectively. GCA pre-
processing appears to have little effect on accuracy
for this method. The method performs extremely
well on corpora generated using synthetic method
2, which uses the assumptions of the HMM model.
Comparing the results of training across the two
data generation methods, it is clear that while the
HMM method performs exceptionally on corpora
generated using its assumptions, the implementa-
tion cannot yet achieve similar results on corpora
which are generated differently.

H/+G
#Sentences

10 25 50

#
W
o
rd
s 5 0.18/0.18 0.42/0.43

10 0.12/0.12 0.22/0.22
15 0.21/0.22 0.25/0.25

Table 6: HMM Method accuracy scores calcu-
lated using (5.3) (lower is better), for Synthetic
Method 1. H: HMM Method alone, H+G: corpus
pre-processed using the GCA. Not all evaluations
were completed due to prohibitive running times
on large corpora.

H/+G
#Sentences

10 25 50

#
W

o
rd

s 5 0.00/0.00 0.00/0.00
10 0.00/0.00 0.00/0.00
15 0.00/0.00 0.01/0.01

Table 7: HMM Method accuracy scores calcu-
lated using (5.3) (lower is better), for Synthetic
Method 2. H: HMM Method alone, H+G: corpus
pre-processed using the GCA. Not all evaluations
were completed due to prohibitive running times
on large corpora.

6 Conclusion

We have introduced the transcription normalisa-
tion problem, and have tested the application of
new and existing computational methods to it,
with mixed results.

The evaluation of the Gale-Church Algorithm
showed that it has a significant positive impact on
subsequent training of character aligners. Hence
the GCA will be useful in preparing texts so that
they may be subject to character level processing,
such as alignment and transliteration.

Regrettably, the implementation of the HMM
method could not be fully developed in the avail-
able time. Features such as greedy sampling of
the alignment space remain to be implemented.
The method displayed promising results on corpora
generated under HMM assumptions, however it is
not yet versatile enough to achieve similar results
when modelling corpora generated under different
assumptions.

The results of the evaluation, while illustrating
some interesting comparisons, are difficult to inter-
pret. For instance, it is unclear what value of the
accuracy metric a system would have to produce
before it could be declared accurate enough to be
useful in the transcription normalisation problem.
Such investigations would require human evalua-
tors.
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