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Abstract
We describe “treeblazing”, a method of us-
ing annotations from the GENIA treebank
to constrain a parse forest from an HPSG
parser. Combining this with self-training,
we show significant dependency score im-
provements in a task of adaptation to the
biomedical domain, reducing error rate by
9% compared to out-of-domain gold data
and 6% compared to self-training. We also
demonstrate improvements in treebanking
efficiency, requiring 25% fewer decisions,
and 17% less annotation time.

1 Introduction

Computational linguistic research is driven by the
development of reference resources for specific
tasks and languages. The advent of services such
as Amazon’s Mechanical Turk has driven down
the cost of annotation considerably, assuming a
given task can be broken down into piecemeal
units which are intuitive and manageable for non-
experts. This is not an option, however, for fine-
grained tasks which require an expert understand-
ing of a theory or domain, such as syntactic tree-
banking or discourse annotation.

Two main approaches have been adopted to ef-
ficiently create new resources: (1) domain adap-
tation, where a trained model from one domain
is stochastically adapted to a new domain, us-
ing unlabelled data from the new domain (Daumé
III and Marcu, 2006); and (2) annotation projec-
tion, where the labels in a pre-existing resource
are semi-automatically translated into an indepen-
dent formalism, e.g. in translating the PTB into
the CCG formalism (Hockenmaier and Steedman,
2002). This paper looks at both of these ap-
proaches: domain adaptation from unannotated

data in the form of self-training combined with re-
source translation over the GENIA treebank (Yuka
et al., 2005), in the context of training an HPSG
parse selection model for biomedical text, and us-
ing the GENIA treebank annotations and retrained
parse selection model to accelerate treebanking.

Our contributions are: (1) we propose a series
of methods for transferring annotation from a tra-
ditional phrase structure treebank to constrain the
parse forest of a precision grammar; (2) we show
that this constrained forest can be used to domain-
adapt a parse selection model; (3) we demonstrate
improvements in treebanking performance using
the constrained forest; and (4) we develop a small-
scale HPSG treebank for the biomedical domain.

2 Related Work

Domain adaptation is an active research area, trig-
gered by the observation that parsers trained on
one domain show decreased performance when
used in other domains (Gildea, 2001). Much
domain-adaptation work involves some small
amount of in-domain data to tune a model, but Mc-
Closky et al. (2006) showed “self-training” using
unannotated in-domain data could achieve signifi-
cant improvements in parser accuracy.

In parsing-related research that has used anno-
tated data, but in an incompatible format, we see
two main use cases. The first uses an existing tree-
bank to create a treebank for some completely dif-
ferent linguistic framework, generally to induce a
grammar in that framework. Xia (1999) presents
work on transforming Penn Treebank (PTB) trees
into Lexicalized Tree Adjoining Grammar (LTAG)
structures. The work of Hockenmaier and Steed-
man (2002) is roughly parallel, but targets Com-
binatory Categorial Grammar (CCG). The tech-
niques include binarisation, adding an extra level
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of NP structure, and remapping node labels to
CCG categories. An analog in the framework of
Head-driven Phrase Structure Grammar (HPSG) is
described by Miyao et al. (2004).

The second use case is to use the incompatible
annotations to select the correct tree from the out-
put of a compatible parser. Sometimes, a func-
tion over the original annotations produces a score
of the new analysis candidates, and a single best
analysis is selected (Wang et al., 1994; Niu et al.,
2009). In other work, the original annotations do
not uniquely disambiguate the parse forest, but the
partial annotations can still be used. Riezler et
al. (2002) used PTB annotations to partially dis-
ambiguate a parse forest built using a grammar
in the Lexical-Functional Grammar (LFG) frame-
work (Butt et al., 2002), and then built a model
using the partially-disambiguated forest. Another
use of partially disambiguated forests is described
by Tanaka et al. (2005), who manually created a
Japanese treebank (Bond et al., 2004) by select-
ing the best parses from the candidate parses of-
fered as candidates from JaCy, an HPSG grammar
of Japanese. The annotators reject or affirm dis-
criminants to select the best tree, as is described in
more detail in §3.1. Their data was already human-
annotated with POS tags, which they used to con-
strain the parse forest, requiring on average 19.5%
fewer decisions and 15% less time per tree.

Tanaka et al. (2005) used only POS tags. Our
work can be viewed as a syntactic extension
of this. We investigate strategies for adapting
the English Resource Grammar (ERG: Flickinger
(2000)) to the biomedical domain using informa-
tion contained in the GENIA treebank (GTB), a
corpus of 1,999 abstracts from PubMed in the do-
main of human blood cells and transcription fac-
tors, annotated according to a slightly simplified
version of the PTB II annotation guidelines.

3 Setup

We explore two branches of experimentation us-
ing a common core of tools, resources and meth-
ods. This section describes the necessary details
of our treebanking process, the test data we use,
and some peculiarities of parsing biomedical data
that affected our experiments.

3.1 Treebanking

All our experiments are based on the Redwoods
treebanking methodology (Oepen et al., 2004),

where the treebank is constructed by selecting
from a parse forest of candidate trees licensed by
the grammar. All experiments reported in this pa-
per make use of the ERG. We first parse an input,
and then select the (up to) 500 top-ranked parse
trees according to a parse selection model. This set
of parse trees is then presented to the human tree-
banker in the form of discriminants (Carter, 1997;
Oepen et al., 2004). The discriminants used here
correspond to instantiations of the 200 lexical and
syntactic rules of the ERG, as well as the lexical
entries themselves, but only those that correspond
to ambiguity in the parse forest and can thus dis-
criminate between candidate parse trees.

During treebanking, the annotator confirms
or rejects some subset of discriminants, and at
each stage, the Redwoods machinery performs
inference to automatically reject those discrimi-
nants that are incompatible with the current set
of manually-selected and inferred discriminants.
This means that each manual decision can directly
or indirectly rule out a large number of trees, and
the number of decisions required is on average
proportional to the logarithm of the number of
parses (Tanaka et al., 2005).

Treebanking gives us a large number of re-
jected trees, along with the single correct gold tree,
which can be used to build a discriminative parse
selection model, in our case using TADM (Mal-
ouf, 2002). This is applied to parsing unseen data,
and also for the next iteration of treebanking.

3.2 Data: a new biomedical HPSG treebank

In order to evaluate the impact of the proposed
method on parser accuracy over biomedical text,
we require a gold-standard treebank in the tar-
get domain. We use a subset of the data used in
the GTB, created by first removing those abstracts
(approximately half) that overlap with the GENIA
event corpus (GEC: Kim et al. (2008)), to hold out
for future work. From this filtered set, our test cor-
pus comes from the 993 sentences of the first 118
abstracts (PubMed IDs 1279685 to 2077396).

Our treebankers both have detailed knowledge
of the ERG, but no domain-specific biomedical ex-
pertise. As a proxy for this, they used the original
GTB syntactic annotations when a tie-breaker was
needed for ambiguities such as PP-attachment or
co-ordination. The annotators were instructed to
only refer to GTB trees when the ambiguity was
not resolvable on linguistic grounds. The first 200
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sentences of the corpus were double-annotated in
each round of treebanking (agreement figures for
unseen data are shown in §6.3)

The first round of annotation of a 500-sentence
subset of the corpus served to determine a suit-
able parser configuration and calibrate between
annotators using the 200-sentence overlap. From
this, we developed a set of annotation guidelines,
which will be made available with the corpus. One
key domain-specific guideline related to the treat-
ment of noun compounds, which are never disam-
biguated in the flat GTB structure. In the biomed-
ical domain, noun compounds are generally left-
bracketed – 83% of three-word compounds ac-
cording to Nakov and Hearst (2005) – so we
stipulated that noun compounds should be left-
bracketed and adjectives attached high in cases of
doubt, as a tie-breaking strategy.

We also used this first-iteration treebank to build
a domain-tuned parse-selection model (duplicat-
ing the data 10 times and combining it with a
larger out-of-domain corpus, using the DUPLIC

method of MacKinlay et al. (2011) to provide im-
provements for sparse in-domain data). The ex-
ternal corpus was the WeScience corpus (Ytrestøl
et al., 2009), a selection of Wikipedia articles on
NLP. We improved the parser’s handling of named
entities, as described in §3.3, and then reparsed the
treebank with the new parsing configuration and
parse selection model, giving 866 parseable sen-
tences. After updating the treebank according to
the new guidelines using this new parse forest, and
checking inter-annotator agreement on the over-
lap, we annotated the remaining sentences. All
accuracy figures we report are over the data set of
669 trees complete at the time of experimentation.

3.3 Biomedical parsing setup

We parsed sentences using the ERG with the PET
parser (Callmeier, 2000), which uses POS tags to
constrain unknown words. Following Velldal et al.
(2010), we primarily use the biomedically trained
GENIA tagger (Tsuruoka et al., 2005), but defer
to TnT (Brants, 2000) for tagging nominal ele-
ments, because it makes a useful distinction be-
tween common and proper nouns.

Biomedical text poses a unique set of chal-
lenges, mostly relating to named entities, such as
proteins, DNA and cell lines. To address this, we
used the GENIA tagger as a named-entity (NE)
recogniser, treating named entities as atomic lex-

ical items. However, the NE tagging is often
overzealous and discards internal structure, mis-
leading the parser. To overcome this, we supply
multi-token NEs as both a single atomic NE token
and the individual words, thus giving PET a lattice
as input. The increased parse coverage and bet-
ter parse quality made this a worthwhile strategy,
with the downside of increased ambiguity, making
parse selection more difficult.

4 Blazing

In §2, we reviewed work that uses linguistic
information from superficially incompatible for-
malisms for treebanking or parse selection. Our
experiments here use syntactic information from
the GTB to partially disambiguate the parse forest
produced by the ERG. We do this by disallowing
certain candidate ERG trees on the basis of GTB-
derived information, and we follow Tanaka et al.
(2005) in denoting this process “blazing”.1

As detailed below, we can use this partially
disambiguated forest: (1) to train parse selection
models; and (2) to reduce treebanking effort, ab-
stractly similarly to Tanaka et al. (2005). The goal
is not to apply all constraints from the GTB to the
ERG parse trees; rather, we want to apply the mini-
mal amount of constraints possible, while still suf-
ficiently restricting the parse forest for our target
application. We call the set of trees remaining after
blazing silver trees, to represent the fact that they
are not gold standard, but are generally of better
quality than the discarded analyses.

For an iteration of blazing, we parse each GTB
sentence, obtaining the top-500 trees according
to the parse selection model. Each discriminant
(as discussed in §3.1) which corresponds to a
meaningful difference between the candidate trees
(derivations) is supplied to the blazing module.

A given discriminant can be ruled out, ignored
or asserted to be true, but we never make use of
the latter, since we can just rule out incompatible
discriminants, which are easier to identify. This
process happens with all discriminants for a sen-
tence simultaneously, so it is possible to rule out
all parse trees. This may indicate that none of the
candidate parses are desirable, or that the imper-
fect blazing process is not completely successful.

The blazing module is given the GTB XML
source for the tree, and a set of discriminants, each
of which includes the name of the rule or lexical

1Which is a term in forestry: marking trees for removal.
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entry, as well as the corresponding character span
in the source tree. It applies some pre-configured
transformations to the GTB tree, and examines
each discriminant for whether it should be ruled
out, by comparing to the corresponding GTB con-
stituents overlapping with the supplied charac-
ter span. Primarily, these decisions depend on
whether a discriminant is a crossing-bracket dis-
criminant, i.e. corresponds to phrase structures in
the ERG derivation trees which would have cross-
ing brackets with any overlapping constituents (ig-
noring punctuation). As discussed below, in some
configurations we can also use the rule name or
lexical type to rule out particular discriminants.

5 Parse Selection

Our first set of experiments was designed to eval-
uate the impact of blazing on parse selection,
specifically in a domain-adaptation scenario. As
mentioned in §3.1, parse selection is the process
of selecting the top n parses, using a discrimi-
native statistical model trained using the correct
and incorrect trees from the treebanking process.
However, as discussed in §2, statistical models are
highly sensitive to differences in domain, and ide-
ally, one would domain-tune off in-domain tree-
bank data. Self-training (e.g. McClosky et al.
(2006)) bypasses this need for in-domain anno-
tations, by parsing the new domain with an out-
of-domain model, treating the top-ranked parse as
gold, and training a new model accordingly. In
this work, we extend that idea by using blazing to
transfer annotations from the GTB, hopefully fil-
tering out incorrect trees in the process, and arrive
at better-quality top-ranked parses.

5.1 Blazing configurations

Blazing depends on the fact that the ERG and
the GTB both have a theoretical linguistic un-
derpinning, and so we expect they would share
many assumptions about phrase structure, partic-
ularly for phenomena such as PP-attachment and
co-ordination. However there are also dispari-
ties, even between the unlabelled bracketing of the
GTB and ERG trees.

One pervasive difference is the attachment of
specifiers and pre- and post-modifiers to NPs. The
GTB attaches pre-modifiers and specifiers as low
as possible, before attaching post-modifying PPs
at a higher level, while the ERG makes the op-
posite decision and disallows this order of attach-
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Figure 1: Sample trees

ment. The other important difference is phrase
branching – the GTB allows arbitrarily many chil-
dren per node, while the ERG allows at most two.
We show a sample NP exemplifying the differ-
ences in Figure 1.

One strategy for handling this is to make as few
assumptions as possible while avoiding spurious
conflicts. Denoted IEP (ignore equal parent), it
involves ignoring GTB nodes with the same label
as the parent when looking for crossing-bracket
constituents. From the GTB tree in Figure 1, the
blazing module would ignore the boundaries of
the second-level NP when looking for crossing-
bracket discriminants. This ensures that we never
rule out the corresponding good subtree shown
in the figure in favour of some invalid bracketing
from the ERG that by chance has no conflicts with
the GTB tree; meanwhile the PP would still be
considered. Note that for a flat NP with no post-
modifiers, no changes are necessary as the exter-
nal boundaries still correspond with the edges of
the top-level NP in the ERG, and the extra internal
boundaries in the ERG have no effect since they
cannot cause any crossing brackets.

Alternatively, to avoid discarding possibly valid
syntactic information, we can attempt to account
for the systematic differences by mapping the
GTB as closely as possible to the structures
we would expect in the ERG before looking
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for crossing-bracket discriminants. Firstly, the
phrases are binarised in a similar way to much pre-
vious work (Miyao et al., 2004; Hockenmaier and
Steedman, 2002). We heuristically determine the
head of each phrase using a simple category match
between the phrase category and the POS, then re-
cursively split multiple-branched nodes. This bi-
narisation applies to all phrasal categories, not just
NPs. We then systematically alter the attachment
positions of determiners and pre-nominal modi-
fiers, forcing them to attach as high as possible, but
preserving the binary branching. As a lightweight
but imperfect attempt to avoid creating invalid
structures for appositions and conjunctions, this
NP rearrangement is abandoned if any tokens are
parentheses, commas or conjunctions. The trans-
formation is labelled RP (raise premods).

5.2 Experimental Configuration
We create a parse forest by parsing 10747 sen-
tences from a GTB subset not overlapping with
the test corpus, using the WeScience model to de-
termine the top 500 parses. The best-performing
method we found to create parse selection mod-
els from this parse forest was to apply the blaz-
ing configurations to determine the silver trees,
and then select the top-ranked parse from that set,
according to the WeScience model. We call this
top parse our pseudo-gold analysis. Remaining
silver trees are ignored, while incorrect trees are
used as negative data as usual. To show how
much effect blazing has, we also used two other
methods to select the pseudo-gold parse: ran-
dom selection from that same top 500, to give
us a baseline, and ‘plain’ self-training using the
top-ranked parse without the blazing-based filter-
ing, in each case using other trees from the for-
est as negative data. We then trained parse selec-
tion models using the gold standard out-of-domain
(WeScience) data plus the in-domain pseudo-gold
analyses from each configuration, and evaluated
by parsing our test corpus.

5.3 Evaluation
We use two different styles of evaluation metric.
In keeping with previous work using the ERG, we
report exact match figures, denoted AccN , repre-
senting the percentage of sentences for which the
exact gold tree was in the top N parses. Here, as
in Zhang et al. (2007), we use Acc1 and Acc10.
However, exact match can be very blunt for the
fine-grained ERG analyses, giving no indication of

Config Gold Acc EDMNA

Added A1 / A10 P / R / F
(WeSc only) WeSc 12.3 / 39.2 82.4 / 79.2 / 80.7
Random WeSc 6.1 / 20.0 70.7 / 70.2 / 70.5
Self-train WeSc 12.9 / 39.2 82.4 / 80.3 / 81.3 *

IEP + S-T WeSc 12.9 / 39.2 83.5 / 80.9 / 82.2 *** ††
RP + S-T WeSc 13.3 / 40.1 83.8 / 81.2 / 82.5 *** †††

Table 1: Results over the test corpus. “WeSc
only” shows parsing using a pure WeScience
model. Other configurations used models trained
from the same training sentence parse forest, set-
ting a pseudo-gold tree either randomly, self-
trained (best from a WeScience model), or blaz-
ing (highest-ranked of the silver trees, other silver
trees discarded). The gold WeScience data is also
used for training. Significance figures are against
“WeSc only”, ( *: p < 0.05; ***:p < 0.001), and
“Self-train”, ( ††: p < 0.01; †††: p < 0.001)

how ‘right’ or ‘wrong’ the top analysis is. To sup-
plement AccN , we use Elementary Dependency
Match (EDM: Dridan and Oepen (2011)). This is
based on triples extracted from the semantic out-
put of the parser, providing a more granular mea-
sure of the quality of the analyses. We use the
EDMNA configuration that is arguably the most
compatible with other dependency-based parser
evaluation, although we make no claims of direct
comparability.

5.4 Results

We present our results in Table 1, including the
best-performing blazing configurations, the self-
training results and the weak baseline trained on
a random tree from the same GTB parse forest as
used in blazing.

We also show the parsing accuracy results ob-
tained using only out-of-domain data, designated
“WeSc only”, as a strong baseline. We see some
evidence that self-training can be a useful domain-
adaptation strategy, giving a weakly significant F-
score improvement over using WeScience only.
This echoes previously mentioned work, although
has not been evaluated for this parser or grammar
before. More importantly, our blazing strategy
yields strongly significant F-score improvements
over both the strong baseline out-of-domain model
and the standard self-training.

5.5 Discussion

There is strong evidence that these blazing meth-
ods can help create a parse selection model to give
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IEP RP
Discrims/Sent 144.2 144.2
Rejected/Sent 40.8 42.8
Unblazed Sents 3.9% 3.4%
Overblazed Sents 14.2% 15.3%
Usably Blazed Sents 81.9% 81.3%
Trees/Sent (overall) 423.3 423.3
Silver Trees/Sent (blazed) 98.4 88.5
Silver Trees/Sent (usable) 120.1 108.8

Table 2: Blazing Statistics, over all 10747
parseable training sentences. The first block
shows discriminants available per sentence, and
how many were rejected by the blazing (remov-
ing ≥ 1 tree). The second block shows percent-
age of unblazed sentences (no discriminants re-
jected), overblazed sentences (all trees removed)
and usably-blazed sentences (≥ 1 removed and
≥ 1 silver tree remaining). The third block shows
how many parses were produced initially, the av-
erage number of trees remaining over blazed sen-
tences (inc. overblazed with 0 trees) and the aver-
age number remaining over usably blazed.

a significant boost in dependency score without
needing additional human annotation. The exact
match results are inconclusive – the best improve-
ment is not significant, although the granular EDM
metric may provide a better reflection of perfor-
mance for downstream applications in any case.

In our initial investigations, a range of config-
urations failed to provide improvements over the
baseline. If we don’t augment the training data
with human-annotated WeScience data, the per-
formance drops. Also, if we don’t use the self-
training/blazing combination as described but in-
stead treated all silver trees as pseudo-gold (i.e
treat all remaining post-blazing parse trees as if
they were manually marked as good), the model
performs poorly. Table 2 provides some explana-
tion for this. Over sentences which provide usable
discriminative training data (at least one incorrect
and one silver tree), on average more than 100 sil-
ver trees remain, so it is failing to disambiguate
sufficiently between the ERG analyses. This is
probably due to an imperfect transfer process and
shallower, less precise GTB analyses.

6 Reducing treebanking labour

Blazing is designed to reduce the size of the parse
forest, so it seems natural to evaluate its impact on
the treebanking process, and whether we can re-
duce the amount of time and number of decisions

required to enable more efficient treebanking.

6.1 Mapping between treebanks
In addition to the transformation strategies men-
tioned in §5.1, we used a number of additional
strategies (most of which we had already tried
initially, for parse selection, but rejected). One
rule concerns the internals of noun compounds,
which are flat in the GTB; we may wish to add
some structure to them. As discussed in §3.2,
biomedical noun compounds are predominantly
left-bracketed, and left-bracketing was also our
tie-breaking policy for annotating the test set. In
the BNC strategy (bracket noun compounds), we
added bracketing to noun compounds to have noun
sequences maximally left bracketed, and adjec-
tives attaching as high as possible. This makes as-
sumptions which are not explicitly licensed by the
data (and arguably overfits to our data set), so this
transformation is only applied where no useful dis-
tinctions are made by less restrictive approaches.

We also use a mapping strategy which does not
make changes to the tree structure but which use
the POS labels to rule out trees, denoted MP for
map POS. It uses the prefixes of the lexical types
– e.g. a simple transitive verb would have the lex-
ical type v np le, where the prefix ‘v’ indicates
‘verb’. We used a mapping constructed by manual
inspection of a correspondence matrix between the
POS tags produced by TnT (Brants, 2000) and the
lexical type prefixes from the gold-standard ERG
parse of the same sentences over a WeScience sub-
set. This gave us the matching ERG type prefixes
for 20 PTB/GTB POS tags, which are mostly what
we would expect for the open classes – e.g. VB*
verb tags map to the ‘v’ prefix.

During mapping, given a pairing of a GENIA
tree and a set of ERG discriminants, for each POS
tag or inner node in the GENIA tree, we find all
lexical discriminants with the same character span.
If there are multiple discriminants with different
matching labels, and there is at least one allowed
and one disallowed by the mapping, then we reject
all disallowed discriminants. This is less sophisti-
cated than the mapping technique of Tanaka et al.
(2005) for various reasons.

6.2 Selecting a blazing strategy
There are a range of blazing strategies and com-
binations thereof, with varying levels of validity
and restrictiveness. Ideally, during treebanking we
would start with a more restrictive blazing strat-
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Standard Blazed

Ann 1 Decisions 6.25 7 3.51 4
Time (sec) 150 144 113 107

Ann 2 Decisions 6.42 7 4.68 4
Time (sec) 105 101 96 80

Table 3: Number of decisions and treebanking
time (mean then median) using the fallback blaz-
ing configuration (80 sentences for each column)

egy, and dynamically fall back to a less restrictive
strategy, but this capability is not yet present in the
Redwoods machinery. Our approach is based on
the number of decisions being logarithmic in the
number of trees. If we can get roughly 40 silver
trees, the remaining treebanking is very tractable
and fast, only requiring a few decisions chosen
from a handful of remaining discriminants. How-
ever further restriction below this saves relatively
little time, and increases the chance of the blazing
removing the correct tree, which we wish to avoid
(the machinery does not allow the treebanker to
‘undo’ either manual or blazed decisions, except
by clearing and restarting).

The parse forest for treebanking was created by
having a list of candidate blazing strategies using
various combinations of IEP (least restrictive),
RP, BNC and MP – with the combination RP
+BNC +MP as the most restrictive. For each sen-
tence, we select the least restrictive strategy which
still gives us fewer remaining trees than a thresh-
old of 40. If no strategies do so, we use the strat-
egy which gives us the fewest trees for the given
sentence. Using another subset of the GENIA tree-
bank containing 864 parseable sentences, 48% of
sentences came below the threshold of 40, while
36% were above and 16% were not disambiguated
at all. Most sentences (41%) used the least restric-
tive configuration using IEP alone.

6.3 Blazed Treebanking Results

For this strategy to be useful for treebanking, it
should be both more efficient, in terms of fewer
decisions and less annotation time, and valid, in
terms of not introducing a bias when compared
to conventional unblazed treebanking. To evalu-
ate these questions, we selected 160 sentences at
random from the previously described parse forest
of 864 sentences. These sentences were divided
randomly into four equal-sized groups: blazed for
both annotators, standard for both annotators, and
two groups blazed for one annotator only, so we

Ann. 1
Std Blz

Agreed Sentences 42.5 45.0

Std

Ann. 2

Agreed, excl rej 32.4 33.3
Rejection F-score 80.0 82.4

Constituent F-score 88.7 87.6
Agreed Sentences 42.5 57.5

BlzAgreed, excl rej 39.5 45.2
Rejection F-score 44.4 78.3

Constituent F-score 86.2 84.8

Table 4: Agreement figures for different combi-
nations of blazed and unblazed overlap between
annotators 1 and 2, with 40 sentences per cell.
‘Agreed’ is the percentage of those with an identi-
cal tree selected, or all trees rejected; ‘excl rej’ ig-
nores sentences rejected by either annotator. ‘Con-
stituent F-score’ (also excludes rejections) is the
harmonic mean of the labelled per-constituent pre-
cision. ‘Rejection F-score’ is the harmonic mean
of the precision of rejection decisions.

could compare data about timing and decisions be-
tween the standard and blazed sentences for each
annotator, and inter-annotator agreement for each
possible combination of blazed and standard tree-
banking. The divisions took no account of whether
we were able to usably blaze the sentences, re-
flecting the real-world scenario, so some sentences
in the blazed configuration had no restrictions ap-
plied. The items were presented to the annotators
so they could not tell whether the other annota-
tor was treebanking in standard or blazed config-
uration, to prevent subconscious biases affecting
inter-annotator agreement. The experiments were
conducted after both annotators had already famil-
iarised themselves with the treebanking environ-
ment as well as the characteristics of the domain
and the annotation guidelines.

Annotators worked in a distraction-free envi-
ronment so we could get accurate timing figures.
The treebanking machinery records how many de-
cisions were made as well as annotation time, both
important factors in annotation efficiency. The re-
sults for efficiency are shown in Table 3 where
we see a 43% reduction in the mean decisions
required for annotator 1, and 27% reduction for
annotator 2. Annotator 1 also shows substantial
25% reduction in mean annotation time, but the
time decrease for annotator 2 is only 8%. In 30%
of successfully-blazed sentences, the annotators
cleared all blazed decisions, suggesting it is some-
times too zealous.

For agreement, we show results for the strictest
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possible criterion of exact tree match. For a less
blunt metric that still roughly reflects agreement,
we also follow Tanaka et al. (2005) in reporting
the (micro-averaged) harmonic mean of precision
across labelled constituents indexed by character
span, where constituents selected by both annota-
tors are treated as gold (inaccurately denoted ‘F-
score’ for brevity). Annotators should also agree
on rejected trees, where no parses are valid. In
Table 4, we show exact match agreement accuracy
(identical trees and matching rejections both count
as correct), as well as the same figure ignoring sen-
tences rejected by either, and the harmonic mean
of precision of both labelled constituents and tree
rejections. The figures are similar between cells,
with notable exceptions being higher exact match
when both annotators had blazed forests, and a
surprising dip in the rejection “F-score” in the bot-
tom left cell. The latter is partially because the re-
jection scores are based on small numbers of trees
(5–10, the union of the sets of rejected trees), so
are sensitive to small numbers of disagreements.
In this particular case, of 7 trees rejected by either
annotator, 2 were rejected by both.

6.4 Blazed Treebanking Discussion

The reductions in mean numbers of decisions
strongly support the efficacy of this technique, al-
though the discrepancies between the annotators
suggest that the different treebanking techniques
may be more or less amenable to speed-up using
these tools. The timing figures are somewhat more
equivocal, although still a substantial 25% for an-
notator 1. This is partially to be expected, since
some of the treebanking will be taken up with un-
avoidable tasks such as evaluating whether the fi-
nal tree is acceptable that blazing cannot avoid.
However, the 8% reduction in mean annotation
time for annotator 2 is still fairly modest. This
could be affected by annotator 2’s more extensive
treebanking experience leading to a lower baseline
time, with less room for improvement, but as we
still see a 21% reduction in median parsing time
this could be due to a few outlier sentences inflat-
ing the mean for the blazed configuration.

For agreement, we are primarily concerned here
with whether blazing here introduces a bias that
is distinguishable from what we see when an-
notators are working under standard non-blazed
conditions – which may be manifested in de-
creased agreement between configurations where

only one annotator has blazed data, and when both
have non-blazed data. Thus the fact that we see
quite similar agreement figures between the half-
blazed and standard configurations is very encour-
aging (apart from the low F-score for rejections
in one cell). This small amount of data sug-
gests that any changes in the resultant trees in-
troduced by blazing are hard to distinguish from
the inevitable “background noise”. Given this, the
fact that we see a noticeably higher exact match
score when both annotators have blazed sentences
suggests we may be justified in using blazing to
improve inter-annotator agreement, although the
lower constituent score may indicate we have in-
sufficient data to reach that conclusion.

7 Conclusion and Future Work

We have presented a procedure for blazing – us-
ing annotations from an external phrase structure
treebank to constrain the parse forest produced by
a precision HPSG grammar. Our work used the
GENIA treebank and the ERG as the target gram-
mar, although it would in principle be applica-
ble to any similar phrase structure treebank and
other grammars or even frameworks. The GENIA
trees were mapped onto corresponding ERG parse
forests and used to exclude incompatible trees. In
conjunction with self-training, we used this to cre-
ate a parse selection model for the ERG adapted to
the biomedical domain. We also used it as a pre-
filter to the treebanking process to improve tree-
banking efficiency, and created an HPSG treebank
of biomedical text.

For future work, we would investigate whether
this training data can be useful to augment a
small in-domain human-annotated treebank, and
whether the methods do indeed generalise to other
corpora and grammars.
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