
A Mechanism to Provide Language-Encoding Support and an NLP Friendly
Editor

Anil Kumar Singh
Language Technologies Research Centre

IIIT, Hyderabad, India
anil@research.iiit.ac.in

Abstract

Many languages of the world (some with
very large numbers of native speakers) are
not yet supported on computers. In this pa-
per we first present a simple method to pro-
vide an extra layer of easily customizable
language-encoding support for less comput-
erized languages. We then describe an ed-
itor called Sanchay Editor, which uses this
method and also has many other facilities
useful for those using less computerized lan-
guages for simple text editing or for Nat-
ural Language Processing purposes, espe-
cially for annotation.

1 Introduction

A large number of languages of the world are still
not supported on computers. Some of them are spo-
ken by a tens or hundreds of millions of people, so
they will probably be supported in the near future.
However, many languages may not be, simply be-
cause the number of people using them on comput-
ers, for whatever reason, is not large. Those who
want to use these languages on computers, includ-
ing the researchers working on those languages, will
need support for these languages. A related problem
is that of support for encodings, as many of these
less computerized languages do not have one stan-
dard encoding that is used by all. Therefore, there is
a need of a simple and easily customizable method
of adding support for a new language or encoding.
Such a method should require minimum technical
knowledge from the user. In this paper, we will

present a method of providing language and encod-
ing support for less computerized languages.

Another need which we address in this paper is of
an editor that not only makes use of the above men-
tioned method of language and encoding support,
but also has many facilities useful for Natural Lan-
guage Processing (NLP) researchers and linguists.

2 Language-Encoding Support

There is no exhaustive, commonly agreed upon list
of encodings for many languages. Even the list of
languages is not without dispute (e.g., whether Bho-
jpuri is a language or not). This implies that the
conventional deterministic approach to language-
encoding support based on the assumption that the
possible languages and encodings are known in ad-
vance is not enough if we do not want to prevent the
possibility of using any language or encoding used
by a significant number of people, or even a rarely
used endangered language.

Even though with the increasing use of Unicode
based encodings, the problem has reduced for many
languages, we still require a facility that can allow
convenient use of new languages which are not cov-
ered in Unicode.

Therefore, what we need is a more customizable
language-encoding support where it is very easy for
the user or the developer to add support for some
language-encoding. For this purpose, as many of
the tasks should be automated as possible. This can
be done by using NLP techniques. Even though
many of the encodings used for less computerized
languages are based on just font mappings, i.e., sup-
porting them basically means providing an appropri-

957



Figure 1: A customizable design for language-encoding support

ate font. This seems to be very simple, but the prob-
lem is that the user may not know which font to use.
Moreover, providing basic support so that you can
type once you have selected the font is not enough.
The user might not even know what encoding some
existing text is in. Then, the user might want to save
the text in some other encoding. To provide user
friendly support for language-encodings in a situa-
tion like this requires a more intelligent design.

Figure-1 shows a design for language-encoding
support which addresses these problems. The main
elements of this design are:

• Properties files listing languages, encodings,
fonts, and their connections

• Language-encoding identification for text

• Language-encoding identification for fonts

• A language-encoding API

• Encoding converters

Currently, 15 languages and 10 encoding are sup-
ported. These are mostly all South Asian languages,
apart from English, since the users till now were
mostly from South Asia. A large number of freely

available fonts have also been included in the distri-
bution, but the user would probably like to add more
fonts, which can be done easily just by adding the
paths of the new fonts in a properties file. There is
no need to install these fonts, irrespective of the op-
erating systems. Also, more languages and encod-
ings can be added quite easily. In most cases, to add
a new language-encoding, the user just has to follow
these steps:

1. Make a new entry in the properties files for
each of these three: languages, encodings and
language-encodings.

2. Specify the paths of all the fonts for that
language-encoding in the properties file for
fonts. These fonts just have to be on the system
and their paths have to specified in the prop-
erties file. However, it may be preferable (for
convenience) that they be stored infonts direc-
tory of Sanchay.

3. Specify the default font in the properties file for
default fonts.

4. If the new language uses a Unicode encoding,
make an entry for the Unicode block corre-

958



Figure 2: A font chooser listing fonts relevant to a specific language encoding pair

sponding to that language. This is not compul-
sory, but it will allow language specific listing
of fonts for language-encoding pairs involving
Unicode encodings.

In future, we will make this even more easy by
providing a graphic user interface based wizard to
go through these steps.

The editor can also use any input methods avail-
able from the operating system. New input meth-
ods can also be added as Java libraries. Such exter-
nal Java libraries have just to be copied to theext-
lib directory of Sanchay. It is also possible to eas-
ily switch among input methods (Figure-4), whether
provided by the operating system or included into
(or add to) Sanchay. So, it is possible to enter text in
multiple languages.

Note that, right now, this support for language-
encodings is in the form of an extra platform inde-
pendent layer on top of the support provided by op-
erating systems. Such a layer could possibly be inte-
grated into operating systems in future. This might,
of course, require porting of the code for different
operating systems and can be in-built into the oper-
ating system.

2.1 A More Intelligent Listing of Fonts

In the design used on all operating systems so far,
when you want to view the list of fonts, what you
get is a list ofall the fonts installed on the sys-
tem or at least all the fonts found by the operating
system or the user program. This is not very user
friendly for less computerized languages, because
most of the fonts listed may not be meant for the
language-encoding the user is interested in. What
the user needs is the list of fonts relevant to the
specific language-encoding she is interested in. In
our design, this is what the user will see (Figure-2),
when the user views the list of fonts. Of course, we
can also give the user the option to see all the fonts
installed on the system.

2.2 Language-Encoding Identification

Another important element of the design is a
language-encoding identification tool that is inte-
grated into the language-encoding support module
so that if the user opens a file and does not know the
language or encoding of the text, the tool can auto-
matically identify the language-encoding of the text.
The language-encoding identification tool is based
on byte basedn-gram models using a distributional
similarity measures (Singh, 2006a). This tools is
computationally quite a light one as the amount of

959



data required for training is very small and it has
been found to be one of the most accurate language-
encoding systems currently available. The user can
make it even faster by removing those language-
encodings which she may not be interested in. This
will require only a change in the relevant properties
file.

2.3 Encoding Conversion

There is also a wrapper module for calling any in-
stalled or built in encoding converter for languages
which use more than one encodings. The user can
easily convert the encoding of the text depending on
her needs and the availability of a relevant encod-
ing converter. It is also possible to easily add new
encoding converters.

3 Sanchay Editor

Although numerous text editors, even free and open
source ones, are available, the simple open source
editor that we are going to describe in this section
(Figure-3) is based on the language-encoding sup-
port mentioned earlier and is also closely integrated
with Sanchay1, a collection of tools and APIs for
NLP. The editor is implemented as a customizable
GUI component that can be easily included in any
Java application. The notable features of this editor
are:

- Uses customizable language-encoding support as
described earlier.
- Can automatically identify language-encoding of
the text using a byte basedn-gram
modeling (Singh, 2006a).
- The font chooser (Figure-2) shows only the fonts
applicable for the language-encoding.
- Text can be preprocessed for NLP or annotation
purposes from this editor.
- The formats used for annotation can be detected
and validated from the editor.
- Specialized annotation interfaces can be launched
to edit the annotated files (in text format) opened in
this editor.
- Since the editor is implemented in Java, it can be
used on any platform on which Java (JRE or JDK
version 1.5 or higher) is installed.

1http://ltrc.iiit.ac.in/anil/Sanchay-EILMT and http://source
forge.net/projects/nlp-sanchay

Some of the facilities are described in the follow-
ing sub-sections.

3.1 Validation of Annotation Formats

If the user is directly editing a document which is
annotated with POS tags, chunks or is syntactically
annotated, it is possible to automatically validate the
annotation format of the document. A text box be-
low the main editing panel shows the errors in for-
mat, if any. Usually, annotation is performed by us-
ing some annotation interface, but since the anno-
tated data is stored as simple text, the document can
be edited or annotated directly from a text editor.
The format validation facility has been included to
ensure that after any such editing or annotation, the
document is still in the correct format, as it is easy
for users to make format related mistakes.

3.2 Format Conversion

Sanchay annotation interfaces allow annotation at
various levels like POS tagging, chunking, syntac-
tic (treebank) annotation etc. Currently four dif-
ferent formats are recognized by the system: raw
text without annotation, POS tagged format where
each sentence is simply a sequence of word and POS
tag pairs separated by some symbol like underscore,
‘bracket form’ which allows POS tagged and chun-
ked data to be represented (including recursion), and
Shakti Standard Format (SSF)2. The editor allows
the user to convert the data from one format to an-
other.

3.3 Document Statistics

The user can also get a statistics about the document,
such as the number of words, the number of sen-
tences, the number of characters, and their respec-
tive frequencies etc. These statistics are according to
the format of the document, i.e., if the document is
in SSF format, then the document will be parsed and
the statistics will be about the annotated document
and the elements of the format, e.g.<Sentence>
tag will not be counted: only actual words (or POS
tags etc.) in the annotated document will be counted.
Such statistics can also be obtained for a number of
documents, i.e., a corpus, not just the current docu-
ment. This can be a very useful facility for working
on annotated corpus.

2www.elda.org/en/proj/scalla/SCALLA2004/sangalsharma.pdf

960



Figure 3: A multipurpose editor for NLP for South Asian languages

Figure 4: Input methods currently supported

961



3.4 Integration with Annotations Interfaces

The editor is built into Sanchay in such a way that
it is possible to open different views of a document,
depending on the annotation format. For example,
if the currently opened document is in SSF format,
then the same document can be opened in the San-
chay Syntactic Annotation Interface just by clicking
on a button or a context menu item. The opposite is
also possible, i.e., if a document is open in the Syn-
tactic Annotation Interface, then it can be directly
opened into the Sanchay Editor as a simple text file.

3.5 Some Other Facilities

Apart from the above mentioned facilities, Sanchay
Editor also has the usual facilities available in text
editors such as find and replace (with regular ex-
pressions and also in the batch mode), reverting to
the saved version, automatic periodic backup etc.

4 Facilities Being Integrated

Some other facilities that have already been imple-
mented and are going to be integrated into the San-
chay Editor include a better spell checker for South
Asian languages based on a Computational Phonetic
Model of Scripts or CPMS (Singh, 2006b). This
model provides a method to calculate the phonetic
and orthographic similarity (surface similarity) of
words or strings. Another facility is the identifi-
cation of languages and encoding in a multilingual
document (Singh and Gorla, 2007a). This is an ex-
tension of the language-encoding identification tools
described earlier and is the first systematic work
on the problem of identification of languages and
encoding in a multilingual document. When this
tool is integrated into the editor, the user will be
able to open a multilingual document and the sys-
tem will automatically identify the sections in dif-
ferent languages and display them accordingly, even
if the document has not been encoded using Uni-
code. Of course, identification is not 100% accu-
rate at present, but we are working on improving
it. Another already implemented facility that is go-
ing to be added is fuzzy text search (Singh et al.,
2007c). It is also mainly based on the idea of cal-
culating surface similarity using the CPMS. Fuzzy
text search based on this method performs better
than the traditional methods. Yet another facility

to be added is a more discerning mechanism for
transliteration (Surana and Singh, 2008). The first
important idea in this mechanism is to use different
methods for transliteration based on the word origin
(identified using a modified version of the language-
encoding tool). The second major idea is to use
fuzzy text matching for selecting the best match.
This method also has outperformed other methods.

There is a plan to extend the editor to allow direct
annotation. We will begin by providing support for
discourse annotation and other similar annotations.

5 Conclusions

In this paper we presented a simple but effective
method of providing an easily customizable extra
layer of language-encoding support for less comput-
erized languages. We also described Sanchay Ed-
itor, which uses this method of language-encoding
support and has many other facilities that may be
useful for NLP researchers as well as those who just
need a simple text editor for language-encodings not
usually supported on computers. Sanchay Editor is
closely integrated with a collection of NLP tools and
APIs called Sanchay.

References
Anil Kumar Singh and Jagadeesh Gorla. 2007a. Identi-

fication of languages and encodings in a multilingual
document. InProceedings of the 3rd ACL SIGWAC
Workshop on Web As Corpus, Louvain-la-Neuve, Bel-
gium.

Anil Kumar Singh, Harshit Surana, and Karthik Gali.
2007c. More accurate fuzzy text search for languages
using abugida scripts. InProceedings of ACM SI-
GIR Workshop on Improving Web Retrieval for Non-
English Queries, Amsterdam, Netherlands.

Anil Kumar Singh. 2006a. Study of some distance mea-
sures for language and encoding identification. InPro-
ceedings of ACL 2006 Workshop on Linguistic Dis-
tance, Sydney, Australia.

Anil Kumar Singh. 2006b. A computational phonetic
model for indian language scripts. InConstraints on
Spelling Changes: Fifth International Workshop on
Writing Systems, Nijmegen, The Netherlands.

Harshit Surana and Anil Kumar Singh. 2008. A more
discerning and adaptable multilingual transliteration
mechanism for indian languages. InProceedings of
the Third International Joint Conference on Natural
Language Processing (To appear), Hyderabad, India.

962




