
Fast Duplicate Document Detection using Multi-level Prefix-filter

Kenji Tateishi and Dai Kusui
NEC Corporation

Takayama, Ikoma, Nara, 630-0101, Japan
{k-tateishi@bq, kusui@ct}.jp.nec.com

Abstract

Duplicate document detection is the problem
of finding all document-pairs rapidly whose
similarities are equal to or greater than a
given threshold. There is a method pro-
posed recently called prefix-filter that finds
document-pairs whose similarities never
reach the threshold based on the number
of uncommon terms (words/characters) in
a document-pair and removes them before
similarity calculation. However, prefix-filter
cannot decrease the number of similarity
calculations sufficiently because it leaves
many document-pairs whose similarities are
less than the threshold. In this paper, we
propose multi-level prefix-filter, which re-
duces the number of similarity calculations
more efficiently and maintains the advan-
tage of prefix-filter (no detection loss, no ex-
tra parameter) by applying multiple different
prefix-filters.

1 Introduction

Duplicate Document Detection (DDD) is the prob-
lem of finding all document-pairs rapidly whose
similarities are equal to or greater than a given
threshold. DDD is often used for data cleaning of
customer databases, trend analysis of failure case
databases in contact centers, and can be applied
for spam filtering by detecting duplicate blog doc-
uments. After receiving target documents and the
similarity threshold (ST), the Duplicate Document
Detection System (DDDS) shows users all docu-
ment pairs whose similarities are equal or greater
than ST, or document groups these document pairs
unify. In the case of data cleaning, DDDS addition-
ally requires users to confirm whether each docu-
ment pair result is truly duplicated.

The naive implementation of DDD requires simi-
larity calculations of all document pairs, but it de-
mands huge time according to the number of tar-
get documents. The current techniques apply the
two-stage approach: (i) Reduce document pairs us-
ing shallow filtering methods, and then (ii) calcu-
late similarities between the remaining document
pairs. Among them, prefix-filter(Sarawagi and Kir-
pal, 2004)(Chaudhuri et al., 2006)(Bayardo et al.,
2007) is a filtering method that finds document-
pairs whose similarities never reach the thresh-
old based on the number of uncommon terms
(words/characters) in a document-pair, and that re-
moves them before similarity calculation.

For example, suppose that a document pair is
composed of 10 terms, and 80% similarity means
8 terms are in common in the document pair. In this
case, if the similarity of a document pair is equal to
or greater than 80% and 3 terms are selected from
one document, the other document must contain at
least one of the 3 terms. Therefore, prefix-filter can
remove document pairs where one document does
not contain any of the 3 terms selected from the
other. It can be implemented rapidly by index files.
Prefix-filter has two advantages compared with other
filtering methods: (i) All document pairs equal to
or greater than the similarity threshold (ST) are ob-
tained without any detection loss, and (ii) no extra
parameter for filtering is required other than ST.

The problem with prefix-filter is that it cannot re-
duce similarity calculations sufficiently because it
leaves many document-pairs whose similarities are
less than ST. Document-pairs that prefix-filter can
remove depend on terms selected from each docu-
ment (in the above example, which 3 terms are se-
lected). At worst, document pairs where only one
term is in common might remain. The processing
time of DDD can be approximated by the product
of the number of similarity calculations and the pro-

853

cessingtime of each similarity calculation. In order
to identify the same document pairs correctly, a deep
similarity function considering synonyms and vari-
ants is essential. Therefore, the number of similarity
calculations should decrease as mush as possible.

In this paper, we propose multi-level prefix-filter,
which reduces the number of similarity calcula-
tions more efficiently and maintains the advantages
of prefix-filter (no detection loss, no extra param-
eter) by applying multiple different prefix-filters.
Each prefix-filter chooses terms from each docu-
ment based on a different priority decision criterion,
and removes different document-pairs. It finally cal-
culates the similarities of the document-pairs left by
all of the prefix-filters. We conducted an experiment
with a customer database composed of address and
company name fields, and used edit-similarity for
the similarity calculation. The result showed that
multi-level prefix-filter could reduce the number of
similarity calculations to 1/4 compared with the cur-
rent prefix-filter.

2 Prefix-filter

Prefix-filter finds document-pairs whose similarities
never reach the similarity threshold (ST) based on
the number of uncommon terms in a document-pair,
and that removes them before the similarity calcu-
lation. A DDDS with prefix-filter processes the fol-
lowing four steps.1

Step 1: Definex: the minimum proportion of com-
mon terms in a document pair whose similarity
is equal to or greater thanST (0 ≤ ST ≤ 1).

Step 2: Decide priorities of all terms on target doc-
uments.

Step 3: Select terms from each document according
to the priorities in Step 2 until the proportion of
selected terms exceeds1 − x.

Step 4: Remove document pairs that share no terms
selected in Step 3, and calculate the similarities
of the remaining document pairs.

Let us illustrate how prefix-filter works briefly.
For example, a user inputs 6 documents as in Fig.1

1Here,we show the simplest prefix-filter of (Chaudhuri et
al., 2006)

and sets the similarity threshold atST = 0.6 and
chooses edit-similarity as the similarity function.
Note that edit-similarity between document d1 and
document d2, denoted asedit sim(d1, d2), is de-
fined as follows.

edit sim(d1, d2) = 1 − edit distance(d1, d2)
max(|d1|, |d2|)

Here,|d1| and|d2| denotesthe length ofd1 andd2
respectively, andedit distance(d1, d2) represents
the minimum number of edit operations (insertion,
deletion, and substitution) that convertd1 to d2. For
example,edit distance(d1, d5) in Fig.1 is 4: delete
E, H, and I, and insert M. Then,max(|d1|, |d5|) is
9, derived from|d1| = 9 and|d5| = 7. Therefore,
edit sim(d1, d5) = 1 − (4/9) = 0.45.

In the first step, when the similarity function is
edit-similarity, the minimum proportion of common
terms (characters) in a document pair whose similar-
ity is equal or greater thanST = 0.6 is x = 0.6.
This means the similarity of a document pair in
which the proportion of common terms is less than
0.6 never reaches 0.6.x can be derived from the
similarity function (see Appendix A).

In step 2, DDDS decides the priorities of all terms
on target documents. Fig. 1 (a) gives all terms con-
tained in the 6 documents priorities from the lowest
document frequency (if the same frequency, alpha-
betical order). Regardless of the priority decision
criteria, the similarities of document pairs removed
are always less than ST, but document pairs removed
differ. Empirically, it is known that giving high pri-
ority from the term of the lowest frequency is effec-
tive because the lower the frequency of a term, the
lower the probability of a document pair containing
that term(Chaudhuri et al., 2006).

In step 3, DDDS chooses terms from each docu-
ment according to the priority decision criterion of
step 2 in Fig.1 (a) until the proportion of selected
terms exceeds1 − x = 0.4. For example, the pro-
portion is over 0.4 when DDDS selects 4 terms from
d1, composed of 9 terms. DDDS selects 4 terms
according to (a):{A, B,C, I}. Fig.1 (b) shows se-
lected terms using boldface and background color.

Finally, DDDS removes document pairs that share
no terms selected in step 3, and calculates similari-
ties of the remaining document pairs. The similari-
ties of document pairs with no common terms never

854

Figure1: Overview of prefix-filter.

reach 0.6 because the proportion of common terms is
less than 0.6. Prefix-filter can be implemented eas-
ily using an index file, storing the relation of each
selected term and the list of document IDs includ-
ing the term. As a result, document d1 targets d3
and d5 on similarity calculation. Finally, the number
of similarity calculations can be reduced by 5 times
while naive solution requires (6*5)/2=15 times.

3 Multi-level prefix-filter

The problem with prefix-filter is that it cannot re-
duce similarity calculations sufficiently because it
leaves many document-pairs whose similarities are
less than ST. Document-pairs that prefix-filter can
remove depend on terms selected from each docu-
ment. At worst, document pairs where only one term
is in common might remain. In the case of selecting
terms according to priority decision criterion (a) in
Fig.1, for example, a document pair{d4,d6}on (b)
remains although only K is in common. In order to
identify the same document pairs correctly, a deep
similarity function such as edit-similarity is essen-
tial. Therefore, the number of similarity calculations
should be decreased as much as possible.

We propose multi-level prefix-filter, which re-
duces the number of similarity calculations more ef-
ficiently by applying multiple different prefix-filters.
Each prefix-filter chooses terms from each docu-
ment based on different priority decision criteria,
and removes different document-pairs. It finally cal-
culates the similarities of document-pairs left by all
of the prefix-filters. That is why multi-level prefix-

filter can reduce the number of document pairs more
comprehensively than the current prefix-filter (with-
out any detection loss). Fig.2 illustrates an exam-
ple of multi-level prefix-filter, applying prefix-filter
twice. After DDDS changes priority decision crite-
rion between the first and second prefix-filter, terms
selected from each document vary. As a result, doc-
ument pairs filtered by each prefix-filter change as
well. The product of document pairs each prefix-
filter leaves leads to the reduction of similarity cal-
culations by 3 times.

Let us explain two kinds of priority decision cri-
teria of terms in the following sections.

3.1 Priority decision usingScore(n,w)

We define Score(n,w), the score of a termw onn-th
prefix-filter, as follows, and give a higher priority to
a smaller value of Score(n,w).

Score(n,w) =

df(w) n = 1
0.1 ∗ df(w)+

n−1∑
i=1

sdf(i, w) n ≥ 2

wheredf(w) is the document frequency ofw over
the target documents, andsdf(i, w) denotes the
number of documents in whichw was selected oni-
th prefix-filter. The basic concept is to give a higher
priority to a term of smaller frequency. As men-
tioned before, this is effective because the lower the
frequency of a term, the lower the probability of a
document pair containing that term. On the other
hand, it is expected that a multi-level prefix-filter be-
comes more effective if each prefix-filter can filter
different document pairs. Therefore, after the sec-
ond prefix-filter (n ≥ 2), we give a higher prior-
ity to a term whose frequency is small (first term)
and which was not selected by previous prefix-filters
(second term).

Fig.3 illustrates the process of multi-level prefix-
filter based on this creterion. This multi-level prefix-
filter can be implimented using two kinds of index
files (W INDEX, D INDEX) rapidly. If PC with
multiple processers, it is easy to parallelize filtering
process.

3.2 Priority decision usingScore(d, n, w)

We defineScore(d, n, w), the score of a termw con-
tained in documentd on n-th prefix-filter, as fol-

855

Figure2: Overview of multi-level prefix-filter.

lows, and give a higher priority to a smaller value
of Score(d, n, w).

Score(d, n, w) =

{
df(w) n = 1
|DSd

n−1 ∩ DSSw| n ≥ 2

whereDSd
n−1 is target documents of similarity cal-

culation ofd left after then − 1-th prefix-filter, and
DSSw is documents containing a termw. The ba-
sic concept is to give a higher priority to a term that
can filter many document pairs. It decides the pri-
orities of terms onn-th prefix-filter after waiting for
the result ofn − 1-th prefix-filter.

4 Experiments

4.1 Experimental method

We compared multi-level prefix-filter with the cur-
rent prefix-filter in order to clarify how much the
proposed method could reduce the number of sim-
ilarity calculations. We used a customer database
in Japanese, composed of 200,000 records, and had
been used for data cleaning. Each record has two
fields, company name and address, averaging 11
terms and 18 terms, respectively. We selected edit-
similarity as the similarity function, and set 80%
as ST. The database contains 86031 (43%) dupli-
cated documents (records) in the company name,
and 123068 (60%) in the address field when we as-
sumed document pairs whose similarity was equal
to or greater than 80%. A DDDS with multi-level
prefix-filter ran on an NEC Express 5800 with Win-
dows 2000, 2.6GHz Pentium Xeon and 3.4 GByte of
memory.

N: Number of applying prefix-filter, D: Target documents, ST: Similarity ThresholdIndex creation process:1. for(w∈D)2. Score(1,w) = df(w)3. end for4. for(i=1; i≦N; i++)5. for(j=0; j≦|D|; j++)6. W= terms chosen from w∈di of the smallest Score(i,w) until the proportion of selected terms exceeds 1-x.7. for(w∈W)8. push(D_INDEX(i,dj), w)9. push(W_INDEX(i,w), dj)10. end for11. end for12. for(w∈D)13. Score(i+1,w)= 0.1 * df(w) + Σ1≦k≦i sdf(k,w)14. end for15. end forMatching process:16. for(i=0; i≦|D|;i++)Filtering process:17. DS = D18. for(j=1; j≦N; j++) {19. for(w∈W_INDEX(j,di))20. DSSw ={dk | dk∈W_INDEX(j,w), k > i}21. DSj = DSSw∪ DSj22. end for23. DS = DS∩ DSj24. end forSimilarity calculation process:25. for(ds∈DS)26. push(RESULT, {d,ds}) if (sim(d, ds)≧ST)27. end for28. end for
Figure3: Multi-level prefix-filter with Score(n,w).

4.2 Experimental result

Fig.4 (a) shows the comparison between multi-level
prefix-filter usingScore(d, n, w) andScore(n,w)
under the condition that the number of prefix-filters
is one or two. The company name field was used
for target documents. Although multi-level prefix-
filter using Score(n,w) succeeded in the reduction
of processing time, Score(d,n,w) failed because of
too many score calculations. Therefore, we used
Score(n, w) in the following experiments.

Fig.4 (b) shows the number of similarity calcu-
lations when the number of applied prefix-filters
varies. In this figure,n = 1 means the cur-
rent prefix-filter. The number of similarity calcula-
tions decreased most sharply in the case of applying
prefix-filters twice on both the company name and
address fields, and converged in 10 times. Multi-
level prefix-filter reduced the number of similarity
calculations by 10 times, about to 1/4 (77% reduc-
tion) in the company name field, and about to 1/3
(69% reduction) in the address field.

Fig.4 (c) shows total processing time when the

856

numberof applied prefix-filters varies. It represents
the sum of index creation/filtering time and similar-
ity calculation time. When the number of applied
prefix-filters increased, the latter decreased because
the number of similarity calculations also decreased,
but the former increased instead. Note that we did
not parallelize the filtering process here. Total pro-
cessing time decreased most sharply in the case of
applying prefix-filters 4 times on both the company
name (to be 43%) and address fields (to be 49%).

Fig.4 (d) shows the reduction rate of the number
of similarity calculations and processing time when
prefix-filter was applied 4 times and the size of tar-
get document sets varied. Here, the reduction rate
denotes the proportion of the number of similarity
calculations or processing time of multi-level prefix-
filter, applying prefix-filter 4 times, to those of the
current prefix-filter, applying prefix-filter once. This
result reveals the effectiveness of multi-level prefix-
filter does not change for the size of the target docu-
ment set.

4.3 Discussion

The experimental results indicated that multi-level
prefix-filter could reduce the number of similarity
calculations up to 1/4, and that this effectiveness was
not lost by changing the size of the target database.
In addition, it showed that the optimal number of ap-
plied prefix-filters did not depend on the target field
or the size of the target database. Therefore, multi-
level prefix-filter proved to be more effective than
the current prefix-filter without losing the advan-
tages of the current prefix-filter (no detection loss,
no extra parameter).

The experimental results also indicated that the
company name field was more effective than the ad-
dress field. As mentioned, the address field was
longer than that of the company name field on av-
erage, and it contained more duplicated documents.
Therefore, we expect that the proposed method is
effective in the following situation: (i) the length
of each document (record) is short, (ii) the num-
ber of duplicate documents has been reduced before-
hand by simple filtering methods such as deleting
exact match documents or documents different only
in space, and (iii) detecting the remaining duplicate
documents by using a deep similarity function such
as edit-similarity.

5 Related work

Duplicate Document Detection for databases has
been researched for a long time(Elmagarmid et al.,
2007). The current techniques apply the two-stage
approach: (i) Reduce document pairs using shallow
filtering methods, and then (ii) calculate similarity
between the remaining document pairs. Multi-level
prefix-filter belongs to the first step (i).

Current filtering methods were independent of the
similarity function. Jaro(Jaro, 1989) proposed Stan-
dard Blocking, which created many record blocks in
which each record shared the same firstn terms, and
calculated the similarity of document-pairs included
in the same record block. Hernandez(Hernandez
and Stolfo, 1995) proposed the Sorted Neighbor-
hood Method (SNM), which first sorted records by
a given key function, and then grouped adjacent
records within the given window size as a block.
McCallum(McCallum et al., 2000) improved them
by allowing a record to locate in plural blocks in or-
der to avoid detection loss.

However, the problems of these filtering methods
using blocking are that the user needs trial and error
parameters such as firstn terms for Standard Block-
ing, and that these incur detection loss in spite of
improvements being attempted, caused by two doc-
uments of a correct document pair existing in dif-
ferent blocks. Prefix-filter solved these problems:
(i) all document pairs equal or more than similar-
ity threshold (ST) are obtained without any detection
loss, and (ii) any extra parameter for filtering is not
required other than ST. As we clarified in Section 4,
multi-level prefix-filter proved to be more effective
than the current prefix-filter without losing these ad-
vantages.

Another filtering method without any detection
loss, called PARTENUM, has been proposed re-
cently(Arasu et al., 2006). However, it needs to ad-
just two kinds of parameters (n1, n2) for obtaining
optimal processing time according to the size of tar-
get document set or the similarity threshold.

6 Conclusion

In this paper, we proposed multi-level prefix-filter,
which reduces the number of similarity calculations
more efficiently and maintains the advantage of the
current prefix-filter by applying multiple different

857

050001000015000200002500030000350004000045000

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10The number of applied prefix-filters
Simula
rity ca
lculati
ons [x
10000
] Company name

0100002000030000400005000060000700008000090000100000

n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10The number of applied prefix-filters
Similar
ity cal
culatio
ns [x1
0000] Address

020040060080010001200140016001800

n=1 n=2 n=3 n=4 n=5 n=6Company name field
Proce
ssing t
ime [s
ec]

Similarity calculationIndex creation and filtering

0100020003000400050006000

n=1 n=2 n=3 n=4 n=5 n=6Address field
Proce
ssing t
ime [s
ec]

Similarity calculationIndex creation and filtering

00.20.40.60.81

100000 200000 300000 400000Document size (Company name field)
Reduc
tion ra
te Processing timeThe number of similarity calculations

00.20.40.60.81

100000 200000 300000 400000Document size (Address field)
Reduc
tion ra
te Processing timeThe number of similarity calclulations

05001000150020002500300035004000

score(d, n, w)n=1 score(d, n ,w)n=2
Proce
ssing
time[s
ec]

Similarity calculationIndex creation and filtering

05001000150020002500300035004000

score(n, w)n=1 score(n, w)n=2
Proce
ssing
time [
sec]

Similarity calculationIndex creation and filtering

Figure4: Experimental result.

prefix-filters. Experiments with a customer database
composed of 200,000 documents and edit-distance
for similarity calculation showed that it could reduce
the number of similarity calculations to 1/4 com-
pared with the current prefix-filter.

References

Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik.
2006. Efficient exact set-similarity joins.Proceedings
of the 32nd International Conference on Very Large
Data Bases, pages 918–929.

Roberto J. Bayardo, Yiming Ma, and Ramakrishnan
Srikant. 2007. Scaling up all pairs similarity search.
Proceedings of the 16th International Conference on
World Wide Web, pages 131–140.

Surajit Chaudhuri, Venkatesh Ganti, and Raghav
Kaushik. 2006. A primitive operator for similarity
joins in data cleaning.Proceedings of the 22nd Inter-
national Conference on Data Engineering(ICDE’06),
pages 5–16.

Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vas-
silios S. Verykios. 2007. Duplicate record detection:
A survey. IEEE Transactions on Knowledge and Data
Engineering, vol.19, no.1, pages 1–15.

Mauricio A. Hernandez and Salvatore J. Stolfo. 1995.
The merge/purge problem for large databases.Pro-
ceedings of the 1995 ACM SIGMOD international
conference on Management of data, pages 127–138.

M. A. Jaro. 1989. Advances in record linkage methodol-
ogy as applied to matching the 1985 census of tampa,

florida. Journal of the American Statistical Society, 84
(406), pages 414–420.

Andrew McCallum, Kamal Nigam, and Lyle H. Ungar.
2000. Efficient clustering of high-dimensional data
sets with application to reference matching.Proceed-
ings of the sixth ACM SIGKDD international confer-
ence on Knowledge discovery and data mining, pages
169–178.

Sunita Sarawagi and Alok Kirpal. 2004. Efficient set
joins on similarity predicates.Proceedings of the 2004
ACM SIGMOD international conference on Manage-
ment of data, pages 743–754.

A The minimum proportion of common
terms

Here, we explain how to obtainx of edit-similarity.
First,

edit distance(d1, d2) ≥ max(|d1|, |d2|)−|d1∩d2|

(|d1 ∩ d2| denotes the number of common terms in
bothd1 andd2), and

ST ≤ edit sim(d1, d2) ≤ |d1 ∩ d2|
max(|d1|, |d2|)

≤ |d1 ∩ d2|
|d1|

.

Therefore,

x = min{|d1 ∩ d2|
|d1|

} = ST.

858

