
A Bottom up Approach to Persian Stemming

Amir Azim Sharifloo
NLP Research Lab,

Department of Electrical &
Computer Engineering,

Shahid Beheshti University,
Tehran, Iran

a.sharifloo@mail.sbu.ac.ir

Mehrnoush Shamsfard
NLP Research Lab,

Department of Electrical &
Computer Engineering,

Shahid Beheshti University,
Tehran, Iran

m-shams@sbu.ac.ir

Abstract

Stemmers have many applications in natu-
ral language processing and some fields
such as information retrieval. Many algo-
rithms have been proposed for stemming.
In this paper, we propose a new algorithm
for Persian language. Our algorithm is a
bottom up algorithm that is capable to re-
organize without changing the implementa-
tion. Our experiments show that the pro-
posed algorithm has a suitable result in
stemming and flexibility.

1 Introduction

In linguistics, stem is a form that unifies the ele-
ments in a set of morphologically similar words
(Frakes and Yates, 1992), therefore stemming is
the operation which determines the stem of a given
word. In other words, the goal of a stemming algo-
rithm is to reduce variant word forms to a common
morphological root, called “stem” (Bacchin et al.,
2002).

There are three common approaches that are used
in stemming: affix stripping, lookup table and sta-
tistical methods (Bento et al., 2005). Affix strip-
ping dependends on the morphological structure of
the language. The stem is obtained by removing
some morphemes from the one or both sides of the
word. Porter algorithm (Porter, 1980) is an exam-
ple of this kind of algorithms. This stemmer is
made up of five steps, during which certain rules
are applied to the words and the most common suf-
fixes are removed.

In lookup table approach, each word and its re-
lated stem are stored in some kind of structured

form. Consequently, for each stored word, we find
its stem. However, the approach needs more space.
Also, for each new word, table must be updated
manually.

In statistical methods, through a process of in-
ference and based on a corpus, rules are formulated
regarding word formation. Some of the method-
ologies adopted are: frequency counts, n-gram
(Mayfield and McNamee, 2003), link analysis
(Bacchin et al., 2002), and Hidden Markov Models
(Melucci and Orio, 2003). This approach does not
require any linguistic knowledge whatsoever, be-
ing totally independent of the morphological struc-
ture of the target language.

In this paper, we propose a new algorithm for
stemming in Persian. Our algorithm is rule based
and in contrast with affix stripping approach, it is a
stem based approach. That means, at first we find
possible stems in the word, after that we check
which stems are matched with rules.

Our algorithm is bottom up while affix stripping
methods are top down. In other words, we try to
generate the word using candidate stems of the
word which we call cores of the word. If the word
is generated, the stem is correct. On the other hand,
affix stripping approaches try to removing affixes
until reaching to any stem in the word.

Some stemming methods have been presented
for Persian (Taghva et al., 2005) which use affix
stripping approach. Our proposed method tries to
reach better precision rather than previous methods.
Also, this method tokenizes the word to mor-
phemes which could employ in other morphologi-
cal methods.

The paper is organized as follows: section 2 pre-
sents a brief review of Persian from morphological
perspective; in section 3, we describe the proposed

583

algorithm in details; section 4 is about our experi-
ments.

2 Persian from a Morphological Perspec-
tive

Persian is an Indo-European language, spoken and
written primarily in Iran, Afghanistan, and a part of
Tajikistan. It is written from right to left in the
Arabic-like alphabet.

In Persian, verbs involve tense, number and
person. For example1, the verb “می خوانم”(mi-xän-
am: I read) is a present tense verb consisting of
three morphemes. “م” (am) is a suffix denoting first
single person “خوان” (xän) is the present tense root
of the verb and “می” (mi) is a prefix that expresses
continuity.

If a verb has any object pronoun, it can be at-
tached to the end of the verb such as “ خوانمشمی ”
(mi-xän-am-aš: I read it) in which “ش” (aš: it) is an
object pronoun. Also, negative form of verbs is
produced with adding “ن” (ne) to the first of them.
For example, “ خوانمنمی ” (ne-mi-xän-am - I don’t
read) is the negative form of the verb “ خوانممی ”
(mixänam - I read). We have gathered 43 rules for
verbs, some of them are shown in Table .1.

Table 1. Some rules for verbs in Persian
Rule example

شناسه مضارع+بن مضارع +می
(present person identifier +

present root + mi)

می خوانم
(mi-xän-am)

(I read)
شناسه ماضی+بود +ه +بن ماضی

(past person identifier + bud
+eh + past root)

رفته بودم
(raft-e bud-am)

(I had gone)

بن مضارع+ب
(present root + b)

گذرب
(be-gozar)

(Pass)

شد+ه +ی بن ماض
(shod + h + past root)

خوانده شد
(xand-e šod)
(it was read)

Nouns are more challengeable than others in
Persian. We have gathered many rules for nouns
that in following, we describe one of them. The
plural forms of nouns are formed by adding the
suffixes ,ها) ,ان .(ين, ون ,ات (hä)”ها“ is used for all

1 Through the paper, we show Persian examples by their
written form in Persian alphabet between “” followed by
(their pronunciation: translation).

words. “ان” (än) is used for humans, animals and
every thing that is alive. Also, “ين, ون ,ات” (ät ,un ,
in) is used for some words borrowed from Arabic
and some Persian words. We have another kind of
plural form in Persian that is called Mokassar
which is a derivational plural form (irregulars in
Persian). Some examples of plural form are shown
in Table 2.

Also, there are some orthographic rules which
show the effects of joining affixes to the word. For
example, consider that we have two parts of a word:
A and B for joining as BA (Consider, Persian is
written right to left). If the last letter of A and the
first letter of B are “ا”(ä), one letter “ی”(y) is
added between them. Assume A is “دانا”(dänä -
wise) and B is “ان”(än), the joining result is “دانايان”
(dänä-yän: wise people).

Table 2. Some kinds of plural form in Persian
Joining Result noun

ها+کشور
(hä + kešvar)
(hä + country)

کشورها
(kešvar-hä)
(countries)

ان+درخت
(hä + deraxt)

(hä + tree)

درختان
(deraxt-än)

(trees)

(Mokassar form)کتب
(kotob)
(books)

کتب
(kotob)
(books)

ان+ی +آقا
(än + y + äghä)
(än + y + mister)

آقايان
(äghä-yän)

(men)

3 The Proposed Algorithm

Our algorithm is rule based and bottom up. At first,
it tries to find substrings of the word that are stems
or morphemes which are derived from any stem,
we call them cores. After that, it joins each of
cores with other elements of word for generating
that word according to available rules. Finally,
each core with at least one correct generation is a
correct core and its stem is correct stem of the
word. The algorithm includes three phases: 1. Sub-
string tagging 2. Rule matching 3. Anti rule match-
ing (Figure 1).

584

In substring tagging phase, we extract morpho-
logical information for all possible substrings of
the word. At the end of this phase, we know which
substrings of the word are morphemes and which
ones are not. Also, we know clusters that each
morpheme is their member. We use clusters for
rule matching phase. Accordingly, we know cores
in the word before beginning the second phase. We
describe substring tagging details in section 3.1.

Figure1. Three phases of the proposed algorithm.

In rule matching phase, for each core that has been
known in previous phase, we extract related rules.
For example, “خوان”(xän) is one core of the word
“ خوانممی ” (mi-xän-am: I read) and “بن مضارع” (bone
mozäre: present root) is one of clusters that “خوان”
(xän) is its member. Also,“م” (am) is a member of
cluster :šenase mozäre)”شناسه مضارع“ present per-
son identifier)and “می” (mi) is a member of cluster
.(mi)”می“ We have a rule in rules repository as:

(شناسه مضارع+بن مضارع +می)
(present person identifier + present root + mi)

where it is matched with the word ” خوانممی ”(mi-
xän-am: I read). Therefore, we find a matched rule
for “خوان”(xän). At the end of second phase, each
core that has extracted any possible rule for the
word, remains in cores list and other cores are re-
moved from it.

In anti-rule matching phase, we extract anti rules
from anti rules repository for each core in the list.
Each core which has any matched anti rule with

the word morphemes, is removed from the cores
list. At the end of the third phase, each stem of any
core in the cores list is the correct stem for the
word.

3.1 Substring Tagging

Every word with length N has N*(N+1)/2 sub-
strings. Therefore, we need N*(N+1)/2 string
matching for finding them in morphemes reposi-
tory. We employ a Trie tree for storing morphemes
and present an algorithm for retrieving morpho-
logical information from it that reduces the number
of string matching. This algorithm needs N(N+1)/2
character matching (instead of string matching) at
most. A simplified part of tree is shown in Figure 2.

Figure 2. A simplified part of Trie tree that is used
for storing morphological information.

The algorithm is described in the following:

We initiate N pointers (N is the word length)
that they point to the tree root. Also, we use a
counter C that is an index on the word. At first, C’s
value is one that means its related letter is first let-
ter of the word. At the end of each step, C is in-
creased by one. Therefore, in each step, C points to
one letter of the word that we call this letter L.

xu

x

xä

xän

m

mi

clusters
1.present person
identifier.
2. past person
identifier.

/م m

tree root

clusters
1.verb suffix mi

2.noun

clusters
1.present root

2.noun

cluster
1.noun

cluster

cluster

/خ x

/ی i /و u

/ا ä

/ن n

Substring Tagging

Rule Matching

Anti Rule Matching

Stems

Cores List

Cores List

Input Word

585

At first step, first pointer P1 finds one edge be-
tween root edges that its letter is equal with L. P1
goes down on tree by that edge. Here, P1 extract
morphological information from its new position (a
node of the tree) and fills morphological informa-
tion for substring (1, 2).

At the second step, L is the second letter of the
word, second pointer P2 finds one edge between
root edges that its letter is equal with L. P2 goes
down on tree by that edge, extract morphological
information from its new position (a node of the
tree) and fills morphological information for sub-
string (2, 3). Also, P1 goes down on tree by an
edge contained L, from its position that it is one of
root children and fills morphological information
for substring (1, 3).At third step, L is third letter of
the word. Third pointer P3 starts from root and
goes down on tree by an edge that its letter is equal
with L and fills morphological information for sub-
string (3, 4). P1, P2 repeat this work from their
positions and fill morphological information for
substring (1, 4) and (2, 4) respectively.

Next steps are done like these steps. Finally, we
have obtained morphological information for all
substrings of the word. Also, if one pointer could
not find any edge with value L, it is blocked until
the end of algorithm. Figure 3 shows pseudo code
of this algorithm.

Figure 3. The used algorithm for obtaining mor-
phological information from Trie tree.

3.2 Rule Matching

We use many rules to generate correct words by
morphemes in Persian. We store these rules in
rules repository. Some gathered rules are shown in
Table 3.

Table 3. Some gathered rules that we use.
Rule

شناسه ماضی +بن ماضی ماضی ساده
(past person identifier + past root sim-

ple past)

بن مضارع +ب امر
(present root + b imperative)

ا ه+اسم اسم جمع
(hä + noun plural noun)

ان+اسم جاندار اسم جاندار جمع
(än + alive noun alive plural noun)

Each rule is a sequence of clusters. A cluster
represents a set of morphemes that affects role of
them in the word. In other words, each morpheme
could be applied as one or more roles for generat-
ing words. So, each role can be a cluster member-
ship. For example, in English, “book” is a verb and
a noun. But, As a noun, it has a plural form (books)
and as a verb, it has a past form (booked).

Similarly, in Persian, the word“مرد” (mord: die)
is a verb root and :mord-and) ”مردند“ They died) is
a verb, too. Also, “مرد” (mard: man) is a noun and
:mard-hä) ”مردها“ men) is one of its plural forms. In
consequence, we put “مرد”in both of cluster “اسم”
(esm: noun) and “بن ماضی”(bone mäzi: past root).
We create a new cluster when a rule needs it and
that cluster is not in clusters repository.

As we discussed about it, in Persian, we have
several suffixes for plural form that every one is
used for a set of nouns. The suffix “ها” (hä) is used
for every noun and the suffix (än)”ان“ is special
for everything that is alive. Other suffixes are ap-

Word: string;
P: array of pointer with word.length size;

for C = 1 to word.length do
{

for i = 1 to C do
{

If (P[i] <> Blocked)
{

edge = find_edge(P[i] , L);
// find_edge finds a edge from its position
// in tree that its letter is equal with L.
if (edge <> null)

{
GoDown(P[i],edge);
substring(i, C).mInfo = P[i]-> mInfo;
// mInfo is morphological Information

}
else P[i] = Blocked;

}
}

}

586

plied for some words borrowed from Arabic and
some Persian words. A noun such as :pesar) ”پسر“
boy)has several plural forms (e.g. “پسرها”/pesar-hä,
.(pesar-än/”پسران“ Therefore, we employ clusters
for organizing this situation. For example, we put
the morpheme :pesar)”پسر“ boy) in cluster ”اسم“
(esm: noun) and “جاندار” (jändär: alive). Also, we
have two rules in rules repository:

”اسم”+”ها“
(hä + noun)

and
”جاندار”+”نا“
(än + alive)

The morpheme :pesar)”پسر“ boy) is a member of
both clusters “اسم” (esm: noun) and“جاندار” (jändär:
alive). Accordingly, these words :pesar-hä) ”پسرها“
boys) and“پسران” (pesar-än: boys) are correct form
and their stem is :pesar) ”پسر“ boy). But about the
morpheme “کتاب”(ketäb: book), it is a noun and a
member of cluster :esm)”اسم“ noun) but it is not a
member of cluster :jändär) ”جاندار“ alive). So,
:ketäb-hä) ”کتابها“ books) is a correct form and its
stem is “کتاب”(ketäb: book). In contrast, ”کتابان“
(ketäb-än) is a wrong form and“کتاب”(ketäb: book)
is not its stem. Also, we organize suffixes in simi-
lar cluster such as cluster šenase) ”شناسه مضارع“
mozäre: present person identifier), “حرف نفی فعل”
(harfe nafye fel). Table 4 shows some clusters.

Table 4. Some clusters that we use.
Cluster Cluster

شناسه مضارع
(present person identifier)

بن مضارع
(present root)

پسوند جمع ها
(plural suffix hä)

بن ماضی
(past root)

پسوند جمع ان
(plural suffix än)

اسم
(noun)

At the end of this phase, each core must have a
rule that it can generate the word. Otherwise, it is
removed from cores list.

3.3 Anti Rule Matching

This phase is similar previous phase with a small
difference. Like previous phase, we have a rules

repository, but these rules are not applied in Per-
sian. In fact, these rules are exceptions of previous
phase rules. For example, we have a rule in rules
repository:

(نا+ جانداراسم)
(än + alive noun)

On the other hand, there is an exception for this
rule. Every noun with the final letter “ه” (he) can
not use this rule. For example, “پرنده” (parand-e:
bird) is a kind of animals with the final letter “ه”
(he) and theword “انپرنده ” (parand-e-än) is a wrong
word in Persian. We call these exceptional rules
“Anti rules”.

The details of this phase: Each core from cores
list retrieves the anti rules that they involve it. Af-
ter that, each retrieved anti rule is checked with the
morphemes in the word for possibility of word
generation. Until now, all things were similar pre-
vious phase, but the difference is here. If there is
any anti rule related to a rule of any core, that rule
is removed from candidate rule list of that core. At
the end of this phase, each core must have at least
one rule that it can generate the word. Otherwise, it
is removed from cores list. Finally, remained cores
in cores list have correct stems of the word.

We have gathered a set of anti rules in a reposi-
tory that each anti rule is related to a rule in rule
repository. Some of these anti rules are shown in
Table 5.

Table 5. Some gathered anti rules that we use.
Anti Rule

(ان+منتهی به هاسم جاندار)
(an + alive noun ended with h)

(ات+٬ ی اسم منتهی به ا٬ و٬ ه)
(at + noun ended with ä,u,h, y)

4 Experiments and Results

The most primitive method for assessing the per-
formance of a stemmer is to examine its behavior
when applied to samples of words - especially
words which have already been arranged into 'con-
flation groups'. This way, specific errors (e.g., fail-

587

ing to merge "maintained" with "maintenance", or
wrongly merging "experiment" with "experience")
can be identified, and the rules adjusted accord-
ingly.

We evaluated the proposed algorithm with a
limited corpus of Hamshahri newspaper. We
started with 252 rules and 20 anti rules. The algo-
rithm retrieved 90.1 % of word stems correctly.
The failed words are related to absence of some
rules in rule repository or stems in Trie tree. Some
of words in the corpus are shown in Table 6.

Table 6. Some of words in Hamshahri newspa-
per corpus

Stem Word
ماجرا

(mäjarä)
(event)

ماجرای
(mäjarä-ye)
(event of)

رسم
(rasm)

(custom)

هارسم
(rasm-hä)
(customs)

پديده
(padide)

(phenomenon)

پديده های
(padid-e-hä-ye)

(phenomenons of)
بودن

(bud)
(to be)

بودند
(bud-and)

(They were)
ساعت

(säat)
(watch)

ساعتهايشان
(säat-hä-ye-šän)

(watch)
کشيدن

(kešidan)
(to draw)

بکشند
(be-keša-and)

آخر
(äxar)
(end)

آخرين
(äxar-in)

(last)
رفتن

(raftan)
(going)

نرفته بودند
(na-raft-e budand)

(They had not gone)
سال

(säl)
(year)

امسال
(em-säl)

(this year)
مطالعه

(motäle'e)
(study)

مطالعات
(motäle-at)

(studies)
منطقه

(mantaghe)
(area)

مناطق
(manätegh)

(areas)

One of words could not be handle with our algo-
rithm is “جابجا”(jä-be-jä - exchange). We discov-

ered related rule for that and added it to rules re-
pository. Therefore, if we evaluate the algorithm,
the result will be better. Rules repository evolves
and the algorithm result will be better without any
change of program and code compilation.

5 Conclusion

In this paper, we proposed a bottom up method to
stem Persian words. The main purpose of this
method is high precision stemming based on mor-
phological rules. The experiments show that it has
suitable results in stemming and presents possibil-
ity of evolution easily.

References

Bento, Cardoso and Dias. 2005. Progress in Artificial
Intellegence, 12th Portuguese Conference on Artifi-
cial Intelligence, pages 693–701.

Chris Paice. 1996. Method for Evaluation of Stemming
Algorithms Based on Error Counting. JASIS , pages
632-649.

Frakes and Yates. 1992. Information Retrieval: Data
Structures and Algorithms. Prentice Hall, NJ.

Mayfield and McNamee. 2003. Single N-gram Stem-
ming. In Proceedings of the 26th annual international
ACM SIGIR conference on Research and develop-
ment in information. retrieval, pages 415-416.

Melucci and Orio. 2003. A Novel Method for Stemmer
Generation Based on Hidden Markov Models. In
Proceedings of Conference on Information and
Knowledge Management (CIKM03), pages 131-138.

Michela Bacchin, Nicola Ferro, and Massimo Melucci.
2002. Experiments to evaluate a statistical stemming
algorithm. Working Notes for CLEF 2002, pages
161-168.

Michela Bacchin, Nicola Ferro, and Massimo Melucci.
2002. The Effectiveness of a Graph-Based Algorithm
for Stemming. Springer-Verlag Berlin Heidelberg.
pages 117–128.

Porter. An Algorithm for Suffix Stripping. 1980. Pro-
gram. pages 130-137.

Taghva, Beckley and Sadeh. 2005. A stemming algo-
rithm for the Farsi language. IEEE ITCC 2005,
pages 158 - 162.

588

