
Repurposing Theoretical Linguistic Data
for Tool Development and Search

Fei Xia

University of Washington

Seattle, WA 98195

fxia@u.washington.edu

William D. Lewis∗

Microsoft Research

Redmond, WA 98052-6399

wilewis@microsoft.com

Abstract

For the majority of the world’s languages,
the number of linguistic resources (e.g., an-
notated corpora and parallel data) is very
limited. Consequently, supervised methods,
as well as many unsupervised methods, can-
not be applied directly, leaving these lan-
guages largely untouched and unnoticed. In
this paper, we describe the construction of a
resource that taps the large body of linguisti-
cally analyzed language data that has made
its way to the Web, and propose using this
resource to bootstrap NLP tool development.

1 Introduction

Until fairly recently, most NLP research has focused
on the ten or so majority languages of the world, the
canonical high density languages. Low density, or
resource poor languages (RPLs), have more recently
captured the interest of NLP research, mostly be-
cause of recent advances in computational technolo-
gies and computing power. As indicated by their
name, RPLs suffer from a lack of resources, namely
data. Supervised learning techniques generally re-
quire large amounts of annotated data, something
that is nonexistent or scare for most RPLs. A greater
number of RPLs, however, have raw data that is
available, and the amount and availability of this raw
data is increasing every day as more of it makes its
way to the Web. Likewise, advances in un- and semi-
supervised learning techniques have made raw data
more readily viable for tool development. Still, how-
ever, such techniques often require “seeds”, or “pro-
totypes” (c.f., (Haghighi and Klein, 2006)) which are
used to prune search spaces or direct learners.

An important question is how to create such seeds
for the hundreds to thousands of RPLs. We describe
the construction of a resource that taps the large
body of linguistically analyzed language data that
has made its way to the Web, and propose using this

∗The work described in this document was done while
Lewis was faculty at the University of Washington.

resource as a means to bootstrap NLP tool devel-
opment. Interlinear Glossed Text, or IGT, a semi-
structured data type quite common to the field of
linguistics, is used to present data and analysis for a
language and is generally embedded in scholarly lin-
guistic documents as part of a larger analysis. IGT’s
unique structure — effectively each instance consists
of a bitext between English and some target language
— can be easily enriched through alignment and pro-
jection (e.g., (Yarowsky and Ngai, 2001), (Hwa et al.,
2002)). The reader will note that the IGT instance
in Example (1) consists of a bitext between some tar-
get language on the first line, or the target line (in
this case in Welsh), and a third line in English, the
translation line. The canonical IGT form, which this
example is representative of, has intervening linguis-
tic annotations and glosses on a second line, the gloss

line. Because the gloss line aligns with words and
morphemes on the target line, and contains glosses
that are similar to words on the translation line, it
can serve as a bridge between the target and transla-
tion lines; high word alignment accuracy between the
three lines can be achieved without requiring parallel
data or bilingual dictionaries (Xia and Lewis, 2007).
Furthermore, the gloss line provides additional in-
formation about the target language data, such as
a variety of grammatical annotations, including ver-
bal and tense markers (e.g., 3sg), case markers, etc.,
all of which can provide useful knowledge about the
language.

(1) Rhoddodd yr athro lyfr i’r bachgen ddoe
gave-3sg the teacher book to-the boy yesterday
“The teacher gave a book to the boy yesterday”
(Bailyn, 2001)

ODIN, the Online Database of INterlinear text
(Lewis, 2006), is a resource built over the past few
years from data harvested from scholarly documents.
Currently, ODIN has over 41,581 instances of IGT for
944 languages, and the number of IGT instances is
expected to double or triple in the near-term as new
methods for collecting data are brought online. Al-
though the number of instances per language varies,
e.g., the maximum currently is 2,891 instances (for

529

Table 1: The numbers of languages in ODIN
Range of # of # of % of

IGT instances languages instances instances
1000-2891 10 15019 36.11

500-999 11 8111 19.50
250-499 18 6274 15.08
100-249 22 3303 7.94

50-99 38 2812 6.76
25-49 60 2089 5.02
10-24 127 1934 4.65

1-9 658 2039 4.91

Japanese), and the overall number per language may
appear small, it is still possible to harvest significant
value from IGT for targeted RPLs. In this paper,
we present the ODIN database and methods used to
create it. We also present methods we have employed
to enrich IGT in order to make it more readily useful
for bootstrapping NLP tools. Because the canon of
knowledge embodied in the hundred or so years of
linguistic analysis remains virtually untapped by the
NLP community, we provide a bridge between the
communities by providing linguistic data in a way
that NLP researchers will find useful. Likewise, be-
cause IGT is a common linguistic data type, we pro-
vide a search facility over these data, which has al-
ready been found to be quite useful to the theoretical
linguistics community.

2 Building ODIN

ODIN currently has 41,581 IGT instances for 944
languages. Table 1 shows the number of languages
that fall into buckets defined by the number of IGT
instances for each language. For instance, the fourth
row (“bucket”) says that 22 languages each have 100
to 249 IGT instances, and the 3,303 instances in this
bucket account for 7.94% of all instances. ODIN is
built in three steps, as described below.1

2.1 Crawling for IGT documents

Because a large number of instances of IGT exist on
the Web,2 we have focused on searching for these

1The work of creating ODIN, in some ways, speaks
to the need of standardizing IGT (perhaps along with
other linguistic data types) such that both humans and
machines can more readily consume the data. Some re-
cent efforts to develop standards for encoding IGT (e.g.,
(Hughes et al., 2003), (Bickel et al., 2004)) have met with
limited success, however, since they have not been widely
recognized and even less frequently adopted. Over time
it is our hope that these or other standards will see wider
use thus eliminating the need for much of the work pro-
posed here.

2Although we have no direct data about the total
number of IGT instances that exist on the Web, we hy-

instances. The major difficulty with locating docu-
ments that contain IGT, however, is reducing the size
of the search space. We decided very early in the de-
velopment of ODIN that unconstrained Web crawl-
ing was too time and resource intensive a process to
be feasible, mostly due to the Web’s massive size.
We discovered that highly focused metacrawls were
far more fruitful. Metacrawling essentially involves
throwing queries against an existing search engine,
such as Google, Yahoo or MSN Live, and crawling
only the pages returned by those queries. We found
that the most successful queries were those that used
strings contained within IGT itself, e.g. grammatical
annotations, or grams, such as 3sg, NOM, ACC, etc.
In addition, we found precision increased when we
included two or more search terms per query, with
the most successful queries being those which com-
bined grams and language names. Thus, for exam-
ple, although NOM alone returned a large number of
linguistic documents, NOM combined with ACC (or
any other high frequency term), or a language name,
returned a far less noisy and far more relevant set of
documents.

Other queries we have developed include: queries
by language names and language codes (drawn from
the Ethnologue database (Gordon, 2005), which con-
tains about 40,000 language names and their vari-
ants), by linguists’ names and the languages they
work on (drawn from the Linguist List’s linguist
database), by linguistically relevant terms (drawn
from the SIL linguistic glossary), and by particular
words or morphemes found in IGT and their gram-
matical markup. Table 2 shows the statistics for the
most successful crawls and their related search term
“types”. Calculated from the top 100 queries for each
type, the table presents the most successful query
types, the average number of documents returned for
each, the average number of documents in which IGT
was actually found, and the average number of IGT
instances netted by each query. The most relevant
measure of success is the number of IGT instances
returned (the obvious focus of our crawling); in turn,
the most successful query types are those which con-
tain a combination of grams and language names.3

pothesize that the total supply is at least several hundred
thousand instances. Given that ODIN contains 41,581
instances which have been extracted from approximately
3,000 documents, and given that we have located at least
60,000 more documents that might contain IGT, we feel
our estimate to be reasonable.

3Note that target documents are often returned by
multiple queries. For instance, the documents returned
by “NOM+ACC+Icelandic” will also be returned by the
individual query terms “NOM”, “ACC”, and “Icelandic”.

530

Table 2: The Most Successful Query Types
Query Type Avg # Avg # docs Avg #

docs w/ IGT IGTs
Gram(s) 1184 239 50
Language name(s) 1314 259 33
Both grams 1536 289 77
and names
Language words 1159 193 0

2.2 IGT detection

After crawling, the next step is to identify IGT in-
stances in the retrieved documents. This is a dif-
ficult task for which machine learning methods are
well suited.

2.2.1 Difficulty in IGT detection

The canonical form of IGT, as presented in Sec-
tion 1, consists of three parts and each part is on a
single line. However, many IGT instances do not fol-
low the canonical format for several reasons. First,
when IGT examples appear in a group, very often the
translation or glosses are dropped for some examples
in the group because the missing parts can be recov-
ered from the context, resulting in two-part IGT. In
other cases, some IGT examples include multiple tar-
get transcriptions (e.g., one part in the native script,
and another in a latin transliteration) or even, in rare
cases, multiple translations.

Second, dictated by formatting constraints, long
IGT examples may need to be wrapped one or more
times, and there are no conventions on how wrapping
should be done, nor how many times it can be done.
For short IGT examples, sometimes linguists put the
translation to the right of the target line rather than
below it. As a result, each part of IGT examples
may appear on multiple lines and multiple parts can
appear on a single line.

Third, most IGT-bearing documents on the Web
are in PDF, and the PDF-to-text conversion tools
will sometimes corrupt IGT instances (most often
on the target line). In some instances, some words
or morphemes on the target line are inadvertently
dropped in the conversion, or are displaced up or
down a line. Finally, an IGT instance could fall into
multiple categories. For instance, a two-part IGT
instance could have a corrupted target line. All of
this makes the detection task difficult.

2.2.2 Applying machine learning methods

The first system that we designed for IGT detec-
tion used regular expression “templates”, effectively
looking for text that resembled IGT. An example is
shown in (2), which matches any three-line instance
(e.g., the IGT instance in (1)) such that the first line

starts with an example number (e.g., (1)) and the
third line starts with a quotation mark.

(2) \s*\(\d+\).*\n

\s*.*\n

\s*\[‘’"].*\n

Unfortunately, this approach tends to over-select
when applied to the documents crawled from the
Web. Further, many true IGT instances do not
match any of hand-written templates due to the is-
sues mentioned in the previous section. As a result,
both precision and recall are quite low (see Table 4).

Given the irregular structure of IGT instances, a
statistical system is likely to outperform a rule-based
system. In our second system, we treat the IGT de-
tection task as a sequence labeling problem, and ap-
ply machine learning methods to the task: first, we
train a learner and use it to tag each line in a doc-
ument with a tag in a pre-defined tag set; then we
convert the best tag sequence into a span sequence.
A span is a (start, end) pair, which indicates the be-
ginning and ending line numbers of an IGT instance.

Among all the tagging schemes we experimented
with (including the standard BIO tagging scheme),
the following 5-tag scheme works the best on the de-
velopment set: The five tags are BL (any blank line),
O (outside IGT that is not a BL), B (the first line
in an IGT), E (the last line in an IGT), I (inside an
IGT that is not a B, E, or BL).

For machine learning, we use four types of features:

F1: The words that appear on the current line.
These are the features typically used in a text
classification task.

F2: Sixteen features that look at various cues for the
presence of an IGT. For example, whether the
line starts with a quotation, whether the line
starts with an example number (e.g., (1)), and
whether the line contains a large portion of hy-
phenated or non-English tokens.

F3: In order to find good tag sequences, we include
features for the tags of the previous two lines.

F4: The same features as in F2, but they are checked
against the neighboring lines. For instance, if a
feature f5 in F2 checks whether the current line
contains a citation, f+1

5 checks whether the next
line contains a citation.

After the lines in a document are tagged by the
learner, we identify IGT instances by finding all the
spans in the document that match the “B [I | BL]∗

E” pattern; that is, the span starts with a B, ends
with an E, and has zero or more I or BL in between.4

4Other heuristics for converting tag sequences to span
sequences produce similar results.

531

Table 3: Data sets for the IGT detection experiments
files # lines # IGTs

Training data 41 39127 1573
Dev data 10 8932 447
Test data 10 14592 843

2.2.3 Experimental results

To evaluate the two detectors, we randomly se-
lected 61 ODIN documents and manually marked
the occurrence of IGT instances. The files were then
split into training, development, and test sets, and
the size of each set is shown in Table 3. The annota-
tion speed was about four thousand lines per hour.
Each file in the development and test sets was an-
notated independently by two annotators, and the
inter-annotator agreement (f-score) on IGT bound-
ary was 93.74% when using exact match (i.e., two
spans match iff they are identical). When partial

match (i.e., two spans match iff they overlap) was
used, the f-score increased to 98.66%.

We used four machine learning algorithms imple-
mented in Mallet (McCallum, 2002): decision tree,
Naive Bayes, maximum entropy (MaxEnt), and con-
ditional random field (CRF).5 Table 4 shows the
MaxEnt model’s performance on the development set
with different combinations of features: the highest
f-score for exact match in each group is marked in
boldface.6 In addition to exact and partial match
results, we also list the number of spans produced
by the system (cf. the span number in the gold stan-
dard is 447) and the classification accuracy (i.e., the
percent of lines receiving correct labels). The results
for CRF are very similar to those for MaxEnt, and
both outperform decision tree and Naive Bayes.

Several observations are in order. First, as ex-
pected, the machine learning approach outperforms
the regular expression approach. Second, although
F2 contains only sixteen features, it works much bet-
ter than F1, which uses all the words occurring in the
training data. Third, F4 works much better than F3

in capturing contextual information, mainly because
F4 allows the learner to take into account the infor-
mation that appears on both the preceding lines and
the succeeding lines.7 Last, adding F1 and F3 to

5For the first three methods, we implemented beam
search to find the best tag sequences; and for CRF, we
used features in F1, F2, and F4, as the model itself in-
corporates the information about previous tags already.

6
F4 is an extension of F2, so every combination with

F4 should include F2 as well. Also, F3 should not be used
alone. Therefore, Table 4 in fact lists all the possible
feature combinations.

7The window for F4 is set empirically to [-2,3]; that
is, F4 uses the information from the preceding two lines

the F2 + F4 system offers a modest but statistically
significant gain.

Table 5 shows the results on the test data. The
performance of MaxEnt on this data set is slightly
worse than on the development set mainly because
the test set contains much more corrupted data (due
to pdf-to-text conversion) than both the training and
development sets.8 Nevertheless, the machine learn-
ing approach outperforms the regex approach signifi-
cantly, reducing the error rate by 52.3%. In addition,
the partial match results are much better than ex-
act match results, indicating that many span errors
could be potentially fixed by postprocessing.

2.3 Manual review and language ID

About 45% of IGT instances in the current ODIN
database were manually checked to verify IGT
boundaries and to identify the language names of
the target lines. Subsequently, we trained several
language ID algorithms with the labeled data, and
used them to label the remaining 55% of the IGT
instances in ODIN automatically.

The language ID task in this context is different
from a typical language ID task in several ways.
First, the number of languages in IGT is close to
a thousand or even more. In contrast, the amount
of training data for many of the languages is very
limited; for instance, hundreds of languages have less
than 10 sentences, as shown in Table 1. Second, some
languages in the test data might never occur in the
training data, a problem that we shall call the un-

known language problem. Third, the target sentences
in IGT are very short (e.g., a few words), making the
task more challenging. Fourth, for languages that do
not use a latin-based writing system, the target sen-
tences are often transliterated, making the character
encoding scheme less informative. Last, the context,
such as the language names occurring in the docu-
ment, provides important cues for the language ID
of IGT instances.

Given these properties, applying common lan-
guage ID algorithms directly will not produce sat-
isfactory results. For instance, Cavnar and Tren-
kle’s N-gram-based algorithm yields an accuracy of
as high as 99.8% when tested on newsgroup arti-
cles in eight languages (Cavnar and Trenkle, 1994).9

and the succeeding three lines.
8The corruption not only affects the target lines, but

also the layout of IGT (e.g., the indentation of the three
lines). As a result, features in F2 and F4 are not as effec-
tive as for the development set. Since the regex template
approach uses fewer layout features, its performance is
not affected as much.

9The accuracy ranges from 92.9% to 99.8% depending
on the article length and a model parameter called profile

532

Table 4: Performance on the development set (the span number in the gold standard is 447)
Features System Classification Exact match Partial match

span num accuracy prec recall fscore prec recall fscore
Regex templates 269 N/A 68.40 41.16 51.40 99.26 59.73 74.58
F1 130 81.50 68.46 19.91 30.85 97.69 28.41 44.02
F2 405 93.28 58.27 52.80 55.40 95.56 86.58 90.85
F1 + F3 180 80.26 61.67 24.83 35.40 81.11 32.66 46.57
F1 + F2 420 94.42 63.09 59.28 61.13 93.81 88.14 90.88
F2 + F3 339 92.68 75.81 57.49 65.39 93.21 70.69 80.40
F2 + F4 456 96.91 80.92 82.55 81.73 93.64 95.53 94.57
F1 + F2 + F3 370 93.39 75.14 62.20 68.05 93.51 77.40 84.70
F1 + F2 + F4 444 97.00 84.68 84.11 84.40 95.95 95.30 95.62
F2 + F3 + F4 431 97.79 86.77 83.67 85.19 97.68 94.18 95.90
F1 + F2 + F3 + F4 431 98.00 90.02 86.80 88.38 97.22 93.74 95.44

Table 5: Performance on the test set (the span number in the gold standard is 843)
Features System Classification Exact match Partial match

span num accuracy prec recall fscore prec recall fscore
Regex templates 587 N/A 74.95 52.19 61.54 98.64 68.68 80.98
F2 719 92.45 57.02 48.64 52.50 94.02 80.19 86.56
F2 + F4 849 95.66 75.50 76.04 75.77 93.76 94.42 94.09
F2 + F3 + F4 831 95.95 77.14 76.04 76.58 95.19 93.83 94.50
F1 + F2 + F3 + F4 830 96.83 82.29 81.02 81.65 96.51 95.02 95.76

However, when we ran the same algorithm on the
IGT data, the accuracy was only 50.2%.10 In con-
trast, a heuristic approach that predicts the language
ID according to the language names occurring in the
document yields an accuracy of 65.6%.

Because the language name associated with an
IGT instance almost always appears somewhere in
the document, we propose to treat the language ID
task as a reference resolution problem, where IGT
instances are the mentions and the language names
appearing in the document are the entities. A lan-
guage identifier simply needs to link the mentions
to the entities, allowing us to apply any good res-
olution algorithms such as (Soon et al., 2001; Ng,
2005; Luo, 2007) and to provide an elegant solution
to the unknown language problem. More detail on
this approach will be reported elsewhere.

3 Using ODIN

We see ODIN being used in a number of different
ways. In another study (Lewis and Xia, 2008), we
demonstrated a method for using ODIN to discover
interesting and computationally relevant typological
features for hundreds of the world’s languages auto-
matically. In this section we present two more uses

length.
10The setting for our preliminary experiments is as fol-

lows: there are 10,415 IGT instances over 549 languages
in the training data, and 3064 instances in the test data.
The language names of about 12.2% of IGT instances in
the test data never appear in the training data.

for ODIN’s data: bootstrapping NLP tools (specif-
ically taggers), and providing search over ODIN’s
data (as a kind of large-scale multi-lingual search).

3.1 IGT for bootstrapping NLP tools

Since the target line in IGT data does not come with
annotations (e.g., POS tags), it is first necessary to
enrich it. Once enriched, the data can be used as a
bootstrap for tools such as taggers.

3.1.1 Enriching IGT

In a previous study (Xia and Lewis, 2007), we pro-
posed a three-step process to enrich IGT data: (1)
parse the English translation with an English parser
and convert English phrase structures (PS) into de-
pendency structures (DS) with a head percolation
table (Magerman, 1995), (2) align the target line and
the English translation using the gloss line, and (3)
project the syntactic structures (both PS and DS)
from English onto the target line. For instance, given
the IGT example in Ex (1), the enrichment algorithm
will produce the word alignment in Figure 1 and the
syntactic structures in Figure 2.

The t eache r gave a book t o t he boy yes te rday

Rhoddodd y r a th ro l y f r i ’ r bachgen ddoe

 G loss l i ne :

 T r a n s l a t i o n :

T a r g e t l i n e :

g a v e - 3 s g t h e t e a c h e r b o o k t o - t h e b o y y e s t e r d a y

Figure 1: Aligning the target line and the English
translation with the help of the gloss line

533

gave

(a) Projecting DS

athro

bachgen

lyfr

yr

ddoei’r

 Rhoddodd S

NP1 VP

NN

teacher

VBD

 gave

NP2

DT

a

NP4PP

NN

the

IN NP3

yesterday

NN

DT

book

NN

boy

DT

to

S

NP

NN

VBD
NP NPPP

NN

IN+DT
NN

NNDT

 rhoddodd
 (gave)

yr
(the)

 athro
(teacher)

lyfr
(book)

 i’r
(to-the)

bachogen
(boy) ddoe

(yesterday)

teacher

a boy

the

book

the

yesterdayto

The

(b) Projecting PS

Figure 2: Projecting syntactic structure from English to the target language

We evaluated the algorithm on a small set of 538
IGT instances for several languages. On average,
the accuracy of the English DS (i.e., the percentage
of correct dependency links in the DS) is 93.48%;
the f-score of the word alignment links between the
translation and target lines is 94.03%, and the ac-
curacy of the target DS produced by the projection
algorithm is 81.45%. When we replace the automati-
cally generated English DS and word alignment with
the ones in the gold standard, the accuracy of target
DS increases significantly, from 81.45% to 90.64%.
The details on the algorithms and the experiments
can be found in (Xia and Lewis, 2007).

3.1.2 Bootstrapping NLP tools

The enriched data produced by the projection al-
gorithms contains (1) the English DS and PS pro-
duced by an English parser, (2) the word alignment
among the three parts of IGT data, and (3) the tar-
get DS and PS produced by the projection algorithm.
From the enriched data, various kinds of information
can be extracted. For instance, the target syntactic
structures form small monolingual treebanks, from
which grammars in various formalisms can be ex-
tracted (e.g., (Charniak, 1996)). The English and
target syntactic structures form parallel treebanks,
from which transfer rules and translation lexicon can
be extracted and used for machine translation (e.g.,
(Meyers et al., 2000; Menezes, 2002; Xia and Mc-
Cord, 2004)).

There are many ways of using the enriched data
to bootstrap NLP tools. Suppose we want to build a
POS tagger. Previous studies on unsupervised POS
tagging can be divided into several categories accord-
ing to the kind of information available to the learner.
The first category (e.g., (Kupiec, 1992; Merialdo,
1994; Banko and Moore, 2004; Wang and Schuur-
mans, 2005)) assumes there is a lexicon that lists
the allowable tags for each word in the text. The
common approach is to use the lexicon to initialize
the emission probability in a Hidden Markov Model
(HMM), and run the Baum-Welch algorithm (Baum
et al., 1970) on a large amount of unlabeled data

to re-estimate transition and emission probability.
The second category uses unlabeled data only (e.g.,
(Schütze, 1995; Clark, 2003; Biemann, 2006; Das-
gupta and Ng, 2007)). The idea is to cluster words
based on morphological and/or distributional cues.
Haghighi and Klein (2006) showed that adding a
small set of prototypes to the unlabeled data can
improve tagging accuracy significantly.

The tagged target lines in the enriched IGT data
can be incorporated in each category of work men-
tioned above. For instance, the frequency collected
from the data can be used to bias initial transi-
tion and emission probabilities in an HMM model;
the tagged words in IGT can be used to label the
resulting clusters produced by the word clustering
approach; the frequent and unambiguous words in
the target lines can serve as prototype examples in
the prototype-driven approach (Haghighi and Klein,
2006). Finally, we can apply semi-supervised learn-
ing algorithms (e.g., self-training (Yarowsky, 1995),
co-training (Blum and Mitchell, 1998), and transduc-
tive support vector machines (Vapnik, 1998)), using
the tagged sentences as seeds.

3.2 Search

One focus of ODIN is and has always been search:
how can linguists find the data that they are inter-
ested in and how can the data be encoded in such a
way as to accommodate the variety of queries that a
linguist might ask. We currently allow four types of
search queries: search by language name and code,
search by language family, search by concept/gram,
and search by linguistic constructions. The first al-
lows the user to specify a language name or ISO code
to search for, and allows the user to view documents
that contain instances of IGT in that language, as
well as the instances themselves. The second al-
lows the user to specify a language family (families
as specified in the Ethnologue), and returns similar
results, except grouped by language. The third al-
lows the user to select from a list of known grams,
all of which have been mapped to a conceptual space

534

used by linguists (the GOLD ontology, (Farrar and
Langendoen, 2003)).11

The final query type, the Construction Search is
the most powerful and most innovative of the query
facilities currently provided by ODIN. Rather than
limiting search to just the content and markup na-
tively contained within IGT, Construction Search
searches over enriched content. For instance, a search
for relative clauses can look for either the POS tag
sequences that contain a noun followed by an ap-
propriate relativizer, or the parse trees that contain
an NP node with an NP child and a clause child.
Currently, 15 construction queries have been imple-
mented, with some 40 additional queries being eval-
uated and built. Note that currently construction
queries are performed on the English translation, not
on the target language data. As syntactic projection
becomes more reliable, we will allow construction
queries on the target language data and even queries
on both the English and the target (e.g., for com-
parative linguistic analyses). For example, a query
could be something like Find examples where the tar-

get line uses imperfective aspect and is in active voice

and the English translation uses passive voice.

4 Conclusion and Future Directions

In this paper, we introduce Interlinear Glossed Text
(IGT), a data type that has been rarely tapped by
the NLP community, and describe the process of cre-
ating ODIN, a database of IGT data. We show that
using machine learning methods can significantly im-
prove the performance of IGT detection. We then
demonstrate how IGT instances can be enriched and
discuss several ways of using enriched data to boot-
strap NLP tools such as POS taggers. Finally, we
review the four types of linguistic search that are cur-
rently implemented in ODIN. All of the above show
the value of ODIN as a resource for both NLP re-
searchers and linguists. In the future, we plan to im-
prove the IGT detection and language ID algorithms
and will apply them to all the crawled documents.
We expect the size of ODIN to grow dramatically.
We also plan to use the enriched data to bootstrap
taggers and parsers, starting with the ideas outlined
in Section 3.1.2.

Acknowledgements This work has been sup-
ported, in part, by the Royalty Research Fund at
the University of Washington. We would also like
to thank Dan Jinguji for providing the preliminary

11Most gram-to-concept mapping has been done by
hand. We are currently exploring methods to use ma-
chine learning to enhance our ability to identify and map
additional unknown grams (to be discussed elsewhere).

results on language ID expriments, and three anony-
mous reviewers for their valuable comments.

References

John Frederick Bailyn. 2001. Inversion, dislocation
and optionality in Russian. In Gerhild Zybatow,
editor, Current Issues in Formal Slavic Linguis-
tics.

Michele Banko and Robert C. Moore. 2004. Part
of Speech Tagging in Context. In Proc. of the
20th International Conference on Computational
Linguistics (Coling 2004), pages 556–561, Geneva,
Switzerland.

L. E. Baum, T. Petrie, G. Soules, and N. Weiss.
1970. A maximization technique occurring in
the statistical analysis of probabilistic functions of
Markov chains. Ann. Math. Statistics, 41(1):164–
171.

Balthasar Bickel, Bernard Comrie, and Martin
Haspelmath. 2004. The Leipzig Glossing
Rules: Conventions for interlinear morpheme-by-
morpheme glosses (revised version). Technical re-
port, Max Planck Institute for Evolutionary An-
thropology and the Department of Linguistics of
the University of Leipzig.

Chris Biemann. 2006. Unsupervised part-of-speech
tagging employing efficient graph clustering. In
Proceedings of the COLING/ACL 2006 Student
Research Workshop, pages 7–12, Sydney, Aus-
tralia, July.

Avrim Blum and Tom Mitchell. 1998. Combining
Labeled and Unlabeled Data with Co-training. In
Proc. of the Workshop on Computational Learning
Theory (COLT-1998).

William B. Cavnar and John M. Trenkle. 1994. N-
gram-based text categorization. In Proceedings of
SDAIR-94, 3rd Annual Symposium on Document
Analysis and Information Retrieval, pages 161–
175, Las Vegas, US.

Eugene Charniak. 1996. Treebank Grammars. In
Proc. of the 13th National Conference on Artificial
Intelligence (AAAI-1996).

Alexander Clark. 2003. Combining distributional
and morphological information for part of speech
induction. In Proc. of the 10th Conference of the
European Chapter of the Association for Compu-
tational Linguistics (EACL-2003).

Sajib Dasgupta and Vincent Ng. 2007. Unsuper-
vised part-of-speech acquisition for resource-scarce
languages. In Proceedings of the 2007 Joint Con-
ference on Empirical Methods in Natural Language

535

Processing and Computational Natural Language
Learning (EMNLP-CoNLL), pages 218–227.

Scott Farrar and D. Terence Langendoen. 2003. A
linguistic ontology for the Semantic Web. GLOT
International, 7(3):97–100.

Raymond G. Gordon, editor. 2005. Ethnologue:
Languages of the World. SIL International, Dallas,
TX, fifteenth edition.

Aria Haghighi and Dan Klein. 2006. Prototype-
driven learning for sequence models. In Proceed-
ings of the Human Language Technology Confer-
ence of the NAACL (HLT/NAACL 2006), pages
320–327, New York City, USA.

Baden Hughes, Steven Bird, and Cathy Bow. 2003.
Interlinear text facilities. In E-MELD 2003, Michi-
gan State University.

Rebecca Hwa, Philip Resnik, Amy Weinberg, and
Okan Kolak. 2002. Evaluating translational cor-
respondence using annotation projection. In Pro-
ceedings of the 40th Annual Meeting of the ACL,
Philadelphia, Pennsylvania.

J. Kupiec. 1992. Robust part-of-speech tagging us-
ing a hidden Markov model. Computer Speech and
Language, 6.

William Lewis and Fei Xia. 2008. Automatically
Identifying Computationally Relevant Typologi-
cal Features. In Proc. of the Third International
Joint Conference on Natural Language Processing
(IJCNLP-2008), Hyderabad, India.

William Lewis. 2006. ODIN: A Model for Adapt-
ing and Enriching Legacy Infrastructure. In Proc.
of the e-Humanities Workshop, held in cooperation
with e-Science 2006: 2nd IEEE International Con-
ference on e-Science and Grid Computing, Ams-
terdam.

Xiaoqiang Luo. 2007. Coreference or not: A twin
model for coreference resolution. In Proc. of
the Conference on Human Language Technologies
(HLT/NAACL 2007), pages 73–80, Rochester,
New York.

David M. Magerman. 1995. Statistical Decision-
Tree Models for Parsing. In Proc. of the 33rd
Annual Meeting of the Association for Computa-
tional Linguistics (ACL-1995), Cambridge, Mas-
sachusetts, USA.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

Arul Menezes. 2002. Better contextual translation
using machine learning. In Proc. of the 5th con-
ference of the Association for Machine Translation
in the Americas (AMTA 2002).

Bernard Merialdo. 1994. Tagging English text with
a probabilistic model. Computational Linguistics,
20(2).

Adam Meyers, Michiko Kosaka, and Ralph Grish-
man. 2000. Chart-based transfer rule application
in machine translation. In Proc. of the 18th Inter-
national Conference on Computational Linguistics
(COLING 2000).

Vincent Ng. 2005. Machine learning for coreference
resolution: From local classification to global rank-
ing. In Proc. of the 43rd Annual Meeting of the
Association for Computational Linguistics (ACL
2005), pages 157–164, Ann Arbor, Michigan.

Hinrich Schütze. 1995. Distributional part-of-speech
tagging. In Proc. of the EACL, pages 141–148.

Wee Meng Soon, Hwee Tou Ng, and Daniel
Chung Yong Lim. 2001. A machine learning ap-
proach to coreference resolution of noun phrases.
Computational Linguistics, 27(4).

V. Vapnik. 1998. Statistical learning theory. Wiley-
Interscience.

Qin Iris Wang and Dale Schuurmans. 2005.
Improved Estimation for Unsupervised Part-of-
Speech Tagging. In Proc. of IEEE International
Conference on Natural Language Processing and
Knowledge Engineering (IEEE NLP-KE 2005).

Fei Xia and William Lewis. 2007. Multilingual struc-
tural projection across interlinear text. In Proc. of
the Conference on Human Language Technologies
(HLT/NAACL 2007), pages 452–459, Rochester,
New York.

Fei Xia and Michael McCord. 2004. Improv-
ing a Statistical MT System with Automatically
Learned Rewrite Patterns. In Proc. of the 20th
International Conference on Computational Lin-
guistics (COLING 2004), Geneva, Switzerland.

David Yarowsky and Grace Ngai. 2001. Induc-
ing Multilingual POS Taggers and NP Bracketers
via Robust Projection across Aligned Corpora. In
Proc. of the 2001 Meeting of the North American
chapter of the Association for Computational Lin-
guistics (NAACL-2001), pages 200–207.

David Yarowsky. 1995. Unsupervised word sense
disambiguation rivaling supervised methods. In
Proceedings of the 33rd Annual Meeting of the
Association for Computational Linguistics (ACL-
1995), pages 189–196, Cambridge, Massachussets.

536

