
TSUBAKI: An Open Search Engine Infrastructure for
Developing New Information Access Methodology

Keiji Shinzato†, Tomohide Shibata†, Daisuke Kawahara‡,
Chikara Hashimoto‡‡ and Sadao Kurohashi†

†Graduate School of Informatics, Kyoto University
‡National Institute of Information and Communications Technology

‡‡Department of Informatics, Yamagata University

{shinzato, shibata, kuro}@nlp.kuee.kyoto-u.ac.jp
dk@nict.go.jp ch@yz.yamagata-u.ac.jp

Abstract

As the amount of information created by
human beings is explosively grown in the
last decade, it is getting extremely harder
to obtain necessary information by conven-
tional information access methods. Hence,
creation of drastically new technology is
needed. For developing such new technol-
ogy, search engine infrastructures are re-
quired. Although the existing search engine
APIs can be regarded as such infrastructures,
these APIs have several restrictions such as a
limit on the number of API calls. To help the
development of new technology, we are run-
ning an open search engine infrastructure,
TSUBAKI, on a high-performance comput-
ing environment. In this paper, we describe
TSUBAKI infrastructure.

1 Introduction

As the amount of information created by human be-
ings is explosively grown in the last decade (Uni-
versity of California, 2003), it is getting extremely
harder to obtain necessary information by con-
ventional information access methods, i.e., Web
search engines. This is obvious from the fact that
knowledge workers now spend about 30% of their
day on only searching for information (The Del-
phi Group White Paper, 2001). Hence, creation of
drastically new technology is needed by integrating
several disciplines such as natural language process-
ing (NLP), information retrieval (IR) and others.

Conventional search engines such as Google and
Yahoo! are insufficient to search necessary informa-

tion from the current Web. The problems of the con-
ventional search engines are summarized as follows:

Cannot accept queries by natural language sen-
tences: Search engine users have to represent their
needs by a list of words. This means that search
engine users cannot obtain necessary information if
they fail to represent their needs into a proper word
list. This is a serious problem for users who do not
utilize a search engine frequently.

Cannot provide organized search results: A
search result is a simple list consisting of URLs,
titles and snippets of web pages. This type of re-
sult presentation is obviously insufficient consider-
ing explosive growth and diversity of web pages.

Cannot handle synonymous expressions: Exist-
ing search engines ignore a synonymous expression
problem. Especially, since Japanese uses three kinds
of alphabets, Hiragana, Katakana and Kanji, this
problem is more serious. For instance, although both
Japanese words “こども” and “子供” mean child,
the search engines provide quite different search re-
sults for each word.

We believe that new IR systems that overcome the
above problems give us more flexible and com-
fortable information access and that development
of such systems is an important and interesting re-
search topic.

To develop such IR systems, a search engine in-
frastructure that plays a low-level layer role (i.e., re-
trieving web pages according to a user’s query from
a huge web page collection) is required. The Appli-
cation Programming Interfaces (APIs) provided by

189

commercial search engines can be regarded as such
search engine infrastructures. The APIs, however,
have the following problems:

1. The number of API calls a day and the num-
ber of web pages included in a search result are
limited.

2. The API users cannot know how the acquired
web pages are ranked because the ranking mea-
sure of web pages has not been made public.

3. It is difficult to reproduce previously-obtained
search results via the APIs because search en-
gine’s indices are updated frequently.

These problems are an obstacle to develop new IR
systems using existing search engine APIs.

The research project “Cyber Infrastructure for the
Information-explosion Era1” gives researchers sev-
eral kinds of shared platforms and sophisticated
tools, such as an open search engine infrastructure,
considerable computational environment and a grid
shell software (Kaneda et al., 2002), for creation of
drastically new IR technology. In this paper, we de-
scribe an open search engine infrastructure TSUB-
AKI, which is one of the shared platforms devel-
oped in the Cyber Infrastructure for the Information-
explosion Era project. The overview of TSUBAKI is
depicted in Figure 1. TSUBAKI is built on a high-
performance computing environment consisting of
128 CPU cores and 100 tera-byte storages, and it
can provide users with search results retrieved from
approximately 100 million Japanese web pages.

The mission of TSUBAKI is to help the develop-
ment of new information access methodology which
solves the problems of conventional information ac-
cess methods. This is achieved by the following
TSUBAKI’s characteristics:

API without any restriction: TSUBAKI pro-
vides its API without any restrictions such as the
limited number of API calls a day and the number
of results returned from an API per query, which are
the typical restrictions of the existing search engine
APIs. Consequently, TSUBAKI API users can de-
velop systems that handle a large number of web
pages. This feature is important for dealing with the
Web that has the long tail aspect.

1http://i-explosion.ex.nii.ac.jp/i-explosion/ctr.php/m/Inde-
xEng/a/Index/

�����������	
�����������

��������
��
�������
�

�
�
���������

����������
��	�������
��
����������

������������

�

��
���������

���������

 ������

��
�����

Figure 1: An overview of TSUBAKI.

Transparent and reproducible search results:
TSUBAKI makes public not only its ranking mea-
sure but also its source codes, and also provides re-
producible search results by fixing a crawled web
page collection. Because of this, TSUBAKI keeps
its architecture transparency, and systems using the
API can always obtain previously-produced search
results.

Web standard format for sharing pre-processed
web pages: TSUBAKI converts a crawled web
page into a web standard format data. The web stan-
dard format is a data format used in TSUBAKI for
sharing pre-processed web pages. Section 2 presents
the web standard format in detail.

Indices generated by deep NLP: TSUBAKI in-
dexes all crawled web pages by not only words but
also dependency relations for retrieving web pages
according to the meaning of their contents. The in-
dex data in TSUBAKI are described in Section 3.

This paper is organized as follows. Section 2 de-
scribes web standard format, and Section 3 shows
TSUBAKI’s index data and its search algorithm.
Section 4 presents TSUBAKI API and gives exam-
ples of how to use the API. Section 5 shows related
work.

2 Sharing of Pre-processed Web Pages on
a Large Scale

Web page processing on a large scale is a dif-
ficult task because the task generally requires a

190

high-performance computing environment (Kawa-
hara and Kurohashi, 2006) and not everybody can
use such environment. Sharing of large scale pre-
processed web pages is necessary for eliminating the
gap yielded by large data processing capabilities.

TSUBAKI makes it possible to share pre-
processed large scale web pages through the API.
TSUBAKI API provides not only cached original
web pages (i.e., 100 million pages) but also pre-
processed web pages. As pre-processed data of
web pages, the results of commonly performed pro-
cessing for web pages, including sentence bound-
ary detection, morphological analysis and parsing,
are provided. This allows API users to begin their
own processing immediately without extracting sen-
tences from web pages and analyzing them by them-
selves.

In the remainder of this section, we describe a
web standard format used in TSUBAKI for sharing
pre-processed web pages and construction of a large
scale web standard format data collection.

2.1 Web Standard Format

The web standard format is a simple XML-styled
data format in which meta-information and text-
information of a web page can be annotated. The
meta-information consists of a title, in-links and out-
links of a web page and the text-information consists
of sentences extracted from the web page and their
analyzed results by existing NLP tools.

An example of a web standard format data is
shown in Figure 2. Extracted sentences are enclosed
by <RawString> tags, and the analyzed results
of the sentences are enclosed by <Annotation>
tags. Sentences in a web page and their analyzed re-
sults can be obtained by looking at these tags in the
standard format data corresponding to the page.

2.2 Construction of Web Standard Format
Data Collection

We have crawled 218 million web pages over three
months, May - July in 2007, by using the Shim-
Crawler,2 and then converted these pages into web
standard format data with results of a Japanese
parser, KNP (Kurohashi and Nagao, 1994), through
our conversion tools. Note that this web page collec-

2http://www.logos.t.u-tokyo.ac.jp/crawler/

<?xml version="1.0" encoding="UTF-8"?>
<StandardFormat
Url="http://www.kantei.go.jp/jp/koizumiprofile/1_sin
nen.html" OriginalEncoding="Shift_JIS" Time="2006-08
-14 19:48:51"><Text Type="default">
<S Id="1" Length="70" Offset="525">

<RawString>小泉総理の好きな格言のひとつに「無信不立 (信無く
ば立たず)」があります。</RawString>

<Annotation Scheme="KNP">
<![CDATA[* 1D <文頭><サ変><人名><助詞><連体修飾><体

言><係:ノ格><区切:0-4><RID:1056>
小泉 こいずみ 小泉 名詞 6 人名 5 * 0 * 0 NIL <文頭><漢字><
かな漢字><名詞相当語><自立><タグ単位始><文節始><固有キー>
...
ます ます ます 接尾辞 14 動詞性接尾辞 7 動詞性接尾辞ます
型 31 基本形 2 NIL <表現文末><かな漢字><ひらがな><活用語><
付属><非独立無意味接尾辞>
。 。 。 特殊 1 句点 1 * 0 * 0 NIL <文末><記号><付属>

EOS]]>
</Annotation>

</S>
...
</Text>
</StandardFormat>

Figure 2: An example of web standard format data
with results of the Japanese parser KNP.

tion consists of pages written not only in Japanese
but also in other languages.

The web pages in the collection are converted into
the standard format data according to the following
four steps:

Step 1: Extract Japanese web pages from a given
page collection.

Step 2: Detect Japanese sentence boundaries in the
extracted web pages.

Step 3: Analyze the Japanese sentences by the NLP
tools.

Step 4: Generate standard format data from the ex-
tracted sentences and their analyzed results.

We followed the procedure proposed in Kawahara
and Kurohashi (2006) for Steps 1 and 2.

The web pages were processed by a grid comput-
ing environment that consists of 640 CPU cores and
640 GB main memory in total. It took two weeks to
finish the conversion. As a result, 100 million web
standard format data were obtained. In other words,
the remaining 118 million web pages were regarded
as non-Japanese pages by our tools.

The comparison between original web pages and
the standard format data corresponding to these
pages in terms of file size are shown in Table 1. We

191

Table 1: File size comparison between original web
pages and standard format data (The number of web
pages is 100 millions, and both the page sets are
compressed by gzip.)

Document set File size [TB]
Original web pages 0.6

Standard format styled data 3.1

can see that the file size of the web standard format
data is over five times bigger than that of the original
web pages.

3 Search Engine TSUBAKI

In this section, we describe the indices and search
algorithm used in TSUBAKI.

3.1 Indices in TSUBAKI

TSUBAKI has indexed 100 million Japanese web
pages described in Section 2.2. Inverted index data
were created by both words and dependency rela-
tions. Note that the index data are constructed from
parsing results in the standard format data.

3.1.1 Word Index
Handling of synonymous expressions is a cru-

cial problem in IR. Especially, since Japanese uses
three kinds of alphabets, Hiragana, Katakana and
Kanji, spelling variation is a big obstacle. For exam-
ple, the word “child” can be represented by at least
three spellings “こども”, “子ども” and “子供” in
Japanese. Although these spellings mean child, ex-
isting search engines handle them in totally different
manner. Handling of spelling variations is important
for improving search engine performance.

To handle spelling variations properly, TSUBAKI
exploits results of JUMAN (Kurohashi et al., 1994),
a Japanese morphological analyzer. JUMAN seg-
ments a sentence into words, and gives represen-
tative forms of the words simultaneously. For ex-
ample, JUMAN gives us “子供” as a representative
form of the words “こども”, “子ども” and “子供.”
TSUBAKI indexes web pages by word representa-
tive forms. This allows us to retrieve web pages that
include different spellings of the queries.

TSUBAKI also indexes word positions for pro-
viding search methods such as an exact phrase
search. A word position reflects the number of

words appearing before the word in a web page. For
example, if a page contains N words, the word ap-
pearing in the beginning of the page and the last
word are assigned 0 and N − 1 as their positions
respectively.

3.1.2 Dependency Relation Index
The understanding of web page contents is crucial

for obtaining necessary information from the Web.
The word frequency and link structure have been
used as clues for conventional web page retrieval.
These clues, however, are not sufficient to under-
stand web page’s contents. We believe that other
clues such as parsing results of web page contents
are needed for the understanding.

Let us consider the following two sentences:

S1: Japan exports automobiles to Germany.
S2: Germany exports automobiles to Japan.

Although the above sentences have different mean-
ings, they consist of the same words. This means
that a word index alone can never distinguish the se-
mantic difference between these sentences.

On the other hand, syntactic parsers can produce
different dependency relations for each sentence.
Thus, the difference between these sentences can
be grasped by looking at their dependency relations.
We expect that dependency relations work as effi-
cient clues for understanding web page contents.

As a first step toward web page retrieval consid-
ering the meaning of web page contents, TSUBAKI
indexes web pages by not only words but also de-
pendency relations. An index of the dependency re-
lation between A and B is represented by the notation
A→ B, which means A modifies B. For instance, the
dependency relation indices Japan→ export, auto-
mobile → export, to → export, and Germany → to
are generated from the sentence S1.

3.1.3 Construction of Index data
We have constructed word and dependency rela-

tion indices from a web standard format data collec-
tion described in Section 2.2. The file size of the
constructed indices are shown in Table 2. We can
see that the file size of the word index is larger than
that of dependency relation. This is because that the
word index includes all position for all word index
expression.

192

Table 2: File sizes of the word and dependency
relation indices constructed from 100 million web
pages.

Index type File size [TB]
Word 1.17

Dependency relation 0.89

Table 3: Comparison with index data of TSUBAKI
and the Apache Lucene in terms of index data size
(The number of web pages is a million.)

Search engine File size [GB]
TSUBAKI (words) 12.0

TSUBAKI (dependency relations) 9.1
Apache Lucene 4.7

Moreover, we have compared index data con-
structed by TSUBAKI and the Apache Lucene,3 an
open source information retrieval library, in terms
of the file size. We first selected a million web
pages from among 100 million pages, and then in-
dexed them by using the indexer of TSUBAKI and
that of the Lucene.4 While TSUBAKI’s indexer
indexed web pages by the both words and depen-
dency relations, the Lucene’s indexer indexed pages
by only words. The comparison result is listed in
Table 3. We can see that the word index data con-
structed by TSUBAKI indexer is larger than that of
the Lucene. But, the file size of the TSUBAKI’s in-
dex data can be made smaller because the TSUB-
AKI indexer does not optimize the constructed index
data.

3.2 Search Algorithm
TSUBAKI is run on a load balance server, four mas-
ter servers and 27 search servers. Word and depen-
dency relation indices generated from 100 million
web pages are divided into 100 pieces respectively,
and each piece is allocated to the search servers. In
short, each search server has the word and depen-
dency relation indices generated from at most four
million pages.

The procedure for retrieving web pages is shown
in Figure 3. Each search server calculates rele-
vance scores between a user’s query and each doc-

3http://lucene.apache.org/java/docs/index.html
4We used the Lucene 2.0 for Japanese which is available

from https://sen.dev.java.net/servlets/ProjectDocumentList?
folderID=755&ex pandFolder=755&folderID=0

Step 1: The load balance server forwards user’s query Q
to the most unoccupied master server.

Step 2: The master server extracts the set of index ex-
pressions q from the given query Q, and transmits
the set of q and search conditions such as a logical
operator (i.e., AND/OR) between words in Q to 27
search servers.

Step 3: The search server retrieves web pages according
to the set of q and search conditions by using word
and dependency relation indices.

Step 4: The search server calculates a relevance score
for each retrieved document, and then returns the
documents with their scores to the master server.

Step 5: The master server sorts the returned documents
according to their calculated scores.

Step 6: The top M documents are presented to the user
as a search result.

Figure 3: The search procedure of TSUBAKI.
(Steps 3 and 4 are performed in parallel.)

ument that matches the query. We used the sum
of OKAPI BM25 (Robertson et al., 1992) scores
over index expressions in the query as the relevance
score. The relevance score scorerel is defined as:

scorerel (Q, d) =
∑
q∈Q

BM25 (q, d)

BM25 (q, d) = w × (k1 + 1)fq
K + fq

× (k3 + 1)qfq
k3 + qfq

w = log
N − n + 0.5

n + 0.5
,K = k1((1 − b) + b

l

lave
)

where q is an index expression extracted from the
query Q, fq is the frequency of the expression q in a
document d, qfq is the frequency of q in Q, and N is
the total number of crawled web pages. TSUBAKI
used 1.0 × 108 as N . n is the document frequency
of q in 100 million pages, l is the document length
of d (we used the number of words in the document
d), and lave is the average document length over all
the pages. In addition to them, the parameters of
OKAPI BM25, k1,k3 and b were set to 2, 0 and 0.75,
respectively.

Consider the expression “global warming’s ef-
fect” as a user’s query Q. The extracted index ex-
pressions from Q are shown in Figure 4. Each search
server calculates a BM25 score for each index ex-
pression (i.e., effect, global, . . . , global→ warm),
and sums up the calculated scores.

Note that BM25 scores of dependency relations
are larger than those of single words because the

193

Word index: effect, global, warm,

Dependency relation index: global → warm, warm →
effect

Figure 4: The index expressions extracted from the
query “global warming’s effect.”

document frequencies of dependency relations are
relatively smaller than those of single words. Con-
sequently, TSUBAKI naturally gives high score val-
ues to web pages that include the same dependency
relations as the one included in the given query.

4 TSUBAKI API

As mentioned before, TSUBAKI provides the API
without any restriction. The API can be queried by
“REST (Fielding, 2000)-Like” operators in the same
way of Yahoo! API. TSUBAKI API users can obtain
search results through HTTP requests with URL-
encoded parameters. Examples of the available re-
quest parameters are listed in Table 4. The sample
request using the parameters is below:

Case 1: Get the search result ranked at top 20 with
snippets for the search query “京都 (Kyoto)”.
http://tsubaki.ixnlp.nii.ac.jp/api.cgi?query=%E4
%BA%AC%E9%83%BD&starts=1&results=20

TSUBAKI API returns an XML document in Fig-
ure 5 for the above request. The result includes a
given query, a hitcount, the IDs of web pages that
match the given query, the calculated scores and oth-
ers. The page IDs in the result enable API users
to obtain cached web pages and web standard for-
mat data. An example request for obtaining the web
standard format data with document ID 01234567 is
below.

Case 2: Get web standard format data with the doc-
ument ID 01234567.
http://tsubaki.ixnlp.nii.ac.jp/api.cgi?id=01234-
567&format=xml

The hitcounts of words are frequently exploited
in NLP tasks. For example, Turney (Turney, 2001)
proposed a method that calculates semantic similar-
ities between two words according to their hitcounts
obtained from an existing search engine. Although
TSUBAKI API users can obtain a query’s hitcount

Table 4: The request parameters of TSUBAKI API.

Parameter Value Description
query string The query to search for (UTF-

8 encoded). The query param-
eter is required for obtaining
search results．

start integer:
default 1

The starting result position to
return.

results integer:
default 20

The number of results to re-
turn.

logical operator AND/OR:
default AND

The logical operation to
search for.

dpnd 0/1: default 1 Specifies whether to use de-
pendency relations as clues for
document retrieving. Set to 1
to use dependency relations.

only hitcounts 0/1: default 0 Set to 1 to obtain a query’s hit-
count only.

snippets 0/1: default 0 Set to 1 to obtain snippets.
id string The document ID to obtain

a cached web page or stan-
dard format data correspond-
ing to the ID. This parameter
is required for obtaining web
pages or standard format data.

format html/xml The document type to return.
This parameter is required if
the parameter id is set.

from a search result shown in Figure 5, TSUBAKI
API provides an access method for directly obtain-
ing query’s hitcount. The API users can obtain only
a hitcount according to the following HTTP request.

Case 3: Get the hitcount of the query “京都 (Ky-
oto)”
http://tsubaki.ixnlp.nii.ac.jp/api.cgi?
query=%E4%BA%AC%E9%83%BD&
only hitcounts=1

In this case, the response of the API is a plain-text
data indicating the query’s hitcount.

5 Related Work

As mentioned before, existing search engine APIs
such as Google API are insufficient for infrastruc-
tures to help the development of new IR method-
ology, since they have some restrictions such as a
limited number of API calls a day. The differences
between TSUBAKI API and existing search engine
APIs are summarized in Table 5. Other than access
restrictions, the serious problem of these APIs is that
they cannot always reproduce previously-provided

194

<ResultSet time="2007-10-15 14:27:01" query="京都" totalResultsAvailable="4721570" totalResultsReturned="20"
firstResultPosition="1" logicalOperator="AND" forceDpnd="0" dpnd="1" filterSimpages="1">

<Result Rank="1" Id="017307147" Score="8.87700">
<Title>ＪＴＢ　ｅ－Ｈｏｔｅｌの京都府のホテル・旅館一覧</Title>
<Url>http://www.docch.net/blog/jtb-e/kyouto.shtml</Url>
<Snippet/>
<Cache>

<Url>http://tsubaki.ixnlp.nii.ac.jp/index.cgi?URL=INDEX_DIR/h017/h01730/017307147.html&KEYS=%E4%BA%
AC%E9%83%BD</Url>

<Size>2900</Size>
</Cache>

</Result>
...
</ResultSet>

Figure 5: An example of a search result returned from TSUBAKI API.

search results because their indices are updated fre-
quently. Because of this, it is difficult to precisely
compare between systems using search results ob-
tained on different days. Moreover, private search
algorithms are also the problem since API users can-
not know what goes on in searching web pages.
Therefore, it is difficult to precisely assess the con-
tribution of the user’s proposed method as long as
the method uses the existing APIs.

Open source projects with respect to search en-
gines such as the Apache Lucene and the Rast5 can
be also regarded as related work. Although these
projects develop an open search engine module, they
do not operate web search engines. This is different
from our study. The comparison between TSUBAKI
and open source projects with respect to indexing
and ranking measure are listed in Table 6.

The Search Wikia project6 has the similar goal to
one of our goals. The goal of this project is to cre-
ate an open search engine enabling us to know how
the system and the algorithm operate. However, the
algorithm of the search engine in this project is not
made public at this time.

The Web Laboratory project (Arms et al., 2006)
also has the similar goal to ours. This project aims at
developing an infrastructure to access the snapshots
of the Web taken by the Internet Archive.7 Currently
the pilot version of the infrastructure is released.
The released infrastructure, however, allows users to
access only the web pages in the Amazon.com Web
site. Therefore, TSUBAKI is different from the in-
frastructure of the Web Laboratory project in terms

5http://projects.netlab.jp/rast/
6http://search.wikia.com/wiki/Search Wikia
7http://www.archive.org/index.php

Table 5: The differences between TSUBAKI API
and existing search engine APIs.

Features Google Yahoo! TSUBAKI
of API calls a day 1,000 50,000 unlimited
of URLs in a search result 1,000 1,000 unlimited
Providing cached pages Yes Yes Yes
Providing processed pages No No Yes
Updating indices Yes Yes No

Table 6: Comparison with indexing and ranking
measure.

Search Engine Indexing Ranking Measure
TSUBAKI word, dependency

relation
OKAPI BM25

Apache Lucene character bi-gram,
word

TF·IDF

RAST character bi-gram,
word

TF·IDF

of the scale of a used web page collection.

6 Conclusion

We have described TSUBAKI, an open search en-
gine infrastructure for developing new information
access methodology. Its major characteristics are:

• the API without any restriction,

• transparent and reproducible search results,

• Web standard format for sharing pre-processed
web pages and

• indices generated by deep NLP.

TSUBAKI provides not only web pages retrieved
from 100 million Japanese pages according to a
user’s query but also pre-processed large scale web

195

pages produced by using a high-performance com-
puting environment.

On the TSUBAKI infrastructure, we are develop-
ing a new information access method that organizes
retrieved web pages in a search result into clusters of
pages that have relevance to each other. We believe
that this method gives us more flexible information
access than existing search methods.

Furthermore, we are building on the TSUBAKI
infrastructure a common evaluation environment to
evolve IR methodology. Such an environment is
necessary to easily evaluate novel IR methodology,
such as a new ranking measure, on a huge-scale web
collection.

Our future work is to handle synonymous expres-
sions such as “car” and “automobile.” Handling
synonymous expressions is important for improving
the performance of search engines. The evaluation
of TSUBAKI’s performance is necessary, which is
also our future work.

References
Wiiliam Y. Arms, Selcuk Aya, Pavel Dmitriev, Blazej J.

Kot, Ruth Mitchell, and Lucia Walle. 2006. Building
a research library for the history of the web. In Pro-
ceedings of the Joint Conference on Digital Libraries,
June 2006, pages 95–102.

Roy Thomas Fielding. 2000. Architectural Styles and
the Design of Network-based Software Architectures.
Ph.D. thesis, University of California, Irvine.

Kenji Kaneda, Kenjiro Taura, and Akinori Yonezawa.
2002. Virtual private grid: A command shell for uti-
lizing hundreds of machines efficiently. In In 2nd
IEEE/ACM International Symposium on Cluster Com-
puting and the Grid (CCGrid 2002).

Daisuke Kawahara and Sadao Kurohashi. 2006.
Case frame compilation from the web using high-
performance computing. In Proceedings of the 5th
International Conference on Language Resources and
Evaluation (LREC2006), pages 1344–1347.

Sadao Kurohashi and Makoto Nagao. 1994. A syntactic
analysis method of long japanese sentences based on
the detection of conjunctive structures. Computational
Linguistics, (4):507–534.

Sadao Kurohashi, Toshihisa Nakamura, Yuji Matsumoto,
and Makoto Nagao. 1994. Improvements of japanese
morphological analyzer juman. In The International
Workshop on Sharable Natural Language, pages 22 –
28.

Stephen E. Robertson, Steve Walker, Micheline
Hancock-Beaulieu, Aarron Gull, and Marianna Lau.
1992. Okapi at TREC. In Text REtrieval Conference,
pages 21–30.

The Delphi Group White Paper. 2001.
Connecting to your knowledge nuggets.
http://www.delphiweb.com/knowle-
dgebase/documents/upload/pdf/1802.pdf.

Peter Turney. 2001. Mining the web for synonyms: Pmi-
ir versus lsa on toefl. In Proceedings of the Twelfth
European Conference on Machine Learning (ECML-
2001), pages 491–502.

University of California. 2003.
How much information? 2003.
http://www2.sims.berkeley.edu/research/projects/how-
much-info-2003/.

196

