
UCSG: A Wide Coverage Shallow Parsing System

G. Bharadwaja Kumar and Kavi Narayana Murthy

Department of Computer and Information Sciences

University of Hyderabad

g vijayabharadwaj@yahoo.com, knmuh@yahoo.com

Abstract

In this paper, we propose an architecture,
called UCSG Shallow Parsing Architecture,
for building wide coverage shallow parsers by
using a judicious combination of linguistic
and statistical techniques without need for
large amount of parsed training corpus to
start with. We only need a large POS tagged
corpus. A parsed corpus can be developed
using the architecture with minimal manual
effort, and such a corpus can be used for
evaluation as also for performance improve-
ment. The UCSG architecture is designed to
be extended into a full parsing system but
the current work is limited to chunking and
obtaining appropriate chunk sequences for a
given sentence. In the UCSG architecture, a
Finite State Grammar is designed to accept
all possible chunks, referred to as word
groups here. A separate statistical compo-
nent, encoded in HMMs (Hidden Markov
Model), has been used to rate and rank the
word groups so produced. Note that we are
not pruning, we are only rating and ranking
the word groups already obtained. Then we
use a Best First Search strategy to produce
parse outputs in best first order, without
compromising on the ability to produce all
possible parses in principle. We propose a
bootstrapping strategy for improving HMM
parameters and hence the performance of
the parser as a whole.

A wide coverage shallow parser has been
implemented for English starting from the
British National Corpus, a nearly 100 Mil-
lion word POS tagged corpus. Note that the
corpus is not a parsed corpus. Also, there
are tagging errors, multiple tags assigned in
many cases, and some words have not been

tagged. A dictionary of 138,000 words with
frequency counts for each word in each tag
has been built. Extensive experiments have
been carried out to evaluate the performance
of the various modules. We work with large
data sets and performance obtained is
encouraging. A manually checked parsed
corpus of 4000 sentences has also been
developed and used to improve the parsing
performance further. The entire system has
been implemented in Perl under Linux.

Key Words:- Chunking, Shallow Parsing,
Finite State Grammar, HMM, Best First
Search

1 Introduction

In recent times, there has been an increasing interest
in wide coverage and robust but shallow parsing
systems. Shallow parsing is the task of recovering
only a limited amount of syntactic information from
natural language sentences. Often shallow parsing is
restricted to finding phrases in sentences, in which
case it is also called chunking. Steve Abney (Abney,
1991) has described chunking as finding syntactically

related non-overlapping groups of words. In CoNLL
chunking task (Tjong Kim Sang and Buchholz,
2000) chunking was defined as the task of divid-

ing a text into syntactically non-overlapping phrases.

Most of the shallow parsers and chunkers de-
scribed in literature (Tjong Kim Sang and Buchholz,
2000; Carreras and Marquez, 2003; Dejean, 2002;
Molina and Pla, 2002; Osborne, 2002; Sang, 2002;
Abney, 1996; Grefenstette, 1996; Roche, 1997)
have used either only rule based techniques or only
machine learning techniques. Hand-crafting rules in
the linguistic approach can be very laborious and
time consuming. Parsers tend to produce a large
number of possible parse outputs and in the absence

72



of suitable rating and ranking mechanisms, selecting
the right parse can be very difficult. Statistical
learning systems, on the other hand, require large
and representative parsed corpora for training, and
such training corpora are not always available.
Perhaps only a good combination of linguistic and
statistical approaches can give us the best results
with minimal effort.

Other important observations from literature that
motivated the present work are: 1) Most chunking
systems have so far been tested only on small scale
data 2) Good performance has been obtained only
under restricted conditions 3) Performance is often
evaluated in terms of individual chunks rather than
complete chunk sequences for a whole sentence, and
4) Many chunkers produce only one output, not all
possible outputs in some ranked order.

2 UCSG Shallow Parsing

Architecture

UCSG shallow parsing architecture is set within
the UCSG full parsing framework for parsing nat-
ural language sentences which was initiated in the
early 1990’s at University of Hyderabad by Kavi
Narayana Murthy (Murthy, 1995). In this paper,
the focus is only on chunking - identifying chunks or
word groups, handling ambiguities, and producing
parses (chunk sequences) for given sentences. This
can be extended to include thematic role assignment
and clause structure analysis leading towards a full
parser. Figure 1 shows the basic UCSG Shallow
Parsing Architecture (Kumar and Murthy, 2006).

Figure 1: UCSG Shallow Parsing Architecture

The input to the parsing system is one sentence,
either plain or POS tagged. Output is an ordered
set of parses. Here by parse we mean a sequence
of chunks that covers the given sentence with no
overlaps or gaps. The aim is to produce all possible
parses in ranked order hoping to get the best parse
to the top.

A chunk or a “word group” as we prefer to call it
in UCSG, is “a structural unit, a non-overlapping
and non-recursive sequence of words, that can as
a whole, play a role in some predication” (Murthy,
1995). Note that word groups do not include clauses
(relative clauses, for example) or whole sentences.
Every word group has a head which defines the
type of the group. These word groups thus seem
to be similar to chunks as generally understood
(Molina and Pla, 2002; Sang and Buchholz, 2000;
Megyesi, 2002). However, chunks in UCSG are
required to correspond to thematic roles, which
means for example, that prepositional phrases are
handled properly. Many chunkers do not even build
prepositional phrases - prepositions are treated as
individual chunks in their own right. Thematic roles
can be viewed from question-answering perspective.
For example, in the sentence ’I teach at University

of Hyderabad’, ’at University of Hyderabad’ answers
the ’where’ question and should therefore be treated
as a single chunk. It is well known that prepositional
phrase attachment is a hard problem and the task
we have set for ourselves here is thus significantly
more challenging. The parse outputs in UCSG
would be more semantic and hence should be better
suited for many NLP applications.

In UCSG, a Finite State Grammar-Parser system
generates all possible chunks in linear time. Chunk
level HMMs are then used to rate and rank the
chunks so produced. Finally, a kind of best first
search strategy is applied to obtain chunk sequences
hopefully in best first order. The aim is to develop
wide coverage, robust parsing systems without
need for a large scale parsed corpus to start with.
Only a large POS tagged corpus is needed and a
parsed corpus can be generated from within the
architecture with minimal manual effort. Such a
parsed corpus can be used for evaluation as also for
further performance improvements.

We will need a dictionary which includes the fre-
quency of occurrence of each word in each possible
tag. Such a dictionary can be developed using a large
POS tagged corpus.

73



2.1 Finite State Grammar-Parser

Here the task is only to recognize chunks and
not produce a detailed description of the internal
structure of chunks. Also, chunks by definition are
non-recursive in nature, only linear order, repetition
and optional items need to be considered. Finite
state grammars efficiently capture linear precedence,
repetition and optional occurrence of words in
word groups. Finite state machines are thus both
necessary and sufficient for recognizing word groups
(Murthy, 1995). It is also well known that Finite
State Machines are computationally efficient - linear
time algorithms exist for recognizing word groups.
All possible word groups can be obtained in a single
left-to-right scan of the given sentence in linear time
(Murthy, 1995). Finite state grammars are also
conceptually simple and easy to develop and test.

The Finite State module accepts a sentence (ei-
ther already POS tagged or tagged with all possible
categories using the dictionary) and produces an un-
ordered set of possible chunks taking into account all
lexical ambiguities.

2.2 HMMs for Rating and Ranking Chunks

The second module is a set of Hidden Markov
Models (HMMs) used for rating and ranking the
word groups already produced by the Finite State
Grammar-Parser. The hope is to get the best
chunks near the top. This way, we are not pruning
and yet we can hope to get the right chunks near
the top and push down the others.

Words are observation symbols and POS tags
are states in our HMMs. Formally, a HMM model
λ = (π, A, B) for a given chunk type can be de-
scribed as follows:

Number of States (N) = number of relevant POS
Categories

Number of Observation Symbols (M) = number of
Words of relevant categories in the language

The initial state probability

πi = P{q1 = i} (1)

where 1 ≤ i ≤ N , q1 is a category (state) starting a
particular word group type.

State transition probability

aij = P{qt+1 = j|qt = i} (2)

where 1 ≤ i, j ≤ N and qt denotes the category at
time t and qt+1 denotes the category at time t+1.

Observation or emission probability

bj(k) = P{ot = vk|qt = j} (3)

where 1 ≤ j ≤ N , 1 ≤ k ≤ M and vk denotes the
kth word, and qt the current state.

We first pass a large POS tagged corpus through
the Finite State module and obtain all possible
chunks. Taking these chunks to be equi-probable,
we estimate the HMM parameters by taking the
ratios of frequency counts. One HMM is developed
for each major category of chunks, say, one for
noun-groups, one for verb-groups, and so on. The B
matrix values are estimated from a dictionary that
includes frequency counts for each word in every
possible category. These initial models of HMMs
are later refined using a bootstrapping technique as
described later.

We simply estimate the probability of each chunk
using the following equation :

P (O, Q|λ) = πq1
bq1

(o1)aq1,q2
bq2

(o2)aq2,q3
· · ·

aqt−1,qt
bqt

(ot)

where q1 ,q2, · · ·, qt is a state sequence, o1 , o2,· · ·,
ot is an observation sequence. Note that no Viterbi
search involved here and the state sequence is also
known. Thus even Forward/Backward algorithm
is not required and rating the chunks is therefore
computationally efficient.

The aim here is to assign the highest rank for the
correct chunk and to push down other chunks. Since
a final parse is a sequence of chunks that covers the
given sentence with no overlaps or gaps, we evaluate
the alternatives at each position in the sentence in a
left-to-right manner.

Here, we use Mean Rank Score to evaluate the per-
formance of the HMMs. Mean Rank Score is the
mean of the distribution of ranks of correct chunks
produced for a given training corpus. Ideally, all cor-
rect chunks would be at the top and hence the score
would be 1. The aim is to get a Mean Rank Score as
close to 1 as possible.

2.3 Parse Generation and Ranking

Parsing is a computationally complex task and
generating all possible parses may be practically
difficult. That is why, a generate-and-test approach

74



where we first generate all possible parses and
then look for the correct parse among the parses
produced is impracticable. Simply producing all
or some parses in some random or arbitrary order
is also not of much practical use. Many chunkers
produce a single output which may or may not
be correct. Here we instead propose a best first
strategy wherein the very production of possible
parses is in best first order and so, hopefully, we
will get the correct parse within the top few and in
practice we need not actually generate all possible
parses at all. This way, we overcome the problems
of computational complexity and at the same time
avoid the risk of missing the correct parse if pruning
is resorted to. Performance can be measured not
only in terms of percentage of input sentences for
which a fully correct parse is produced but also in
terms of the rank of the correct parse in the top k
parses produced, for any chosen value of k.

It may be noted that although we have already
rated and ranked the chunks, simply choosing the
locally best chunks at each position in a given
sentence does not necessarily give us the best parse
(chunk sequence) in all cases. Hence, we have
mapped our parse selection problem into a graph
search problem and used best first search algorithm
to get the best parse for a given sentence.

Words and chunks in a sentence are referred to in
terms of the positions they occupy in the sentence.
Positions are marked between words, starting from
zero to the left of the first word. The positions in
the sentence are treated as nodes of the resulting
graph. If a sentence contains N words then the
graph contains N + 1 nodes corresponding to the
N + 1 positions in the sentence. Word group Wi,j is
represented as an edge form node i to node j. We
thus have a lattice structure. The cost of a given
edge is estimated from the probabilities given by
the HMMs. If and where a parsed training corpus is
available, we can also use the transition probability
from previous word group type to current word
group type. It is possible to use the system itself to
parse sentences and from that produce a manually
checked parsed corpus with minimal human effort.
We always start from the initial node 0. N is the
goal node. Now our parse selection problem for a
sentence containing N words becomes the task of
finding an optimal (lowest cost) path from node 0
to node N .

We use the standard best first search algorithm.
In best first search, we can inspect all the currently-

available nodes, rank them on the basis of our par-
tial knowledge and select the most promising of the
nodes. We then expand the chosen node to gener-
ate it successors. The worst case complexity of best
first search algorithm is exponential: O(bm), where
b is the branching factor (i.e., the average number of
nodes added to the open list at each level), and m is
the maximum length of any path in the search space.
As an example, a 40 word sentence has been shown
to produce more than 1015 different parses (Kumar,
2007). In practice, however, we are usually interested
in only the top k parses for some k and exhaustive
search is not called for.

2.4 Bootstrapping

The HMM parameters can be refined through boot-
strapping. We work with large data sets running
into many hundreds of thousands of sentences and
Baum-Welch parameter re-estimation would not be
very practical. Instead, we use parsed outputs to re-
build HMMs. By parsing a given sentence using the
system and taking the top few parses only as train-
ing data, we can re-build HMMs that will hopefully
be better. We can also simply use the top-ranked
chunks for re-building the HMMs. This would re-
duce the proportion of invalid chunks in the training
data and hence hopefully result in better HMM pa-
rameters. As can be seen from the results in the next
section, this idea actually works and we can signif-
icantly improve the HMM parameters and improve
parser performance as well.

3 Experiments and Results

The entire parsing system has been implemented in
Perl under Linux. Extensive experimentation has
been carried out to evaluate the performance of the
system. However, direct comparisons with other
chunkers and parsers are not feasible as the architec-
tures are quite different. All the experiments have
been carried out on a system with Pentium Core 2
DUO 1.86 GHz Processor and 1 GB RAM. Tran-
scripts from the implemented system have been in-
cluded in the next section.

3.1 Dictionary

We have developed a dictionary of 138,000 words in-
cluding frequency of occurrence for each tag for each
word. The dictionary includes derived words but not
inflected forms. The dictionary has been built from
the British National Corpus(BNC) (Burnard, 2000),
an English text corpus of about 100 Million words.
Closed class words have been manually checked. The
dictionary has a coverage of 98% on the BNC corpus
itself, 86% on the Reuters News Corpus (Rose et

75



al., 2002) (about 180 Million words in size), 96.36%
on the Susanne parsed corpus (Sampson, 1995) and
95.27% on the Link parser dictionary.

3.2 Sentence Boundary Detection

We have developed a sentence segmentation module
using the BNC corpus as training data. We have
used delimiter, prefix, suffix and after-word as fea-
tures and extracted patterns from the BNC corpus.
Decision Tree algorithms have been used and an av-
erage F-Measure of 98.70% has been obtained, com-
parable to other published results. See (Htay et al.,
2006) for more details.

3.3 Tag Set

We have studied various tag sets including BNC C5,
BNC C7, Susanne and Penn Tree Bank tag sets.
Since our work is based on BNC 1996 edition with
C5 tag set, we have used C5 tag set and made some
extensions as required. We now have a total of 71
tags in our extended tag set (Kumar, 2007).

3.4 Manually Parsed Corpus

We have developed a manually checked parsed
corpus of 4000 sentences, covering a wide variety of
sentence structures. Of these, 1000 sentences have
been randomly selected from the BNC corpus, 1065
sentences from ‘Guide to Patterns and Usage in
English’ (Hornby, 1975) and 1935 sentences from
the CoNLL-2000 test data. This corpus is thus very
useful for evaluating the various modules of the
parsing architecture and also for bootstrapping.

This corpus was developed by parsing the sen-
tences using this UCSG shallow parser itself and then
manually checking the top parse and making correc-
tions where required. Our experience shows that this
way we can build manually checked parsed corpora
with minimal human effort.

3.5 Tagging

If a POS tagger is available, we can POS tag the
input sentences before sending them to the parser.
Otherwise, all possible tags from the dictionary may
be considered. In our work here, we have not used
any POS tagger. All possible tags are assigned from
our dictionary and a few major rules of inflectional
morphology of English, including plurals for nouns,
past tense, gerundial and participial forms of verbs
and degrees of comparison for adjectives are handled.
Unresolved words are assigned NP0 (Proper Name)
tag.

3.6 Finite State Grammar

We have developed a Finite State Grammar for
identifying English word groups. The Finite State
Machine has a total of 50 states of which 24 are final
states. See (Kumar, 2007) for further details.

The UCSG Finite State Grammar recognizes
verb-groups, noun-groups, adverbial-groups,
adjective-groups, to-infinitives, coordinate and
subordinate conjunctions. There are no separate
prepositional phrases - prepositions are treated as
surface case markers in UCSG - their primary role
is to indicate the relationships between chunks and
the thematic roles taken up by various noun groups.
Prepositional groups are therefore treated on par
with noun groups.

We have evaluated the performance of the FSM
module on various corpora - Susanne Parsed Corpus,
CoNLL 2000 test data set and on our manually
parsed corpus of 4000 sentences. The evaluation
criteria is Recall (the percentage of correct chunks
recognized) alone since the aim here is only to
include the correct chunks. We have achieved a high
recall of 99.5% on manually parsed corpus, 95.06%
on CoNLL test data and 88.02% on Susanne corpus.

The reason for the relatively low Recall on the Su-
sanne corpus is because of the variations in the def-
inition of phrases in Susanne corpus. For example,
Susanne corpus includes relative clauses into noun
groups. The reasons for failures on CoNLL test data
have been traced mainly to missing dictionary en-
tries and inability of the current system to handle
multi-token adverbs.

3.7 Building and Refining HMMs

HMMs were initially developed from 3.7 Million
POS-tagged sentences taken from the BNC corpus.
Sentences with more than 40 words were excluded.
Since we use an extended C5 tag set, POS tags had
to be mapped to the extended set where necessary.
HMM parameters were estimated from the chunks
produced by the Finite State grammar, taking all
chunks to be equi-probable. Separate HMMs were
built for noun groups, verb groups, adjective groups,
adverb groups, infinitive groups and one HMM for
all other chunk types.

The chunks produced by the FSM are ranked using
these HMMs. It is interesting to observe the Recall
and Mean Rank Score within the top k ranks, where
k is a given cutoff rank. Table 1 shows that there is
a clear tendency for the correct chunks to bubble up

76



close to the top. For example, more than 95% of the
correct chunks were found within the top 5 ranks.

Table 1: Performance of the HMM Module on the
Manually Parsed Corpus of 4000 sentences

Plain POS Tagged
Cut- Mean Cumulative Mean Cumulative
-off Rank Recall (%) Rank Recall (%)
1 1 43.06 1 62.74
2 1.38 69.50 1.28 86.97
3 1.67 84.72 1.43 95.64
4 1.85 91.69 1.50 98.31
5 1.96 95.13 1.54 99.25

We have also carried out some experiments to see
the effect of the size of training data used to build
HMMs. We have found that as we use more and
more training data, the HMM performance improves
significantly, clearly showing the need for working
with very large data sets. See (Kumar, 2007) for
more details.

3.7.1 Bootstrapping

To prove the bootstrapping hypothesis, we have
carried out several experiments. Plain text sentences
from BNC corpus, 5 to 20 words in length, have been
used. All possible chunks are obtained using the Fi-
nite State Grammar-Parser and HMMs built from
these chunks. In one experiment, only the chunks
rated highest by these very HMMs are taken as train-
ing data for bootstrapping. In a second experiment,
best first search is also carried out and chunks from
the top ranked parse alone are taken for bootstrap-
ping. In a third experiment, data from these two
sources have been combined. Best results were ob-
tained when the chunks from the top parse alone
were used for bootstrapping. Table 2 shows the ef-
fect of bootstrapping on the HMM module for plain
sentences.

Table 2: Effect of Bootstrapping: on 4000 sentences
from Manually Parsed Corpus containing a total of
27703 chunks

Cutoff Iteration-1 Iteration-2
Recall Mean Recall Mean

Rank Rank

1 45.52 1.0 47.25 1.0
2 71.43 1.36 72.81 1.35
3 85.22 1.63 85.95 1.60
4 91.75 1.80 92.20 1.77
5 94.94 1.90 95.30 1.87

It may be observed that both the Recall and Mean
Rank Scores have improved. Our experiments show
that there is also some improvement in the final parse
when the HMMs obtained through bootstrapping are
used. These observations, seen consistently for both
plain and POS tagged sentences, show the effective-
ness of the overall idea.

3.8 Parse Generation and Ranking

It may be noted that in principle the performance
of the parser in terms of its ability to produce the
correct parse is limited only by the Finite State
Grammar and the dictionary, since the other mod-
ules in the UCSG architecture do not resort to any
pruning. However, in practical usage we generally
impose a time limit or a cutoff and attempt to
produce only the top k parses. In this latter case,
the percentage of cases where the fully correct
parse is included would be a relevant performance
indicator. Percentage of correct chunks in the top
parse is another useful indicator.

When tested on untagged sentences, on the 1065
linguistically rich sentence corpus forming part of
the manually checked parsed corpus developed by
us, the parser could generate fully correct parse
within the top 5 parses in 930 cases, that is, 87.32%
of the cases. In 683 cases the correct parse was
the top parse, 146 correct parses were found in
position 2, 56 in position 3, 29 in position 4 and
16 in position 5. Thus the mean rank of the
correct parses is 1.44. There is a clear tendency
for the correct parses to appear close to the top,
thereby verifying the best first strategy. If top 10
parses are generated, correct parse is obtained in
52 more cases and the Mean Rank Score goes to 1.75.

We give below the performance on the whole of
our 4000 strong manually checked corpus. Plain sen-
tences and POS tagged sentences have been tested
separately. The results are summarized in table 3.
Here, we have restricted the parsing time taken by
the best first search algorithm to 3 epoch seconds for
each sentence.

77



Table 3: Performance of the Best First Search Mod-
ule - Test Data of 4000 Sentences

Rank
No. of Correct Parses

(Plain) (POS tagged)
1 1210 2193
2 352 495
3 157 164
4 83 129
5 68 91

% of Correct 46.75 76.80
Parses in Top 5
% of Correct 83.92 88.26
Chunks in
Best Parse

In about 77% of the cases, the fully correct parse
is found within the top 5 parses when the input
sentences are POS tagged. Given the nature of
chunks produced in UCSG, this is quite encouraging.
In fact the top parse is nearly correct in many cases.
Further experiments and manual evaluations are
planned.

We have also observed that 96.01% of the words
are assigned correct POS tags in the top parse. We
observe that most of the times the top parse given
by the parse generation module is almost correct.

Chunkers are usually evaluated just for the per-
centage of correct chunks they produce. We have
placed greater demands on ourselves and we expect
our parser to produce optimal chunk sequence for
the whole sentence. Further, we produce all (or top
few) combinations and that too in hopefully a best
first order. Also, the very nature of chunks in UCSG
makes the task more challenging. More over, we have
used a fairly fine grained tag set with more than 70
tags. The data we have started with, namely the
BNC POS tagged corpus, is far from perfect. Given
these factors, the performance we are able to achieve
both in terms of percentage of correct chunks in the
top parse and rank of the fully correct parse is very
encouraging.

4 Transcripts:

Here we give the actual transcripts from the system.
For want of space, only a very simple example has
been included. Stars have been added in the begin-
ning of lines containing correct alternatives.

Input: I am studying at University of Hyderabad.

Tags from the Dictionary: <PNN_CRD><i>##<VBB><am>##<VVG>
<studying>##<PRN_PRP_AVP><at>##<NN1><university>

##<PRN_PRF_AVP><of>##<NP0><Hyderabad>##

Chunks Recognized by the FSM:
<ng><0-1><CRD><i>

<ajg><0-1><CRD><i>
*<ng><0-1><PNN><i>

<vg><1-2><VBB><am>
*<vg><1-3><VBB><am>##<VVG><studying>
<vg><1-4><VBB><am>##<VVG><studying>##<AVP><at>

<vgs><2-3><VVG><studying>
<ng><2-3><VVG><studying>

<ajg><2-3><VVG><studying>
<vgs><2-4><VVG><studying>##<AVP><at>
<ng><2-5><VVG><studying>##<PRP><at>##<NN1><university>

<ng><2-7><VVG><studying>##<PRP><at>##<NN1><university>
##<PRF><of>##<NP0><hyderabad>

<part><3-4><AVP><at>
<ng><3-5><PRP><at>##<NN1><university>

*<ng><3-7><PRP><at>##<NN1><university>##<PRF><of>##
<NP0><hyderabad>

<ng><4-5><NN1><university>

<ng><4-7><NN1><university>##<PRF><of>##<NP0><hyderabad>
<part><5-6><AVP><of>

<ng><5-7><PRF><of>##<NP0><hyderabad>
<ng><6-7><NP0><hyderabad>

Ranking by HMMs:
*<ng><0-1><PNN><i><-3.2491231040407><1><3><1>

<ng><0-1><CRD><i><-9.56376400947296><2><3><1>
<ajg><0-1><CRD><i><-36.8109739544272><3><3><1>

<vg><1-2><VBB><am><-7.27367328109116><1><3><2>
*<vg><1-3><VBB><am>##<VVG><studying><-15.945895214915>

<2><3><2>

<vg><1-4><VBB><am>##<VVG><studying>##<AVP><at>
<-25.5608664628101><3><3><2>

<vgs><2-3><VVG><studying><-10.5328994260119><1><6><3>
<ng><2-3><VVG><studying><-12.7929752284183><2><6><3>
<vgs><2-4><VVG><studying>##<AVP><at><-20.147870673907>

<3><6><3>
<ng><2-5><VVG><studying>##<PRP><at>##<NN1><university>

<-30.3473074722636><4><6><3>
<ajg><2-3><VVG><studying><-32.767076078699><5><6><3>

<ng><2-7><VVG><studying>##<PRP><at>##<NN1><university>##
<PRF><of>##<NP0><hyderabad><-35.1643970692879><6><6><3>

<part><3-4><AVP><at><-7.99897865005313><1><3><4>

<ng><3-5><PRP><at>##<NN1><university><-15.7772256956695>
<2><3><4>

*<ng><3-7><PRP><at>##<NN1><university>##<PRF><of>##<NP0>
<hyderabad><-20.5943152926938><3><3><4>

<ng><4-5><NN1><university><-13.2259579687766><1><2><5>

<ng><4-7><NN1><university>##<PRF><of>##<NP0><hyderabad>
<-18.0430475658009><2><2><5>

<part><5-6><AVP><of><-3.87313237166961><1><2><6>
<ng><5-7><PRF><of>##<NP0><hyderabad><-19.0843146188301>

<2><2><6>
<ng><6-7><NP0><hyderabad><-3.43828759462479><1><1><7>

Final Parse:

*<ng>[<PNN><i>]</ng> <vg>[<VBB><am>##<VVG><studying>]</vg>
<ng>[<PRP><at>##<NN1><university>##<PRF><of>##<NP0>
<hyderabad>]</ng> -- -41.2629507152745

<ng>[<PNN><i>]</ng> <vg>[<VBB><am>]</vg> <ng>[<VVG>

<studying>]</ng><ng>[<PRP><at>##<NN1><university>##<PRF>
<of>##<NP0><hyderabad>]</ng> -- -46.7375549370651

<ng>[<PNN><i>]</ng> <vg>[<VBB><am>]</vg> <ng>[<VVG>
<studying>##<PRP><at>##<NN1><university>##<PRF><of>##

<NP0><hyderabad>]</ng> -- -47.1608105580448

<ng>[<CRD><i>]</ng> <vg>[<VBB><am>##<VVG><studying>]</vg>
<ng>[<PRP><at>##<NN1><university>##<PRF><of>##<NP0>

<hyderabad>]</ng> -- -47.5775916207068

<ng>[<PNN><i>]</ng> <vg>[<VBB><am>##<VVG><studying>##

<AVP><at>]</vg><ng>[<NN1><university>##<PRF><of>##
<NP0><hyderabad>]</ng> -- -48.3266542362767

78



5 Conclusions:

A hybrid architecture for developing wide coverage
shallow parsing systems, without need for a large
scale parsed corpus to start with, has been proposed
and its effectiveness demonstrated by developing a
wide coverage shallow parser for English. The sys-
tem has been built and tested on very large data sets,
covering a wide variety of texts, giving us confidence
that the system will perform well on new, unseen
texts. The system is general and not domain spe-
cific, but we can adapt and fine tune for any specific
domain to achieve better performance. We are con-
fident that wide coverage and robust shallow parsing
systems can be developed using the UCSG architec-
ture for other languages of the world as well. We
plan to continue our work on English parsing while
we also start our work on Telugu.

References

Steven P. Abney. 1991. Parsing by Chunks. Kluwer,
Principle-Based Parsing: Computation and Psy-
cholinguistics edition.

Steven P. Abney. 1996. Partial Parsing via Finite-
State Cascades. In Workshop on Robust Parsing,
8th European Summer School in Logic, Language
and Information, pages 8–15, Prag.

L. Burnard. 2000. The Users’ Reference Guide for
the British National Corpus. Oxford University
Computing Services, Oxford.

Xavier Carreras and Lluys Marquez. 2003. Phrase
Recognition by Filtering and Ranking with Per-
ceptrons. In Proceedings of the International
Conference on Recent Advances in Natural Lan-
guage Processing, RANLP-2003, pages 127–132,
Borovets, Bulgaria.

Herve Dejean. 2002. Learning Rules and their Ex-
ceptions. In Journal of Machine Learning Re-
search, Volume 2, pages 669–693.

G. Grefenstette. 1996. Light Parsing as Finite State
Filtering. In Workshop on Extended Finite State
Models of Language, Budapest, Hungary.

A. S. Hornby. 1975. Guide to Patterns and Usage in
English. Oxford University Press.

Hla Hla Htay, G. Bharadwaja Kumar, and
Kavi Narayana Murthy. 2006. Constructing
English-Myanmar Parallel Corpora. In Proceed-
ings of Fourth International Conference on Com-
puter Applications, pages 231–238, Yangon, Myan-
mar.

G Bharadwaja Kumar and Kavi Narayana Murthy.
2006. UCSG Shallow Parser. Proceedings of CI-
CLING 2006, LNCS, 3878:156–167.

G. Bharadwaja Kumar. 2007. UCSG Shallow
Parser: A Hybrid Architecture for a Wide Cover-
age Natural Language Parsing System. Phd thesis,
University of Hyderabad.

B Megyesi. 2002. Shallow Parsing with PoS Taggers
and Linguistic Features. In Journal of Machine
Learning Research, Volume 2, pages 639–668.

Antonio Molina and Ferran Pla. 2002. Shallow Pars-
ing using Specialized HMMs. In Journal of Ma-
chine Learning Research, Volume 2, pages 595–
613.

Kavi Narayana Murthy. 1995. Universal Clause
Structure Grammar. Phd thesis, University of Hy-
derabad.

Miles Osborne. 2002. Shallow Parsing using Noisy
and Non-Stationary Training Material. In Journal
of Machine Learning Research, Volume 2, pages
695–719.

E. Roche. 1997. Parsing with Finite State Transduc-
ers. MIT Press, finite-State Language Processing
edition.

T.G. Rose, M. Stevenson, and M. Whitehead. 2002.
The Reuters Corpus Volume 1 - from Yesterday’s
News to Tomorrow’s Language Resources. In Pro-
ceedings of the Third International Conference on
Language Resources and Evaluation, Las Palmas
de Gran Canaria.

Geoffrey Sampson. 1995. English for the Computer.
Clarendon Press (The Scholarly Imprint of Oxford
University Press).

E. F. Tjong Kim Sang and S. Buchholz. 2000. Intro-
duction to the CoNLL-2000 Shared Task: Chunk-
ing. In Proceedings of CoNLL-2000 and LLL-2000,
pages 127–132, Lisbon, Portugal.

Erik F. Tjong Kim Sang. 2002. Memory-Based Shal-
low Parsing. In Journal of Machine Learning Re-
search, Volume 2, pages 559–594.

Erik F. Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the CoNLL-2000 Shared Task:
Chunking. In Claire Cardie, Walter Daelemans,
Claire Nedellec, and Erik Tjong Kim Sang, edi-
tors, Proceedings of CoNLL-2000 and LLL-2000,
pages 127–132. Lisbon, Portugal.

79




