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Abstract

We present a technique for refining a base-
line segmentation and generating a plausible
underlying morpheme segmentation by inte-
grating hand-written rewrite rules into an ex-
isting state-of-the-art unsupervised morpho-
logical induction procedure. Performance on
measures which consider surface-boundary
accuracy and underlying morpheme consis-
tency indicates this technique leads to im-
provements over baseline segmentations for
English and Turkish word lists.

1 Introduction

1.1 Unsupervised Morphological Induction

The primary goal of unsupervised morphological in-
duction (UMI) is the simultaneous induction of a
reasonable morphological lexicon as well as an op-
timal segmentation of a corpus of words, given that
lexicon. The majority of existing approaches em-
ploy statistical modeling towards this goal, but dif-
fer with respect to how they learn or refine the mor-
phological lexicon. While some approaches involve
lexical priors, either internally motivated or moti-
vated by the minimal description length (MDL) cri-
terion, some utilize heuristics. Pure maximum like-
lihood (ML) approaches may refine the lexicon with
heuristics in lieu of explicit priors (Creutz and La-
gus, 2004), or not make categorical refinements at all
concerning which morphs are included, only proba-
bilistic refinements through a hierarchical EM pro-
cedure (Peng and Schuurmans, 2001). Approaches
that optimize the lexicon with respect to priors come
in several flavors. There are basic maximum a priori
(MAP) approaches that try to maximize the proba-
bility of the lexicon against linguistically motivated
priors (Deligne and Bimbot, 1997; Snover and Brent,
2001; Creutz and Lagus, 2005). An alternative to

MAP, MDL approaches use their own set of pri-
ors motivated by complexity theory. These studies
attempt to minimize lexicon complexity (bit-length
in crude MDL) while simultaneously minimizing the
complexity (by maximizing the probability) of the
corpus given the lexicon (de Marcken, 1996; Gold-
smith, 2001; Creutz and Lagus, 2002).
Many of the approaches mentioned above utilize a

simplistic unigram model of morphology to produce
the segmentation of the corpus given the lexicon.
Substrings in the lexicon are proposed as morphs
within a word based on frequency alone, indepen-
dently of phrase-, word- and morph-surroundings (de
Marcken, 1996; Peng and Schuurmans, 2001; Creutz
and Lagus, 2002). There are many approaches,
however, which further constrain the segmentation
procedure. The work by Creutz and Lagus (2004;
2005; 2006) constrains segmentation by accounting
for morphotactics, first assigning mophotactic cate-
gories (prefix, suffix, and stem) to baseline morphs,
and then seeding and refining an HMM using those
category assignments. Other more structured mod-
els include Goldsmith’s (2001) work which, instead
of inducing morphemes, induces morphological sig-
natures like {ø, s, ed, ing} for English regular verbs.
Some techniques constrain possible analyses by em-
ploying approximations for morphological meaning
or usage to prevent false derivations (like singed =
sing + ed). There is work by Schone and Juraf-
sky (2000; 2001) where meaning is proxied by word-
and morph-context, condensed via LSA. Yarowsky
and Wicentowski (2000) and Yarowsky et al. (2001)
use expectations on relative frequency of aligned
inflected-word, stem pairs, as well as POS context
features, both of which approximate some sort of
meaning.

1.2 Allomorphy in UMI

Allomorphy, or allomorphic variation, is the process
by which a morpheme varies (orthographically or

17



phonologically) in particular contexts, as constrained
by a grammar.1 To our knowledge, there is only
handful of work within UMI attempting to integrate
allomorphy into morpheme discovery. A notable ap-
proach is the Wordframe model developed by Wi-
centowski (2002), which performs weighted edits on
root-forms, given context, as part of a larger similar-
ity alignment model for discovering <inflected-form,
root-form> pairs.
Morphological complexity is fixed by a template;

the original was designed for inflectional morpholo-
gies and thus constrained to finding an optional affix
on either side of a stem. Such a template would
be difficult to design for agglutinative morphologies
like Turkish or Finnish, where stems are regularly in-
flected by chains of affixes. Still, it can be extended.
A notable recent extension accounts for phenomena
like infixation and reduplication in Filipino (Cheng
and See, 2006).
In terms of allomorphy, the approach succeeds

at generalizing allomorphic patterns, both stem-
internally and at points of affixation. A major draw-
back is that, so far, it does not account for affix allo-
morphy involving character replacement–that is, be-
yond point-of-affixation epentheses or deletions.

1.3 Our Approach

Our approach aims to integrate a rule-based com-
ponent consisting of hand-written rewrite rules into
an otherwise unsupervised morphological induction
procedure in order to refine the segmentations it pro-
duces.

1.3.1 Context-Sensitive Rewrite Rules
The major contribution of this work is a rule-

based component which enables simple encoding of
context-sensitive rewrite rules for the analysis of in-
duced morphs into plausible underlying morphemes.2
A rule has the form general form:

α
underlying

→ β
surface

/ γ
l. context

_ δ
r. context

(1)

It is also known as a SPE-style rewrite rule, part
of the formal apparatus to introduced by Chom-
sky and Halle (1968) to account for regularities in
phonology. Here we use it to describe orthographic

1In this work we focus on orthographic allomorphy.
2Ordered rewrite rules, when restricted from applying

to their own output, have similar expressive capabilities
to Koskenniemi’s two-level constraints. Both define regu-
lar relations on strings, both can be compiled into lexical
transducers, and both have been used in finite-state ana-
lyzers (Karttunen and Beesley, 2001). We choose ordered
rules because they are easier to write given our task and
resources.

patterns. Mapping morphemes to underlying forms
with context-sensitive rewrite rules allows us to peer
through the fragmentation created by allomorphic
variation. Our experiments will show that this
has the effect of allowing for more unified, consis-
tent morphemes while simultaneously making sur-
face boundaries more transparent.
For example, take the English multipurpose inflec-

tional suffix ·s, normally written as ·s, but as ·es after
sibilants (s,sh, ch, . . . ). We can write the following
SPE-style rule to account for its variation.

ø
underlying

→ e
surface

/ [+SIB] + _s (2)

This rule says, “Insert an e (map nothing to e) fol-
lowing a character marked as a sibilant (+SIB) and
a morphological boundary (+), at the focus position
(_), immediately preceding an s.” In short, it en-
ables the mapping of the underlying form ·s to ·es
by inserting an e before s where appropriate. When
this rule is reversed to produce underlying analyses,
the ·es variant in such words as glasses, matches,
swishes, and buzzes can be identified with the ·s vari-
ant in words like plots, sits, quakes, and nips.

1.3.2 Overview of Procedure
Before the start of the procedure, there is a pre-

processing step to derive an initial segmentation.
This segmentation is fed to the EM Stage, the goal

of which is to find the maximum probability seg-
mentation of a wordlist into underlying morphemes.
First, analyses of initial segments are produced by
rule. Then, their frequency is used to determine their
likelihood as underlying morphemes. Finally, proba-
bility of a segmentation into underlying morphemes
is maximized.
The output segmentation feeds into the Split

Stage, where heuristics are used to split large, high-
frequency segments that fail to break into smaller
underlying morphemes during the EM algorithm.

2 Procedure

A flowchart of the procedure is given in Figure 1.

Preprocessing We use the Categories-MAP algo-
rithm developed by Creutz and Lagus (2005; 2006)
to produce an initial morphological segmentation.
Here, a segmentation is optimized by maximum a
posteriori estimate given priors on length, frequency,
and usage of morphs stored in the model. Their
procedure begins with morphological tags indicating
basic morphotactics (prefix, stem, suffix, noise) be-
ing assigned heuristically to a baseline segmentation.
That tag assignment is then used to seed an HMM.
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Figure 1: Flowchart showing the entire procedure.

Optimal segmentation of a word is simultaneously
the best tag and morph3 sequence given that word.
The contents of the model are optimized with respect
to length, frequency, and usage priors during split-
ting and joining phases. The final output is a tagged
segmentation of the input word-list.

2.1 EM Stage

The model we train is a modified version of the
morphological HMM from the work of Creutz and
Lagus (2004-2006), where a word w consists of a
sequence of morphs generated by a morphological-
category tag sequence. The difference between their
HMM and ours is that theirs emits surface morphs,
while ours emits underlying morphemes. Morphemes
may either be analyses proposed by rule or surface
morphs acting as morphemes. We do not modify the
tags Creutz and Lagus use (prefix, stem, suffix, and
noise).
We proceed by EM, initialized by the preprocessed

segmentation. Rule-generated underlying analyses
are produced (Step 1), and used to estimate the emis-
sion probability P (ui|ti) and transition probability
P (ti|ti−1) (Step 2). In successive E-steps, Steps 1
and 2 are repeated. The M-step (Step 3) involves
finding the maximum probability decoding of each
word according to Eq (6), i.e. maximum probability
tag and morpheme sequence.

Step 1 - Derive Underlying Analyses In this
step, handwritten context-sensitive rewrite rules de-
rive context-relevant analyses for morphs in the pre-
processed segmentation. These analyses are pro-
duced by a set of ordered rules that propose dele-

3A morph is a linguistic morpheme as it occurs in
production, i.e. as it occurs in a surface word.

tions, insertions, or substitutions when triggered by
the proper characters around a segmentation bound-
ary.4 A rule applies wherever contextually triggered,
from left to right, and may apply more than once
to the same word. To prevent the runaway appli-
cation of certain rules, a rule may not apply to its
own output. The result of applying a rule is a (pos-
sibly spelling-changed) segmented word, which is fed
to the next rule. This enables multi-step analyses by
using rules designed specifically to apply to the out-
puts of other rules. See Figure 2 for a small example.

Step 2 - Estimate HMM Probabilities Tran-
sition probabilities P (ti|ti−1) are estimated by max-
imum likelihood, given a tagged input segmentation.
Emission probabilities P (ui|ti) are also estimated

by maximum likelihood, but the situation is slightly
more complex; the probability of morphemes ui are
estimated according to frequencies of association
(coindexation) with surface morphs si and tags ti.
Furthermore an underlying morpheme ui can ei-

ther be identical to its associated surface morph si

when no rules apply, or be a rule-generated analysis.
For the sake of clarity, we call the former u′i and the
latter u′′i , as defined below:

ui =
{

u′i if ui = si

u′′i otherwise

When an underlying morpheme ui is associated to
a surface morph s, we refer to s as an allomorph of

4Some special substitution rules, like vowel harmony
in Turkish and Finnish, have a spreading effect, mov-
ing from syllable to syllable within and beyond morph-
boundaries. In our formulation, these rules differ from
other rules by not being conditioned on a morph-
boundary.
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city  +   s glass  +   s

seat  +  s citi  +  es glass  +  es
STM STM STMSUF SUF SUF

Underlying Analyses

Surface Segmentation

Tags

ø→e / [+VWL] + _s ø→e / [+SIB] + _sApplicable Rule(s) y→i / _ + [+ANY]

Features:
VWL = vowel
ANY = any char.
SIB = sibilant 
{s,sh,ch,...}seat  +  s

Figure 2: Underlying analyses for a segmentation are generated by passing it through context-sensitive
rewrite rules. Rules apply to some morphs (e.g., citi→ city) but not to others (e.g., glass→ glass).

ui. The probability of ui given tag ti is calculated by
summing over all allomorphs s of ui the probability
that ui realizes s in the context of tag ti:

P (ui|ti) =
∑

s∈allom.-of(ui)

P (ui, s|ti) (3)

=
∑

s∈allom.-of(ui)

P (ui|s, ti)P (s|ti) (4)

Both Eq (3) and Eq (4) are trivial to estimate
with counting on our input from Step 1 (see Figure
2). We show (4) because it has the term P (ui|s, ti),
which may be used for thresholding and discounting
terms of the sum where ui is rarely associated with
a particular allomorph and tag. In the future, such
discounting may be useful to filter out noise gener-
ated by noisy or permissive rules. So far, this type
of discounting has not improved results.

Step 3 - Resegment Word List Next we reseg-
ment the word list into underlying morphemes.
Searching for the best breakdown of a word w into

morpheme sequence u and tag sequence t, we maxi-
mize the probability of the following formula:

P (w,u, t) = P (w|u, t)P (u, t)
= P (w|u, t)P (u|t)P (t) (5)

To simplify, we assume that P (w|u, t) is equal to
one.5 With this assumption in mind, Eq (5) reduces
to P (u|t)P (t). With independence assumptions and
a local time horizon, we estimate:

argmax
u,t

P (u|t)P (t)

≈ argmax
u,t

[ n∏
i=1

P (ui|ti)P (ti|ti−1)
]

(6)

5In other words, we make the assumption that a se-
quence of underlying morphemes and tags corresponds
to just one word. This assumption may need revision in
cases where morphemes can optionally undergo the types
of spelling changes we are trying to encode; this has not
been the case for the languages under investigation.

The search for the maximum probability tag and
morph sequence in Eq (6) is carried out by a modi-
fied version of the Viterbi algorithm. The maximum
probability segmentation for a given word may be a
mixture of both types of underlying morpheme, u′i
and u′′i . Also, wherever we have a choice between
emitting u′i, identical to the surface form, or u′′i ,
an analysis with rule-proposed changes, the highest
probability of the two is always selected.

2.2 Split Stage
Many times, large morphs have substructure and
yet are too frequent to be split when segmented by
the HMM in the EM Stage. To overcome this, we
approximately follow the heuristic procedure6 laid
out by Creutz and Lagus (2004), encouraging split-
ting of larger morphs into smaller underlying mor-
phemes. This process has the danger of introducing
many false analyses, so first the segmentation must
be re-tagged (Step 4) to identify which morphemes
are noise and should not be used. Once we re-tag, we
re-analyze morphs in the surface segmentation (Step
5) and re-estimate HMM probabilities (Step 6). (for
Steps 5 and 6, refer to Steps 1 and 2). Finally, we
use these HMM probabilities to split morphs (Step
7).

Step 4 - Re-tag the Segmentation To iden-
tify noise morphemes, we estimate a distribution
P (CAT |ui) for three true categories CAT (prefix,
stem, or suffix) and one noise category; we then as-
sign categories randomly according to this distribu-
tion. Stem probabilities are proportional to stem-
length, while affix probabilities are proportional to
left- or right- perplexity. The probability of true cat-
egories are also tied to the value of sigmoid-cutoff
parameters, the most important of which is b, which
thresholds the probability of both types of affix (pre-
fix and suffix).
The probability of the noise category is conversely

related to the product of true category probabilities;
6The main difference between our procedure and

Creutz and Lagus (2004) is that we allow splitting into
two or more morphemes (see Step 7) while they allow
binary splits only.
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when true categories are less probable, noise becomes
more probable. Thus, adjusting parameters like b
can increase or decrease the probability of noise.

Step 7 - Split Morphs In this step, we exam-
ine <morph, tag> pairs in the segmentation to see
if a split into sub-morphemes is warranted. We con-
strain this process by restricting splitting to stems
(with the option to split affixes), and by splitting
into restricted sequences of tags, particularly avoid-
ing noise. We also use parameter b in Step 4 as
a way to discourage excessive splitting by tagging
more morphemes as noise. Stems are split into the
sequence: (PRE∗ STM SUF∗). Affixes (prefixes and
suffixes) are split into other affixes of the same cat-
egory. Whether to split affixes depends on typolog-
ical properties of the language. If a language has
agglutinative suffixation, for example, we hand-set a
parameter to allow suffix-splitting.
When examining a morph for splitting, we search

over all segmentations with at least one split, and
choose the one that is both optimal according to Eq
(6) and does not violate our constraints on what cat-
egory sequences are allowed for its category. We end
this step by returning to the EM Stage, where an-
other cycle of EM is performed.

3 Experiments and Results

In this section we report and discuss development re-
sults for English and Turkish. We also report final-
test results for both languages. Results for the pre-
processed segmentation are consistently used as a
baseline. In order to isolate the effect of the rewrite
rules, we also compare against results taken on a
parallel set of experiments, run with all the same pa-
rameters but without rule-generated underlying mor-
phemes, i.e. without morphemes of type u′′i . But
before we get to these results, we will describe the
conditions of our experiments. First we introduce
the evaluation metrics and data used, and then de-
tail any parameters set during development.

3.1 Evaluation Metrics

We use two procedures for evaluation, described in
the Morpho Challenge ’05 and ’07 Competition Re-
ports (Kurimo et al., 2006; Kurimo et al., 2007).
Both procedures use gold-standards created with
commercially available morphological analyzers for
each language. Each procedure is associated with its
own F-score-based measure.
The first was used in Morpho Challenge ’05, and

measures the extent to which boundaries match be-
tween the surface-layer of our segmentations and
gold-standard surface segmentations.

The second was used in Morpho Challenge ’07
and measures the extent to which morphemes match
between the underlying-layer of our segmentations
and gold-standard underlying analyses. The F-score
here is not actually on matched morphemes, but in-
stead on matched morpheme-sharing word-pairs. A
point is given whenever a morpheme-sharing word-
pair in the gold-standard segmentation also shares
morphemes in the test segmentation (for recall), and
vice-versa for precision.

3.2 Data

Training Data The data-sets used for training
were provided by the Helsinki University of Technol-
ogy in advance of the Morpho Challenge ’07 and were
downloaded by the authors from the contest web-
site7. According to the website, they were compiled
from the University of Leipzig Wortschatz Corpora.

Sentences Tokens Types
English 3× 106 6.22× 107 3.85× 105

Turkish 1× 106 1.29× 107 6.17× 105

Table 1: Training corpus sizes vary slightly, with 3
million English sentences and 1 million Turkish sen-
tences.

Development Data The development gold-
standard for the surface metric was provided in
advance of Morpho Challenge ’05 and consists of
surface segmentations for 532 English and 774
Turkish words.
The development gold-standard for the underlying

metric was provided in advance of Morpho Challenge
’07 and consists of morphological analyses for 410
English and 593 Turkish words.

Test Data For final testing, we use the gold-
standard data reserved for final evaluation in the
Morpho Challenge ’07 contest. The gold-standard
consists of approximately 1.17 × 105 English and
3.87 × 105 Turkish analyzed words, roughly a tenth
the size of training word-lists. Word pairs that exist
in both the training and gold standard are used for
evaluation.

3.3 Parameters

There are two sets of parameters used in this exper-
iment. First, there are parameters used to produce
the initial segmentation. They were set as suggested
in Cruetz and Lagus (2005), with parameter b tuned
on development data.

7http://www.cis.hut.fi/morphochallenge2007/datasets.shtml
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Figure 3: Development results for the preprocessed initial segmentation (Baseline), and segmentations pro-
duced by our approach, first after the EM Stage (EM) and again after the Split Stage (SPL) with different
values of parameter b. Rules that generate underlying analyses have either been included (With Rules), or
left out (No Rules).

Then there are parameters used for the main pro-
cedure. Here we have rewrite rules, numerical pa-
rameters, and one typology parameter. Rewrite rules
and any orthographic features they use were culled
from linguistic literature. We currently have 6 rules
for English and 10 for Turkish; See Appendix A.1
for the full set of English rules used. Numerical pa-
rameters were set as suggested in Cruetz and Lagus
(2004), and following their lead we tuned b on devel-
opment data; we show development results for the
following values: b = 100, 300, and 500 (see Fig-
ure 3). Finally, as introduced in Section 2.2, we have
a hand-set typology parameter that allows us to split
prefixes or suffixes if the language has an aggluti-
native morphology. Since Turkish has agglutinative
suffixation, we set this parameter to split suffixes for
Turkish.

3.4 Development Results

Development results were obtained by evaluating En-
glish and Turkish segmentations at several stages,
and with several values of parameter b as shown in
Figure 3.
Overall, our development results were very pos-

itive. For the surface-level evaluation, the largest
F-score improvement was observed for English (Fig-
ure 3, Chart 1), 63.75% to 68.99%, a relative F-score
gain of 8.2% over the baseline segmentation. The

Turkish result also improves to a similar degree, but
it is only achieved after the model as been refined by
splitting. For English we observe the improvement
earlier, after the EM Stage. For the underlying-level
evaluation, the largest F-score improvement was ob-
served for Turkish (Chart 4), 31.37% to 54.86%, a
relative F-score gain of over 74%.
In most experiments with rules to generate under-

lying analyses (With Rules), the successive applica-
tions of EM and splitting result in improved results.
Without rule-generated forms (No Rules) the results
tend be negative compared to the baseline (see Fig-
ure 3, Chart 2), or mixed (Charts 1 and 4). When
we look at recall and precision numbers directly, we
observe that even without rules, the algorithm pro-
duces large recall boosts (especially after splitting).
However, these boosts are accompanied by precision
losses, which result in unchanged or lower F-scores.
The exception is the underlying-level evaluation

of English segmentations (Figure 3, Chart 3). Here
we observe a near-parity of F-score gains for seg-
mentations produced with and without underlying
morphemes derived by rule. One explanation is that
the English initial segmentation is conservative and
that coverage gains are the main reason for improved
English scores. Creutz and Lagus (2005) note that
the Morfessor EM approach often has better cover-
age than the MAP approach we use to produce the
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Hybrid:After Split
MC Morf. MC Top Baseline No Rules With Rules

English 47.17 60.81 47.04 57.35 59.78
Turkish 37.10 29.23 32.76 31.10 54.54

Table 2: Final test F-scores on the underlying morpheme measure used in Morpho Challenge ’07. MC Morf.
is Morfessor MAP, which was used as a reference method in the contest. MC Top is the top contestant.
For our hybrid approach, we show the F-score obtained with and without using rewrite rules. The splitting
parameter b was set to the best performing value seen in development evaluations (Tr. b = 100, En. b = 500).

initial segmentation. Also, in English, allomorphy is
not as extensive as in Turkish (see Chart 4) where
precision losses are greater without rules, i.e. when
not representing allomorphs by the same morpheme.

3.5 Final Test Results

Final test results, given in Table 2, are mixed. For
English, though we improve on our baseline and on
Morfessor MAP trained by Creutz and Lagus, we are
beaten by the top unsupervised Morpho Challenge
contestant, entered by Delphine Bernhard (2007).
Bernhard’s approach was purely unsupervised and
did not explicitly account for allomorphic phenom-
ena. There are several possible reasons why we were
not the top performer here. Our splitting constraint
for stems, which allows them to split into stems and
chains of affixes, is suited for agglutinative morpholo-
gies. It does not seem particularly well suited to En-
glish morphology. Our rewrite-rules might also be
improved. Finally, there may be other, more press-
ing barriers (besides allomorphy) to improving mor-
pheme induction in English, like ambiguity between
homographic morphemes.
For Turkish, the story is very different. We observe

our baseline segmentation going from 32.76% F-score
to 54.54% when re-segmented using rules, a relative
improvement of over 66%. Compared with the top
unsupervised approach, Creutz and Lagus’s Morfes-
sor MAP, our F-score improvement is over 48%. The
distance between our hybrid approach and unsuper-
vised approaches emphasizes the problem allomor-
phy can be for a language like Turkish. Turkish
inflectional suffixes, for instance, regularly undergo
multiple spelling-rules and can have 10 or more vari-
ant forms. Knowing that these variants are all one
morpheme makes a difference.

4 Conclusion

In this work we showed that we can use a small
amount of knowledge in the form of context-sensitive
rewrite rules to improve unsupervised segmentations
for Turkish and English. This improvement can be
quite large. On the morpheme-consistency measure

used in the last Morpho Challenge, we observed an
improvement of the Turkish segmentation of over
66% against the baseline, and 48% against the top-
of-the-line unsupervised approach.
Work in progress includes error analysis of the re-

sults to more closely examine the contribution of
each rule, as well as developing rule sets for addi-
tional languages. This will help highlight various as-
pects of the most beneficial rules.
There has been recent work on discovering allo-

morphic phenomena automatically (Dasgupta and
Ng, 2007; Demberg, 2007). It is hoped that our work
can inform these approaches, if only by showing what
variation is possible, and what is relevant to particu-
lar languages. For example, variation in inflectional
suffixes, driven by vowel harmony and other phenom-
ena, should be captured for a language like Turkish.
Future work involves attempting to learn broad-

coverage underlying morphology without the hand-
coded element of the current work. This might in-
volve employing aspects of the most beneficial rules
as variable features in rule-templates. It is hoped
that we can start to derive underlying morphemes
through processes (rules, constraints, etc) suggested
by these templates, and possibly learn instantiations
of templates from seed corpora.

A Appendix

A.1 Rules Used For English

e epenthesis before s suffix
ø →e / ..[+V] + _s
ø→e / ..[+SIB] + _s
long e deletion
e →ø / ..[+V][+C]_ + [+V]
change y to i before suffix
y →i / ..[+C] +? _ + [+ANY]
consonant gemination
ø →α[+STOP] / ..α[+STOP]_ + [+V]
ø →α[+STOP] / ..α[+STOP]_ + [+GLI]

Table 3: English Rules

23



A.2 Example Segmentations

Base EM SPL:b=300 SPL:b=500
happen s happen s happ e n s happen s
happier happier happi er happi er
happiest happiest happ i est happiest
happily happily happi ly happi ly
happiness happiness happi ness happiness

Table 4: Surface segmentations after preprocessing
(Base), EM Stage (EM), and Split Stage (SPL)

References

Delphine Bernhard. 2007. Simple morpheme label-
ing in unsupervised morpheme analysis. In Work-
ing Notes for the CLEF 2007 Workshop, Budapest,
Hungary.

Charibeth K. Cheng and Solomon L. See. 2006. The
revised wordframe model for the filipino language.
Journal of Research in Science, Computing and
Engineering.

Noam Chomsky and Morris Halle. 1968. The Sound
Pattern of English. Harper & Row, New York.

Mathias Creutz and Krista Lagus. 2002. Unsuper-
vised discovery of morphemes. In Proc. Work-
shop on Morphological and Phonological Learning
of ACL’02, pages 21–30, Philadelphia. Association
for Computational Linguistics.

Mathias Creutz and Krista Lagus. 2004. Induction
of a simple morphology for highly inflecting lan-
guages. In Proc. 7th Meeting of the ACL Special
Interest Group in Computational Phonology (SIG-
PHON), pages 43–51, Barcelona.

Mathias Creutz and Krista Lagus. 2005. Inducing
the morphological lexicon of a natural language
from unannotated text. In Proc. International and
Interdisciplinary Conference on Adaptive Knowl-
edge Representation and Reasoning (AKRR’05),
pages 106–113, Espoo, Finland.

Mathias Creutz and Krista Lagus. 2006. Morfessor
in the morpho challenge. In Proc. PASCAL Chal-
lenge Workshop on Unsupervised Segmentation of
Words into Morphemes, Venice, Italy.

Sajib Dasgupta and Vincent Ng. 2007. High perfor-
mance, language-independent morphological seg-
mentation. In Proc. NAACL’07.

Carl G. de Marcken. 1996. Unsupervised Language
Acquisition. Ph.D. thesis, Massachussetts Insti-
tute of Technology, Boston.

Sabine Deligne and Frédéric Bimbot. 1997. Inference
of variable-length linguistic and acoustic units by
multigrams. Speech Communication, 23:223–241.

Vera Demberg. 2007. A language-independent un-
supervised model for morphological segmentation.
In Proc. ACL’07.

John Goldsmith. 2001. Unsupervised learning of the
morphology of a natural language. Computational
Linguistics, 27.2:153–198.

Lauri Karttunen and Kenneth R. Beesley. 2001. A
short history of two-level morphology. In Proc.
ESSLLI 2001.

Mikko Kurimo, Mathias Creutz, Matti Varjokallio,
Ebru Arisoy, and Murat Saraçlar. 2006. Unsu-
pervised segmentation of words into morphemes –
Morpho Challenge 2005, an introduction and eval-
uation report. In Proc. PASCAL Challenge Work-
shop on Unsupervised Segmentation of Words into
Morphemes, Venice, Italy.

Mikko Kurimo, Mathias Creutz, and Matti Var-
jokallio. 2007. Unsupervised morpheme analysis
evaluation by a comparison to a linguistic gold
standard – Morpho Challenge 2007. In Working
Notes for the CLEF 2007 Workshop, Budapest,
Hungary.

Fuchun Peng and Dale Schuurmans. 2001. A hier-
archical em approach to word segmentation. In
Proc. 4th Intl. Conference on Intel. Data Analysis
(IDA), pages 238–247.

Patrick Schone and Daniel Jurafsky. 2000.
Knowledge-free induction of morphology using la-
tent semantic analysis. In Proc. CoNLL’00 and
LLL’00, pages 67–72, Lisbon.

Patrick Schone and Daniel Jurafsky. 2001.
Knowledge-free induction of inflectional morpholo-
gies. In Proc. NAACL’01, Pittsburgh.

Matthew G. Snover and Michael R. Brent. 2001.
A bayesian model for morpheme and paradigm
identification. In Proc. ACL’01, pages 482–490,
Toulouse, France.

Richard Wicentowski. 2002. Modeling and Learn-
ing Multilingual Inflectional Morphology in a Min-
imally Supervised Framework. Ph.D. thesis, Johns
Hopkins University, Baltimore, Maryland.

David Yarowsky and Richard Wicentowski. 2000.
Minimally supervised morphological analysis by
multimodal alignment. In Proc. ACL’00.

David Yarowsky, Grace Ngai, and Richard Wicen-
towski. 2001. Inducing multilingual text analysis
tools via robust projection accross aligned corpora.
In Proc. HLT’01, volume HLT 01, pages 161–168,
San Diego.

24




