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Abstract 

In the Chinese language, a verb may 
have its dependents on its left, right or on 
both sides. The ambiguity resolution of 
right-side dependencies is essential for de-
pendency parsing of sentences with two or 
more verbs. Previous works on shift-
reduce dependency parsers may not guar-
antee the connectivity of a dependency tree 
due to their weakness at resolving the 
right-side dependencies. This paper pro-
poses a two-phase shift-reduce dependency 
parser based on SVM learning. The left-
side dependents and right-side nominal de-
pendents are detected in Phase I, and right-
side verbal dependents are decided in 
Phase II. In experimental evaluation, our 
proposed method outperforms previous 
shift-reduce dependency parsers for the 
Chine language, showing improvement of 
dependency accuracy by 10.08%.  

1 Introduction 

Dependency parsing describes syntactic struc-
ture of a sentence in terms of links between in-
dividual words rather than constituency trees. 
The fundamental relation in dependency parsing 
is between head and dependent. Robinson[1] 
formulates four axioms to the well-formed de-
pendency structures, known as single headed, 
acyclic, connective and projective. 

In this paper, we present a dependency pars-
ing strategy that produces one dependency struc-
ture that satisfies all these constraints.  

This paper is organized as follows. Related 
works are introduced in section 2. In section 3, 
detailed analysis of the work of Nivre[2] and 
Yamada[3] are given. Then our parsing strategy 

is introduced. In section 4, experiments and re-
sults are delivered. Finally a conclusion will be 
given in section 5. 

2 Overview of Related Works 

Most nature language grammars tend to as-
sign many possible syntactic structures to the 
same input utterance. A parser should output a 
single analysis for each sentence. The task of 
selecting one single analysis for a given sen-
tence is known as disambiguation.  

Some of the parsing strategies first produce 
all possible trees for a sentence. The disam-
biguation work is done in the end by searching 
the most probable one through parsing tree for-
est. Statistical parsers employ probability as a 
disambiguation measure and output the tree with 
the highest probability[4,5]. However, in the 
work of Collins [6], 42% of the correct parse 
trees were not in the candidate pool of ~30-best 
parses. Disambiguation work by searching 
throughout the parsing tree forest has limitations. 

The alternative way is to disambiguate at each 
parsing step and output the parsing result deter-
ministically. Nivre[2] and Yamada[3] suggest a 
shift-reduce like dependency parsing strategy. In 
section 3.1 we give a detailed analysis of their 
approach.  

There are several approaches for dependency 
parsing on Chinese text. Ma[5] and Cheng[18] 
are examples of these approaches. The training 
and test set Ma[5] used, are not sufficient to 
prove the reliability of Ma’s[5] approach. On the 
frame of parsing Chinese with CFG, there are 
several approaches to apply the original English 
parsing strategies to Chinese [7,8,9]. The poten-
tial purposes of these works are to take advan-
tage of state-of-art English parsing strategy and 
to find a way to apply it to Chinese text. Due to 
the differences between Chinese and English, 

256



the performance of the system on Chinese is 
about 10% lower comparing the performance of 
the original system.  

3 Two-Phase Dependency Parsing 

3.1  Review of Previous Shift-Reduce Dependency 
Parsers 

Nivre[3] presented a shift-reduce dependency 
parsing algorithm which can parse in linear time. 
The Nivre’s parser was represented by a triples 
<S, I, A>, where S is a stack, I is a list of (re-
maining) input tokens, and A is the set of deter-
mined dependency relations. Nivre defined four 
transitions: Left-Arc, Right-Arc, Reduce, and 
Shift. If there is a dependency relation between 
the top word of the stack and the input word, 
according to the direction of the dependency arc, 
it can be either Left-Arc or Right-Arc. Otherwise, 
the transition can be either shift or reduce. If the 
head of the top word of the stack is already de-
termined, then the transition is reduce, otherwise 
shift. The action of each transition is shown in 
Fig.1. For details, please refer to Nivre[3,10]. 
Fig.2 gives an example1 of parsing a Chinese 
sentence using Nivre’s algorithm. 

Nivre’s[3,10] approach has several advan-
tages. First, the dependency structure produced 
by the algorithm is projective and acyclic[3]. 
Second, the algorithm performs very well for 
deciding short-distance dependences. Third, at 
each parsing step, all of the dependency rela-
tions on the left side of the input word are de-
termined. Also as the author emphasizes, the 
time complexity is linear.  

However, wrong decision of reduce transition, 
like early reduce, cause the word at the top of 
the stack loses the chance to be the head of oth-
ers. Some words lose the chance to be the head 
of other following words. As a result, the de-
pendents of this word will have a wrong head or 
may have no head. 

The parsing steps of a Chinese sentence using 
Nivre’s[3] algorithm are given in Fig.2. At step-
5 of Fig.2, after reduce, the top of the stack was 
popped. The algorithm doesn’t give a chance for 
the word 扩大 to be the head of other words. 
Therefore, word ‘引资’ cannot have word ‘扩
大’ as its head. In the final dependency tree of 
example-1 in Fig.2, the arc from 计划 to 引资 is 
wrong. Fig.3 gives the correct dependency tree. 
Here, 扩大 is the head of word 引资. 
                                                           
1 All the example sentences are from CTB. 

 
If there is a dependency relation between top.stack and input 

If the dependency relation is Left_arc 
   Insert (input, top.stack) pair into set A 
   pop(stack);   
Else  

   Insert (top.stack, input) pair  into set A 
   push(input);   

Else 
If the head of top of the stack is determined 
   pop(stack); 

    Else 
      push(input); 

Fig. 1. Transitions defined  by Nivre[3] 
 
这个 省     计划 扩大  招商         引资， 
This  province  plan extend  attract merchants  attract investments. 
The province plans to expand attracting merchants and investments. 
                           stack ,  input                      relation set A   
 
Step-0:     <nil,这个省计划扩大招商引资,{}> 

Step-1: S  <这个,省计划扩大招商引资,{}> 

Step-2: LA <省,计划扩大招商引资,{(省,这个)}> 

Step-3: LA <计划,扩大招商引资,{(省,这个),(计划,省)}> 

Step-4: RA <扩大 计划,招商引资,{(省,这个),(计划,省), 

(计划，扩大)}> 

Step-5: R <计划,招商引资,{(省,这个),(计划,省), 

(计划,扩大)}> 

Step-6: S <招商 计划,引资,{(省,这个),(计划,省), 

(计划,扩大)}> 

Step-7: LA <计划,引资,{(省,这个),(计划,省), 

(计划,扩大),(引资,招商)}> 

Step-8: LA <计划,nil,{(省,这个),(计划,省), 

(计划,扩大),(引资,招商),(计划，引资)}> 

The dependency structure of the output: 
 

 

这个 省     计划 扩大  招商         引资， 
 

S:Shift LA:Left-arc RA:Right-arc R:reduce 
Fig. 2.  Example-1: Parsing using Nivre’s algorithm 
 
 

 

这个 省     计划 扩大  招商         引资， 
Fig. 3. The correct parse tree of Example-1 
 

Fig.4. gives the parsing step of another example. 
As the final dependency tree in Fig.4 shows, 
there is no head for word 消息。After Step-5, 
the top of the stack is word 给 and input word is 
一 . There is no dependency relation between 
these two words. Since the head of the word 给 
is already determined in step-2，the next transi-
tion is R(educe). As a result, word 给 loses the 
chance to be the head of word 消息. So, there is 
no head assigned to word 消息 in Fig.4. There-
fore, Nivre’s algorithm causes some errors for 
determining the right-side dependents. 

Yamada’s[4] approach is similar to Nivre’s[3]. 

Reduce

shift

Right_arc

Left_arc 
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Yamada’s algorithm define three actions: left, 
right and shift, which were similar to those of 
Nivre’s. Yamada parsed a sentence by scanning 
the sentence word by word from left to right, 
during the meantime, left or right or shift actions 
were decided. For short dependents, Yamada’s 
algorithm can cope with it easily. For long de-
pendents, Yamada tried to solve by increasing 
the iteration of scanning the sentences. As Ya-
mada pointed out, ‘shift’ transition was executed 
for two kinds of structure. This may cause 
wrong decision while deciding the action of 
transition. Yamada tried to resolve it by looking 
ahead for more information on the right side of 
the target word.  

 
转达    给 教师们 一 件        令人欣喜 的 消息， 
declare to teachers a  piece      exciting   of  news. 
Declare a piece of exciting news to teachers. 
… … … 
Step-2 : S  <转达，给教师们一件令人欣喜的消息,{}> 

Step-3 : RA <给，教师们一件令人欣喜的消息,{(转达,给)}>

Step-4 : RA <教师们，一件令人欣喜的消息,{(转达,给), 

(给,教师们)}> 

Step-5 : R <给，一件令人欣喜的消息,{(转达,给), 

(给,教师们)}> 

Step-6 : R <转达，一件令人欣喜的消息,{(转达,给), 

(给,教师们)}> 

… … … 
Step-n: RA <转达,nil,{(转达,给),(给,教师们),(件,一)， 

(的,令人欣喜),(消息,的),(消息,件)}> 
 
The dependency structure of the output: 
 
 
转达    给 教师们 一 件        令人欣喜 的 消息， 

Fig. 4. Example-2: Parsing with Nivre’s algorithm 
 

 
报告  了 二百个 引进        外国                   投资           的   计划. 
report _  200       attract  foreign country     investment   of   plan. 
Report 200 plans in attracting foreign investment. 
… … … 
step-i : RA < 报告, 引进外国投资的计划,{( 报告,了)} >

Fig. 5. Example-3: Parsing with Nivre’s algorithm 
 

When applying to Chinese parsing, the deter-
mination of dependency relation between two 
verbs is not effective. In the example-3 of Fig.5, 
at step-i, the parser decides whether the depend-
ency relation between 报告 and 引进 is either 
Left-arc or Right-arc. The actual head of  the 
verb 引进 is 的, which is distant. By looking 
only two or three right side words ahead, to de-
cide the dependency relation between these 
verbs at this moment is not reliable. Yamada’s 
algorithm is not a clear solution to determine the 
right side dependents either. 

3.2 Two-Phase Dependency Parsing 

For the head-final languages like Korean or 
Japanese, Nivre[3] and Yamada’s[4] approaches 
are efficient. However, being applied to Chinese 
text, the existing methods cannot correctly de-
tect various kinds of right-side dependents in-
volved in verbs. All wrong decisions of reduce 
transition mainly occur if the right dependent of 
a verb is also a verb, which may have right-side 
dependents.  

For the correct detection of the right-side de-
pendents, we divide the parsing procedure into 
two-phase. Phase I is to detect the left-side de-
pendents and right-side nominal dependents. 
Although some nominal dependents are right-
side, they don’t have dependents on the right 
side, and will not cause any ambiguities related 
to right-side dependents. In Phase II, the detec-
tion of right-side verbal dependents, are per-
formed.  

3.2.1 Phase I  
In Phase I, we determine the left-side depend-

ents and right-side nominal dependents. We de-
fine three transitions for Phase I: Shift, Left-Arc, 
Right-Arc. The actions of transition shift and 
Left-Arc are the same as Nivre[3] defines. How-
ever, in our method, the transition of Right-Arc 
does not push the input token to the stack. The 
original purpose for pushing input to stack after 
right-arc, is to give a chance for the input to be 
a potential head of the following words. In Chi-
nese, only verbs and prepositions have right-side 
dependents. For other POS categories, the action 
of pushing into stack is nonsense.  In case that 
the input word is a preposition, there is no am-
biguities we describe. Only the words belong to 
various verbal categories may cause problems. 
The method that we use is as follows. When the 
top word of the stack and the next input word 
are verbs, like VV, VE, VC or VA2 [11], the 
detection of the dependency relation between 
these two verbs is delayed by transition of shift. 
To differentiate this shift from original shift, we 
call this verbal-shift. The determination of the 
dependency relation between these two verbs 
will be postponed until phase II. The transitions 
are summarized as Fig.6. 

If there is no more input word, phase I termi-
nates. The output of the phase I is a stack, which 

                                                           
2 VV, VE, VC and VA are Penn Chinese Treebank POS 
categories related to verbs. For details, please refer to [11]. 
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contains verbs in reverse order of the original 
appearance of the verbs in the sentence. Each 
verb in the stack may have their partial depend-
ents, which are determined in Phase I.  
    
If the action is Verbal-shift 

: push the input to the stack 
else if the action is Shift 
  push the input to the stack 
else if the action is Left-arc 
  set the dependency relation for two words; pop 
the top of the stack 
else if the action is Right-arc 
  set the dependency relation for two words 

Fig. 6.  Types of transitions in the phase I 
 
The type of transition is determined by the top 

word of the stack, input word and their context. 
Most of the previous parsing models[4,12,13] 
use lexical words as features. Compared to Penn 
English Treebank, the size of Penn Chinese 
Treebank (version 4.0, abbreviated as CTB) is 
rather small. Considering the data sparseness 
problem, we use POS tags instead of lexical 
words itself. As Fig.7. shows, the window for 
feature extraction is the top word of the stack, 
input word, previous word of the top of the 
stack, next word of the input. The left-side 
nearest dependent of these is also taken into 
consideration. Besides, we use two more fea-
tures, if_adjoin, and Punc. The feature vector for 
Phase I is shown in Fig.7.  

3.2.2 Phase II  
    After Phase I, only verbs remain in the stack. 
In Phase II, we determine the right-side verbal 
dependents.  We take the output stack of Phase I 
as input. Some words in the stack will have 
right-side dependents as shown in Fig.8. For 
Phase II, we also define three transitions: shift, 
left-arc, right-arc. The operations of these three 
transitions are the same as Phase I, but there are 
no verbal-shifts. Fig.9 shows the output of Phase 
I and parsing at Phase II of example given in 
Fig.8.  

The window for feature extraction is the same 
as that of Phase I. The right-side nearest de-
pendent is newly taken as features for Phase II. 
The feature vector for Phase II is shown in 
Fig.10. 

The two-phase parsing will output a projec-
tive, acyclic and connective dependency struc-
ture. Nivre[10] said that the time complexity of 
his parser is 2 times the size of the sentence. Our 
algorithm is 4 times the size of the sentence, so 

the time complexity of our parser is still linear to 
the size of the sentence. 

 
Windows for feature extraction : 
t.stack :  top word of the stack 
p.stack:  previous word of top of the stack 
input   :  input word 
n.input:  next word of the input word 
 
x.pos : POS tag of word x 
x.left.child : the left-side nearest dependent of word x 
 
punc : the surface form of punctuation between top word of the 

stack and input word, if there is any 
if_adjoin : a binary indicator to show if the top word of the 
stack and input word are adjoined  
 
The feature vector for Phase I is : 
<p.stack.pos t.stack.pos input.pos n.input.pos p.stack.left.child.pos 
t.stack.left.child.pos input.left.child.pos punc if_adjoin> 

Fig. 7. Feature vector for Phase I 
 

这位官员说，四川将奉行更加开放的政策，不断改善投资环境，

引进更多的海外资金、先进的技术和管理经验。 
(The official said that Sichuan will pursue a more open door policy, 
continuously improve the investment environments and attract more 
capitals from overseas, advanced techniques and experiences of ad-
ministration.) 
 
The contents of stack after Phase I: <引进，改善，奉行，说>.  

(attract, improve, pursue, said ) 
 
The dependents  of each verb in the stack 
 
 
 
 
 
 
 
 
 
Fig. 8. Dependents of each verb after Phase I 
 
step-0      <nil, 引进 改善 奉行 说，{}> 
step-1 S   < 引进, 改善 奉行 说，{}> 
step-2 RA  < 引进, 奉行 说，{(引进,改善)}> 
step-3 RA  < 引进, 说，{(引进,改善),(引进,奉行)}> 
step-4 LA  < nil, 说，{(引进,改善),(引进,奉行), 

(说,引进)}> 
step-5 S   < 说, nil，{(引进,改善),(引进,奉行), 

(说,引进)}> 
Fig. 9. Example of parsing at Phase II 
 
The feature vector for Phase II is : 
<p.stack.pos t.stack.pos input.pos n.input.pos 
p.stack.left.child.pos t.stack.left.child.pos  input.left.child.pos 
p.stack.right.child.pos t.stack.right.child.pos in-
put.right.child.pos n.input.right.child.pos punc if_adjoin> 
Fig. 10. Feature vector for Phase II. 

4 Experiments and Evaluation  

Our parsing procedure is sequentially per-
formed from left to right. The feature vectors for 

引

经

改

不 环

奉

政

将 

四

说 

官

right-side right-side right-sideleft-side left-side 

left-side 

left-side
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Phase I and Phase II are used as the input for the 
parsing model. The model outputs a parsing ac-
tion, left-arc, right-arc or shift. We use SVM as 
the model to obtain a parsing action, and use 
CTB for training and test the model. 

4.1 Conversion of Penn Chinese Treebank to 
Dependency Trees 

Annotating a Treebank is a tedious task. To 
take the advantage of CTB, we made some heu-
ristic rules to convert CTB into dependency 
Treebank. This kind of conversion task has been 
done on English Treebank[14,10,4]. We use the 
dependency formalism as Zhou[15] defined. 

CTB contains 15,162 newswire sentences (in-
cluding titles, fragments and headlines). The 
contents of CTB are from Xinhua of mainland, 
information services department of HKSAR and 
Sinorama magazine of Taiwan. For experiments, 
12,142 sentences are extracted, excluding all the 
titles, headlines and fragments.  

For the conversion task, we made some heu-
ristic rules. CTB defines total 23 syntactic 
phrases and verb compounds[11]. A phrase is 
composed of several words accompanied to a 
head word. The head word of each phrase is 
used as an important resource for PCFG pars-
ing[12,13]. According to the position of the head 
word with respect to other words, a phrase3 can 
be categorized into head-final, head-initial or 
head-middle set. Table.1 shows the head-initial, 
head-final and head-middle groups.  

For VP, IP and CP, these phrases have a verb 
as its head word. So we find a main verb and 
regard the verb the head word of the phrase. If 
the head word for each phrase is determined, 
other words composing the phrase simply take 
the head word of the phrase as its head. In the 
case of BA/LB4, we take a different view from 
what is done in CTB. Zhou[15] regards BA/LB 
as the dependent of the following verb. We fol-
low Zhou’s[15] thought. For sentences contain-
ing BA/LB, we converted them into dependency 
trees manually. With above heuristics, we con-
verted the original CTB into dependency Tree-
bank.  

                                                           
3 We use the label of phrases as CTB has defined. We ex-
clude FRAG, LST, PRN. For each definition of the phrase 
please refer to [11]. 
4 BA, LB are two POS categories of CTB. For details, see 
[11]. 

4.2 Experiments 

SVM is one of the binary classifiers based on 
maximum margin strategy introduced by Vap-
nik[16]. SVM has been used for various NLP 
tasks, and gives reasonable outputs. For the ex-
periments reported in this paper, we used the 
software package SVMlight [17]. 

For evaluation matrix, we use Dependency 
Accuracy and Root Accuracy defined by Ya-
mada[4]. An additional evaluation measure, 
None Head is defined as following. 

 
None Head: the proportion of words whose 

head is not determined. 

 

GROUP PHRASES 
Head-initial PP; VRD; VPT; 
Head-final ADJP; ADVP; CLP; DNP; DVP; DP; 

LCP; NP; QP; VCD; VCP; UCP; VSB; 
VNV; 

Head-
middle 

CP; IP; VP; 

Table 1. Cluster of CTB syntactic phrases 

 
Table 2. Comparison of dependency accuracy with Nivre’s 
 

We construct two SVM binary classifiers, 
Dep vs. N_Dep and LA vs. RA, to output the 
transition action of Left-arc, Right-arc or Shift. 
Dep vs. N_Dep classifier determines if two 
words have a dependency relation. If two words 
have no dependency relation, the transition ac-
tion is simply Shift. If there is a dependency re-
lation, the second classifier will decide the 
direction of it, and the transition action is either 
Left-arc or Right-arc.  

We first train a model along the algorithm of 
Nivre[10]. The training and test sentences are 
randomly selected. Table.2 shows that 1.53% of 
the words cannot find their head after parsing. 
This result means that the original Nivre’s algo-
rithm cannot guarantee a connective dependency 
structure.  

With our two-phase parsing algorithm, there 
is no none head. Then, the dependency accuracy 
and root accuracy are increased by 10.08% and 
13.35% respectively.  

 Dependency 
accuracy 

Root ac-
curacy 

None 
head 

Nivre’s algorithm[10] 73.34% 69.98% 1.53% 
Ours  84.42% 83.33% ---- 
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4.3 Comparison with Related Works 

Compared to the original works of Nivre[10] 
and Yamada[4], the performance of our system 
is lower. We think that is because the target lan-
guage is different.  
 

 Average 
sentence 
length 

Dependency 
accuracy 

Root 
accuracy

Ma[5] 9 80.25% 83.22%
Cheng[18] 5.27 94.44% -- 
Ours 34 84.42% 83.33%

Table 3 Comparison of the parsing performances 
between Ma[5], Cheng[18] and ours 
 

Table 3 gives the comparison of the perform-
ances between Ma[5], Chen[18] and ours. The 
training and test domain of Ma[5] is not clear. 
Cheng[18] used CKIP corpus in his experiments. 
The average length of sentence in our test set is 
34, which is much longer than that in Ma[5] and 
Cheng[18]. The performance of our system is 
still better than Ma[5] and less than Cheng[8]. 

5 Conclusion 

To resolve the right-side long distance de-
pendencies, we propose two-phase shift-reduce 
parsing strategy. The parsing strategy not only 
guarantees the connectivity of dependency tree, 
but also improves the parsing performance. As 
the length of sentences increases, the ambigui-
ties for parsing increase drastically. With our 
two-phase shift-reduce parsing strategy, the per-
formance of syntactic parsing of long sentences 
is also reasonable. 

The motivation of this paper is to design a 
well-formed dependency parser for Chinese. We 
believe that there’re rooms to improve the per-
formance. We plan to work further to explore 
the optimal features. We also plan to parse Eng-
lish text with our algorithm to see if it can com-
pete with the state-of-art dependency parsers on 
English. We believe that our parsing strategy 
can apply to other languages, in which head po-
sition is mixed, as Chinese language. We think 
that it is the main contribution of our approach. 
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