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Abstract

This paper compares two storage mod-
els for gazetteers, nameley the stan-
dard one based on numbered indexing
automata associated with an auxiliary
storage device against a pure finite-state
model, the latter being superior in terms
of space and time complexity.1

1 Introduction

Gazetteers are dictionaries that include geograph-
ically related information on given places, names
of people, organizations, etc. Several data struc-
tures can be used to implement a gazetteer, e.g.
hash tables, tries and finite-state automata. The
latter require less memory than the alternative
techniques and guarantee efficient access to the
data (1).

In this paper, we compare two finite-state based
data structures for implementing a gazetteer look-
up component, one involving numbered automata
with multiple initial states combined with an ex-
ternal table (2) against the method focused on
converting the input data in such a way as to
model the gazetteer solely as a single finite-state
automaton without any auxiliary storage device
tailored to it. Further, we explore the impact of
transition jamming – an equivalence transforma-
tion on finite-state devices (3) – on the size of the
automata.

The paper is organized as follows. Section 2
introduces the basic definitions. Section 3 focuses

1This work is supported by German BMBF-funded
project COLLATE II under grant no. 01 IN C02.

on modeling the gazetteer component. Next, in
section 4 we report on empirical experiments and
finish off with conclusions in section 5.

2 Preliminaries

A deterministic finite-state automaton(DFSA) is
a quintupleM = (Q,Σ, δ, q0, F ), whereQ is
a finite set of states, Σ is the alphabetof M ,
δ : Q × Σ → Q is the transition function, q0

is the initial state andF ⊆ Q is theset of final
states. The transition function can be extended to
δ∗ : Q × Σ∗ → Q by definingδ(q, ε) = q, and
δ(q, wa) = δ(δ∗(q, w), a) for a ∈ Σ, w ∈ Σ∗.
Thelanguage accepted by an automatonM is de-
fined asL(M) = {w ∈ Σ∗|δ∗(q0, w) ∈ F}.
In turn, the right languageof a stateq is de-
fined asL(q) = {w ∈ Σ∗|δ∗(q, w) ∈ F}.
A path in a DFSA M is a sequence of
triples〈(p0, a0, p1), . . . , (pk−1, ak−1, pk)〉, where
(pi−1, ai−1, pi) ∈ Q×Σ×Q andδ(pi, ai) = pi+1

for 1 ≤ i < k. The stringa0a1 . . . ak is the la-
bel of the path. The first and last state in a path
π are denoted asf(π) andl(π) respectively. We
call a pathπ a cycleif f(π) = l(π). Further, we
call a pathπ sequentialif all intermediate states
onπ are non-final and have exactly one incoming
and one outgoing transition. Among all DFSAs
recognizing the same language, the one with the
minimal number of states is calledminimal.

Minimal acyclic DFSA (MADFSA) are the
most compact data structure for storing and effi-
ciently recognizing a finite set of words. They can
be built via application of the space-efficient in-
cremental algorithm for constructing a MADFSA
from a list of strings in nearly linear time (4). An-
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other finite-state device we refer to is the so called
numbered minimal acyclic deterministic finite-
state automaton. Each state of such automata is
associated with an integer representing the cardi-
nality of its right language. An example is given
in Figure 1. Numbered automata can be used for
assigning each accepted word a unique numeric
key, i.e., they implementperfect hashing. An in-
dexI(w) of a wordw can be computed as follows.
We start with an indexI(w) equal to 1 and scan
the inputw with the automaton. While traversing
the accepting path, in each state we increase the
index by the sum of all integers associated with
the target states of transitions lexicographically
preceding the transition used. Once the final state
has been reachedI(w) contains the unique index
of w. Analogously, for a given indexi the corre-
sponding wordw such thatI(w) = i can be com-
puted by deducing the path, which would lead to
the indexi.2
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Figure 1: Numbered MADFSA accepting{start,
art, card, stunt, calk}.

3 Modeling of a gazetteer

Raw gazetteers are usually represented by a
text file, where each line represents a sin-
gle entry and is in the following format:
keyword (attribute:value)+ . For each
reading of an ambiguous keyword, a separate line
is introduced, e.g., for the wordWashingtonthe
following entries are introduced:
Washington | type:city | location:USA | subtype:cap_city

| full-name:Washington D.C. | variant:WASHINGTON
Washington | type:person | surname:Washington

| language:english | gender:m_f
Washington | type:region | variant:WASHINGTON

| location:USA | abbreviation: {W.A.,WA.}

2Instead of associating states with integers, each transi-
tion can be accompanied by the number of different routes
to any final state outgoing from the same state as the cur-
rent transition, whose label are lexicographically lower than
the current one. Consequently, computingI(w) for w would
consist solely of summing over the integers associated with
traversed transitions, whereas memory requirements rise to
30% (5; 2)

We differentiate between open-class and closed-
class attributes depending on their range of val-
ues, e.g.,full-name is an open-class attribute,
whereasgender is a closed-class attribute. As
can be seen in the last reading forWashingtonat-
tribute may be assigned a list of values.

3.1 Standard Approach

The standard approach to implementing dictio-
naries presented in (5; 2) can be straightforwardly
adapted to model the architecture of a gazetteer.
The main idea is to encode the keywords and all
attribute values in a single numbered MADFSA.
In order to distinguish between keywords and dif-
ferent attribute values we extend the indexing au-
tomaton so that it hasn + 1 initial states, wheren
is the number of attributes. The right language of
the first initial state corresponds to the set of the
keywords, whereas the right language of thei-th
initial state fori ≥ 1 corresponds to the range of
values appropriate fori-th attribute. The subau-
tomaton starting in each initial state implements
different perfect hashing function. Hence, the
aforesaid automaton constitutes a word-to-index
and index-to-word engine for keywords and at-
tribute values. Once we know the index of a given
keyword, we can access the indices of all associ-
ated attribute values in a row of an auxiliary table.
Consequently, these indices can be used to extract
the proper values from the indexing automaton.
In the case of multiple readings an intermediate
array for mapping the keyword indices to the ab-
solute position of the block containing all read-
ings is indispensable. The overall architecture is
sketched in figure 2. Through an introduction of
multiple initial stateslog2(card(i)) bits are suf-
ficient for representing the indices for values of
attributei, wherecard(i) is the size of the corre-
sponding value set.

It is not necessarily convenient to store the
proper values of all attributes in the numbered au-
tomaton, e.g. numerical or alphanumerical data
could be stored directly in the attribute-value ma-
trix or elsewhere (cf. figure 2) if the range of
the values is bounded and integer representation
is more compact than anything else. Fortunately,
the vast majority (but definitely not all) of at-
tribute values in gazetteers deployed in NLP hap-
pens to be natural language expressions. There-
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Figure 2: Compact storage model for a gazetteer look-up component.

fore, we can expect the major part of the entries
and attribute values to share suffixes, which leads
to a better compression rate. Prevalent bottle-
neck of the presented approach is a potentially
high redundancy of the information stored in the
attribute-value matrix. However, this problem can
be partially alleviated via automatic detection of
column dependency, which might expose sources
of information redundancy. Reccurring patterns
consisting of raw fragments could be indexed and
represented only once.

3.2 Pure Finite-State Representation

One of the common techniques for squeezing au-
tomata in the context of implementing dictionar-
ies is an appropriate coding of the input data.
Converting a list of strings into a MADFSA usu-
ally results in a good compression rate since many
words share prefixes and suffixes, which leads to
transition sharing. If strings are associated with
additional annotations representing certain cate-
gories, e.g., part-of-speech, inflection or stem in-
formation in a morphological lexicon, then an
adequate encoding is necessary in order to keep
the corresponding automaton small. A simple
solution is to reorder categories from the most
specific to the most general ones, so that stem
information would precede inflection and part-
of-speech tag. Alternatively, we could precom-
pute all possible annotation sequences and replace
them with some index. However, the major part
of a string that encodes the keyword and its tags
might be unique and could potentially blow up the
corresponding automaton enormously. Consider
again the entry for the morphological lexicon con-
sisting of an inflected word form and its tags,

e.g.striking:strike:v:a:p (v - verb,a -
present,p - participle). Obviously, the sequence
striking:strike is unique. Through the
exploitation of the word-specific information the
inflected form and its base form share one can
introduce patterns (6) describing how the lex-
eme can be reconstructed from the inflected word
form, e.g.,3+e - delete three terminal characters
and append ane (striking → strik + e), which
would result in better suffix sharing, i.e., the suf-
fix 3+e:v:a:p is more frequently shared than
strike:v:a:p .

The main idea behind transforming a gazetteer
into a single automaton is to split each gazetteer
entry into a disjunction of subentries, each rep-
resenting some partial information. For each
open-class attribute-value pair present in the en-
try a single subentry is created, whereas closed-
class attribute-value pairs are merged into a single
subentry and rearranged in order to fulfill thefirst
most specific, last most generalcriterion. In our
example, the entry for the wordWashington(city)
yields the following subentries:

Washington #1 NAM(subtype) VAL(cap_city) NAM(type) VAL(city)
Washington #1 NAM(variant) WASHINGTON
Washington #1 NAM(location) USA
Washington #1 NAM(full-name) Washington D.C.

whereNAMmaps attribute names to single uni-
vocal characters not appearing elsewhere in the
original gazetteer andVAL denotes a mapping
which converts the values of the closed-class at-
tributes into single characters which represent
these values. The string#1 , where# is again a
unique symbol, denotes the reading index of the
entry (first reading). In case of list-valued open-
class attributes we can simply add an appropriate
subentry for each element in the list. Gazetteer re-
sources converted in this manner are subsequently
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compiled into an MADFSA. In order to gain bet-
ter compression rate we utilized formation pat-
terns for a subset of attribute values appearing
in the gazetteer entries. These patterns resemble
the ones for encoding morphological information,
but they partially rely on other information. For
instance, frequently, attribute values are just the
capitalized form of the corresponding keywords
as can be seen in our example. Such a pattern
can be represented by a single character. Further,
keywords and attribute values often share prefixes
or suffixes, e.g.,Washingtonvs. Washington D.C.
Next, there are clearly several patterns for form-
ing acronyms from the full form, e.g.,UScan be
derived fromUnited States, by concatenating all
capitals in the full name. Nevertheless, some part
of the attribute values can not be replaced by pat-
terns. Applying formation patterns to our sample
entry would result in:

Washington #1 NAM(subtype) VAL(cap_city) NAM(type) VAL(city)
Washington #1 NAM(variant) PAT(AllCapital)
Washington #1 NAM(location) USA
Washington #1 NAM(full-name) PAT(Identity) D.C.

wherePATmaps pattern names to unique char-
acters. Some space savings may be obtained by
reversing the attribute values not covered by any
pattern since prefix compression might be eventu-
ally superior to suffix compression.

The outlined method of representing a
gazetteer is an elegant solution and exhibits
three major assets: (a) no external storage for
attribute values is needed, (b) the automaton
involved is not numbered which means less
space requirement and reduced searching time
in comparison to approach in 3.1, and (c) as a
consequence of the encoding strategy, there is
only one single final state in the automaton.3

From the other point of view, the information
stored in the gazetteers and the fashion in which
the automaton is built intuitively does not allow
for obtaining the same compression rates as in the
case of the automaton in 3.1. For instance, many
entries are multiword expressions, which increase
the size of the automaton by an introduction of
numerous sequential paths. In order to alleviate
this problem we applied transition jamming.

3The states having outgoing transitions labeled with the
unique symbols in the range ofNAMare implicit final states.
The right languages of these states represent attribute-value
pairs attached to the gazetteer entries.

3.3 Transition Jamming

Transition jammingis an equivalence operation
on automata in which transitions on sequential
paths are transformed into a single transition la-
beled with the label of the whole path (3). In-
termediate states on the path are removed. The
jammed automaton still accepts the same lan-
guage. We have applied transition jamming in a
somewhat different way. Letπ be a sequential
path in the automaton anda = a0 . . . ak be the
label of π. We remove all transitions ofπ and
introduce a new transition fromf(π) to l(π) la-
beled witha0 , i.e., δ(f(π), a0) = l(π) and
store the remaining character sequencea1 . . . ak

in a list of sequential path labels. Once all such
labels are collected, we introduce a new initial
state in the automaton and consecutively starting
from this state we add all these labels to the min-
imized automaton while maintaining its property
of being minimal (4). The subautomaton start-
ing from the new initial state implements a per-
fect hashing function. Finally, the new ‘jammed’
transitions are associated with the corresponding
indices in order to reconstruct the full label on
demand. There are several ways of selecting se-
quential paths for jamming. Maximum-length se-
quential paths constitute the first choice. Jam-
ming paths of bounded length might yield better
or at least different results. For instance, a se-
quential path whose label is a long fragment of a
multiword expression could be decomposed into
subpaths that either do not include whitespaces or
consist solely of whitespaces. In turn, we could
jam only the subpaths of the first type.

Storing sequential path labels in a new branch
of the automaton obviously leads to the intro-
duction of new sequential paths. Therefore, we
have investigated the impact ofrepetitive transi-
tion jammingon the size of the automaton. In
each phase of repetitive jamming, a new initial
state is introduced from which the labels of the
jammed paths identified in this phase are stored.

4 Experiments

4.1 Data

We have selected following gazetteers for the
evaluation purposes: (a) UK-Postal - city names
in the UK associated with county and postal code
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Gazetteer size #entries #attributes #open-class average formation pattern
name attributes entry length applicability
LT–World 4,154 96837 19 14 40 99,1%
PL–NE 2,809 51631 8 3 52 96,3%
Mixed 6,957 148468 27 17 44 97,8%
GeoNames I 13,590 80001 17 6 166 89,2%
GeonNames II 33,500 20001 17 6 164 92,0%

Table 1: Parameters of test gazetteers.

Gazetteer Standard Pure-FSA Standard Pure-FSA
& Jamming & Jamming

|Q| |δ| |Q| |δ| |Q| |δ| |Q| |δ|
UK-Postal 28596 53041 101145 132008 15008 (15251) 40828 (40903) 32072 (32146) 67831 (67248)
LT-World 191767 266465 259666 341015 86613 (67891) 172583 (152571) 110409 (81479) 207950 (178396)
PL-NE 37935 70773 60119 97035 21106 (19979) 55839 (54639) 27919 (26274) 67435 (65722)
Mixed 206802 295416 299540 399286 94440 (75755) 194815 (174817) 125362 (96038) 242512 (212265)
GeoNames I 280550 410609 803390 1110668 104857 (107631) 258680 (254130) 231887 (226335) 603320 (595122)
GeoNames II 491744 784001 1655790 2396984 198630 (204188) 514595 (517081) 474572 (469678) 1322058 (1311564)

Table 2: Size of the four types of automata.

information, (b) LT–World - a gazetteer of key
players and events in the language technology
community, (c) PL-NE - a gazetteer of MUC-type
Polish named entities, (d) Mixed - a combination
of (b) and (c), (e) GeoNames - an excerpt of the
huge gazetteer of geographic names information
covering geopolitical areas, including name vari-
ants, administrative divisions, different codes, etc.
Table 1 gives an overview of our test data.4

4.2 Evaluation

Several experiments with different set-ups were
conducted. Firstly, we compared the standard
with the pure-FSA approach. Next, we repeated
the experiments enhanced by integration of sin-
gle transition jamming. The results are given in
table 2. The numbers in the columns concern-
ing transition jamming correspond to jamming of
maximum-length sequential paths and jamming
of whitespace-free paths (in brackets).

The increase in physical storage in the case of
numbered automata has been reported to be in
range of 30-40% (state numbering) and 60-70%
(transition numbering) (1). Note at this point that
automata are usually stored as a sequence of tran-
sitions, where states are represented only implic-
itly (7). Considering additionally the space re-
quirement for the auxiliary table in the standard
approach for storing the indices for open-class at-
tribute values, it turns out, that this number os-
cillates aroundm · n · log256n bytes, wherem
is the number of open-class attributes andn is

4The last column gives the ratio of open-class attribute
values for which formation patterns can be applied to the to-
tal number of open-class attribute values in a given gazetteer.

the number of entries in the gazetteer. Summing
up these observations and taking a look at the ta-
ble 2, we conclude without naming absolute size
of the physical storage required that the pure-FSA
approach turns out to be the superior when ap-
plied to our test gazetteers. However, some re-
sults, in particular for the Geo-Names, where|δ|
is about three time as big as in the automaton
in the standard approach, indicate some pitfalls.
Mainly due to the fact that some open-class at-
tributes in GeoNames are alphanumeric strings
which do not compress well with the rest. Sec-
ondly, some investigation reveal the necessity of
additional formation patterns, which could work
better with this particular gazetteer. Finally, the
GeoNames gazetteer exhibits highly multilingual
character, i.e., the size of the alphabet is larger.

As expected, transition jamming works better
with the Pure-FSA approach, i.e., it reduces the
size of |δ| by a factor of 1.35 to 1.9, whereas
in the other case the gain is less significant.
Transition jamming constrained to witespace-free
paths yielded better compression rates, in partic-
ular for gazetteers without numerical data (see ta-
ble 2). Obviously, transition jamming is penal-
ized through the introduction of state numbering
in some part of the automaton and indexing cer-
tain edges, but the overall size of the automaton
is still smaller than the original one. In the case
of the LT-World gazetteer, there were circa 20000
sequential paths in the automaton. Consequently,
we removed circa 134 000 transitions.

Next, we studied the profitability of repeti-
tive transition jamming. Figure 3 presents two
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Figure 3: Impact of repetitive transition jamming on the size of states and transitions (Standard-B and
Pure-FSA-B stands for repetitive jamming on whitespace-free paths).

diagrams which depict how this operation im-
pacts the size of the automaton for the LT-World
gazetteer. As can be observed, a more than 2-
stage repetitive jamming does not significantly
improve the compression rate. Interestingly, we
can observe in the left diagram that for both ap-
proaches the repetitive jamming of maximum-
length sequential paths leads (after stage 3) to
a greater reduction of|Q| than jamming of
whitespace-free paths. The corresponding num-
bers for other gazetteers with respect to repetitive
jamming were of similar nature. Reversing labels
of sequential paths and reversing open-class at-
tribute values not covered by any formation pat-
tern results in insignificant difference (1-2%) in
the size of the automata.

5 Conclusions and Future Work

In the context of modeling a compact data
structure for implementing a gazetteer empiri-
cal experiments reveal that a pure-FSA approach,
in which all data is converted into a single
MADFSA, turns out to outperform the standard
approach based on an indexing numbered au-
tomaton and an auxiliary table. At least in the
case of data we are dealing with benefits are ob-
servable, since major part of the attribute values
are contemporary word forms. A further inves-
tigation revealed that transition jamming reduces
the size of the automata significantly. However,
for storing gazetteers containing large number of
(alpha)numerical data the standard approach or
other techniques might be a better choice. There-
fore, the evaluation results are only meant to con-

stitute a handy guideline for selecting a solution.
There are number of interesting issues that can
be researched in the future, e.g. investigation of
jamming paths of bounded length or deployment
of finite-state transducers for handling the same
task.
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